
Hardware monitor and debugger for LEON, NOEL-V and GRLIB SoC Systems

GRMON4

GRMON4 User's Manual

U
S

E
R

 M
A

N
U

A
L

R
E

L
E

A
S

E
D

 J
U

N
E

 2
02

5

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 2

Table of Contents
1. Introduction .. 5

1.1. Overview ... 5
1.2. Supported platforms and system requirements ... 5
1.3. Obtaining GRMON .. 5
1.4. Installation ... 5
1.5. License .. 6
1.6. NOEL-V Support .. 6

1.6.1. Limitations ... 6
1.7. GRMON Evaluation version .. 6
1.8. Problem reports ... 7

2. Debugging concept ... 8
2.1. Overview ... 8
2.2. Target initialization .. 8

2.2.1. LEON2 target initialization ... 10
2.2.2. Configuration file target initialization .. 10

2.3. Memory register reset values ... 10
2.4. Hardware reset .. 10

3. Operation .. 11
3.1. Overview .. 11
3.2. Starting GRMON ... 11

3.2.1. Debug link options .. 11
3.2.2. Debug driver options ... 11
3.2.3. General options ... 12

3.3. GRMON command-line interface (CLI) ... 13
3.4. Common debug operations .. 14

3.4.1. Examining the hardware configuration .. 14
3.4.2. Uploading application and data to target memory .. 16
3.4.3. Running applications .. 16
3.4.4. Inserting breakpoints and watchpoints ... 17
3.4.5. Displaying processor registers .. 17
3.4.6. Backtracing function calls ... 18
3.4.7. Displaying memory contents ... 18
3.4.8. Instruction disassembly ... 19
3.4.9. Using the trace buffer .. 20
3.4.10. Profiling ... 21
3.4.11. Attaching to a target system without initialization .. 22
3.4.12. Attaching to a target system without Plug and Play scanning 22
3.4.13. Multi-processor support .. 22
3.4.14. Stack and entry point ... 23
3.4.15. Memory Management Unit (MMU) support ... 23
3.4.16. CPU cache support .. 24

3.5. Tcl integration ... 24
3.5.1. Shells .. 24
3.5.2. Commands ... 24
3.5.3. API ... 25

3.6. Symbolic debug information .. 25
3.6.1. Multi-processor symbolic debug information .. 25

3.7. GDB interface ... 26
3.7.1. Connecting GDB to GRMON .. 26
3.7.2. Executing GRMON commands from GDB ... 26
3.7.3. Running applications from GDB .. 27
3.7.4. Running SMP applications from GDB ... 27
3.7.5. Running AMP applications from GDB .. 28
3.7.6. GDB Thread support .. 29
3.7.7. Virtual memory ... 31
3.7.8. Specific GDB optimization ... 33
3.7.9. GRMON GUI considerations ... 33

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 3

3.7.10. Limitations of GDB interface ... 33
3.8. Thread support .. 33

3.8.1. GRMON thread options .. 33
3.8.2. GRMON thread commands ... 34

3.9. Forwarding application console I/O ... 35
3.10. EDAC protection ... 36

3.10.1. Using EDAC protected memory ... 36
3.10.2. LEON3-FT error injection ... 36

3.11. PROM programming .. 37
3.11.1. EEPROM ... 37
3.11.2. MRAM .. 37
3.11.3. CFI compatible Flash PROM ... 37
3.11.4. SPI memory device .. 38

3.12. Automated operation ... 39
3.12.1. Tcl commanding during CPU execution ... 39
3.12.2. Communication channel between target and monitor .. 39
3.12.3. Test suite driver .. 39

4. Graphical user interface ... 41
4.1. Overview .. 41
4.2. Starting GRMON GUI .. 41
4.3. Connect to target ... 42

4.3.1. Debug link ... 43
4.3.2. Options .. 43
4.3.3. Argument contribution ... 43
4.3.4. Configurations .. 43
4.3.5. Connect ... 44

4.4. Launch configurations .. 44
4.4.1. Target image setup .. 44
4.4.2. Launch properties .. 45

4.5. Perspectives .. 47
4.6. C/C++ source level debugging ... 47

4.6.1. GDB interface .. 47
4.7. Views .. 48

4.7.1. Debug View ... 48
4.7.2. System Information View ... 48
4.7.3. IO Registers View ... 49
4.7.4. CPU Registers View .. 51
4.7.5. Registers View .. 52
4.7.6. Router View ... 52
4.7.7. Source Editor .. 54
4.7.8. Terminals View .. 55
4.7.9. Memory View .. 57
4.7.10. Breakpoints View .. 57
4.7.11. Disassembly View ... 60
4.7.12. Messages View ... 63
4.7.13. Executables View .. 63
4.7.14. Outline View .. 64
4.7.15. Variables View ... 65
4.7.16. Expressions View .. 65

4.8. Target communication .. 66
4.8.1. Memory view update ... 66

4.9. Limitations ... 66
4.10. Troubleshooting the GUI ... 66

5. Debug link .. 68
5.1. UART debug link .. 68
5.2. Ethernet debug link .. 69
5.3. JTAG debug link ... 70

5.3.1. Xilinx parallel cable III/IV .. 71
5.3.2. Xilinx Platform USB cable ... 71

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 4

5.3.3. Altera USB Blaster or Byte Blaster .. 73
5.3.4. FTDI FT4232/FT2232 .. 74
5.3.5. Amontec JTAGkey .. 75
5.3.6. Actel FlashPro 3/3x/4/5 .. 75
5.3.7. Digilent HS1/HS2/HS3/SMT2/SMT3 .. 75

5.4. USB debug link ... 75
5.5. GRESB debug link .. 77

5.5.1. AGGA4 SpaceWire debug link .. 78
5.6. User defined debug link .. 78

5.6.1. API ... 78
6. Debug drivers .. 80

6.1. AMBA AHB trace buffer driver ... 80
6.2. Clock gating ... 80

6.2.1. Switches .. 80
6.3. Debug support drivers .. 80

6.3.1. Switches .. 81
6.3.2. Commands ... 81
6.3.3. Tcl variables ... 82

6.4. Ethernet controller ... 82
6.4.1. Commands ... 82

6.5. GRPWM core ... 83
6.6. USB Host Controller .. 83

6.6.1. Switches .. 83
6.6.2. Commands ... 83

6.7. I2C .. 83
6.8. I/O Memory Management Unit .. 83
6.9. Multi-processor interrupt controller ... 84
6.10. L2-Cache Controller ... 84

6.10.1. Switches ... 85
6.10.2. Errata .. 85

6.11. Statistics Unit .. 85
6.12. LEON2 support ... 87

6.12.1. Switches ... 87
6.13. On-chip logic analyzer driver ... 88
6.14. Memory controllers .. 88

6.14.1. Switches ... 89
6.14.2. Commands ... 91

6.15. Memory scrubber ... 91
6.16. MIL-STD-1553B Interface ... 91
6.17. PCI .. 93

6.17.1. PCI Trace ... 96
6.18. GR716B Real-Time Accelerator ... 97

6.18.1. Switches ... 98
6.19. SPI .. 98
6.20. SpaceWire router ... 99
6.21. SVGA frame buffer .. 99

7. Support ... 100
A. Command index .. 101
B. Command syntax ... 105
C. Tcl API .. 264
D. Fixed target configuration file format .. 273
E. License key installation ... 275
F. Appending environment variables .. 276
G. Compatibility .. 277

G.1. Compatibility notes for GRMON3 .. 277
G.2. Compatibility notes for GRMON2 .. 277
G.3. Compatibility notes for GRMON1 .. 277

H. Third-party licenses .. 278

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 5

1. Introduction

1.1. Overview

GRMON is a general debug monitor for the LEON (SPARC V7/V8) processor, NOEL-V (RISC-V) processor and
for SOC designs based on the GRLIB IP library. GRMON includes the following functions:

• Read/write access to all system registers and memory
• Built-in disassembler and trace buffer management
• Downloading and execution of LEON applications
• Breakpoint and watchpoint management
• Remote connection to GNU debugger (GDB)
• Support for USB, JTAG, UART, Ethernet and SpaceWire debug links
• Tcl interface (scripts, procedures, variables, loops etc.)
• Graphical user interface

1.2. Supported platforms and system requirements

GRMON is currently provided for platforms: Linux (GLIBC >2.11), Windows 7 and Windows 10.

To run the GUI Java 11 (64-bit) is required. A free to use Java runtime environment (JRE) based on OpenJDK
can be downloaded from https://adoptium.net/.

The professional version use a Sentinel LDK license key which has additional system requirements, which can be
found the the README that is included in Sentinel LDK Runtime installation package. See Appendix E, License
key installation for more information.

The available debug communication links for each platform vary and they may have additional third-party depen-
dencies that have additional system requirements. See Chapter 5, Debug link for more information.

1.3. Obtaining GRMON

The latest version of GRMON can be ordered and evaluation versions downloaded from the website [https://
frontgrade.com/gaisler].

1.4. Installation

Follow these steps to install GRMON. Detailed information can be found further down.

1. Extract the archive
2. Install the Sentinel LDK Runtime (GRMON Pro version)
3. Install the Java runtime environment 11
4. Optionally install third-party drivers for the debug interfaces.
5. Optionally setup the path for shared libraries (Linux only)
6. Optionally add GRMON to the environment variable PATH

To install GRMON, extract the archive anywhere on the host computer. There is one archive for each OS that
GRMON supports, and they may be extracted to the same location, Each archive contains the directories as de-
scribed in the list below.

grmon-pro-4.0.XX/<OS>/bin32
grmon-pro-4.0.XX/<OS>/bin64
grmon-pro-4.0.XX/<OS>/lib32
grmon-pro-4.0.XX/<OS>/lib64
grmon-pro-4.0.XX/<OS>/share

The professional version use a Sentinel LDK license key. See Appendix E, License key installation for installation
of the Sentinel LDK runtime.

Some debug interfaces requires installation of third-party drivers, see Chapter 5, Debug link for more information.

frontgrade.com/gaisler
https://adoptium.net/
https://frontgrade.com/gaisler
https://frontgrade.com/gaisler
https://frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 6

The bin<BITS> directory contains the executable. For convenience it is recommended to add the bin<BITS>
directory of the host OS to the environment variable PATH. See Appendix F, Appending environment variables
for instructions on how to append environment variables.

The lib<BITS> directory contains some additional libraries that GRMON requires. On the Windows platform
the lib<BITS> directory is not available. On the Linux platform, if GRMON fails to start because of some miss-
ing libraries that are located in this directory, then add this path to the environment variable LD_LIBRARY_PATH
or add it the ld.so.cache (see man pages about ldconfig for more information).

GRMON must find the share directory to work properly. GRMON will try to automatically detect the location
of the folder. A warning will be printed when starting GRMON if it fails to find the share folder. If it fails to
automatically detect the folder, then the environment variable GRMON_SHARE can be set to point the share/
grmon folder. For example on Windows it could be set to c:\opt\grmon-pro\windows\share\grmon
or on Linux it could be set to /opt/grmon-pro/linux/share/grmon.

1.5. License

The GRMON license file can be found in the share folder of the installation. For example on Windows it can
be found in c:\opt\grmon-pro\windows\share\grmon or on Linux it could be found in /opt/gr-
mon-pro/linux/share/grmon.

1.6. NOEL-V Support

Both the Pro and the evaluation version of GRMON supports the NOEL-V processor.

Many examples in this manual shows output from a LEON target system, however many of the commands will
work with NOEL-V as well.

1.6.1. Limitations
• Backtrace requires DWARF information.
• No support for commands ahb, profile
• No support for switches -nb, -mpgsz

1.7. GRMON Evaluation version

The evaluation version of GRMON can be downloaded from the website [https://frontgrade.com/gaisler]. The
evaluation version may be used during a period of 21 days without purchasing a license. After this period, any
commercial use of GRMON is not permitted without a valid license.

The GRMON evaluation version can be used to connect to FPGA designs that contains GRLIB GPL cores.

The example bitstreams of LEON5 and NOEL-V are supported as well. See the example bitstreams documentation
for additional information on how use GRMON with the example bitstreams.

https://www.gaisler.com/products/leon-xcku
https://www.gaisler.com/products/leon-pf
https://www.gaisler.com/products/leon-rtg4
https://www.gaisler.com/products/noel-artya7
https://www.gaisler.com/products/noel-xcku
https://www.gaisler.com/products/noel-pf

Borrowed GR716-MINI, GR716B-MINI and GR740-MINI boards are also supported by the GRMON evaluation
version.

The following features are in general not supported in the evaluation version:

• GUI
• Support for LEON2, LEON3-FT, LEON4, LEON5-FT NOEL-V FT
• GRLIB commercial licensed cores
• FT support and error injection
• Custom JTAG configuration

frontgrade.com/gaisler
https://frontgrade.com/gaisler
https://frontgrade.com/gaisler
https://www.gaisler.com/products/leon-xcku
https://www.gaisler.com/products/leon-pf
https://www.gaisler.com/products/leon-rtg4
https://www.gaisler.com/products/noel-artya7
https://www.gaisler.com/products/noel-xcku
https://www.gaisler.com/products/noel-pf

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 7

• Profiling
• TCL API (drivers, init scripts, hooks, I/O forward to TCL channel etc)

1.8. Problem reports

Please send bug reports or comments to support@gaisler.com.

Customers with a valid support agreement may send questions to support@gaisler.com. Include a GRMON log
when sending questions, please. A log can be obtained by starting GRMON with the command line switch -log
filename.

The GRLIB Discourse [http://discourse.grlib.community/] may also be a source to find solutions to problems.

frontgrade.com/gaisler
http://discourse.grlib.community/
http://discourse.grlib.community/

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 8

2. Debugging concept

2.1. Overview

The GRMON debug monitor is intended to debug system-on-chip (SOC) designs based on the GRLIB IP library.
The monitor connects to a dedicated debug interface on the target hardware, through which it can perform read and
write cycles on the on-chip bus (AHB). The debug interface can be of various types: the processor supports debug-
ging over a serial UART, 32-bit PCI, JTAG, Ethernet and SpaceWire (using the GRESB Ethernet to SpaceWire
bridge) debug interfaces. On the target system, all debug interfaces are realized as AHB masters with the Debug
protocol implemented in hardware. There is thus no software support necessary to debug a target system, and a
target system does in fact not even need to have a processor present.

Figure 2.1. GRMON concept overview

GRMON can operate in three modes: graphical user interface, command-line interface or GDB mode. In com-
mand-line mode, GRMON commands are entered through a terminal window. It can also be used for automated
scripts. In GDB mode, GRMON acts as a GDB server and translates the GDB remote server protocol to debug
commands on the target system.

GRMON is implemented using three functional layers: command layer, debug driver layer, and debug link layer.
The command layer takes input from the user and parses it in a Tcl Shell. It is also possible to start a GDB server
service, which has its own shell, that takes input from GDB. Each shell has it own set of commands and variables.
Many commands depends on drivers and will fail if the core is note present in the target system. More information
about Tcl integration can be found in the Section 3.5, “Tcl integration”.

The debug driver layer implements drivers that probes and initializes the cores. GRMON will scan the target system
at start-up and detect which IP cores are present. ' The drivers may also provides information to the commands.

The debug link layer implements the debug link protocol for each supported debug interface. Which interface to
use for a debug session is specified through command line options during the start of GRMON. Only interfaces
based on JTAG supports 8-/16-bit accesses, all other interfaces access subwords using read-modify-write. 32-bit
accesses are supported by all interfaces. More information can be found in Chapter 5, Debug link.

2.2. Target initialization

When GRMON first connects to the target system, it scans the system to detect which IP cores are present. This is
done by reading the plug and play information which is normally located at address 0xfffff000 on the AHB bus. A

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 9

debug driver for each recognized IP core is then initialized, and performs a core-specific initialization sequence if
required. For a memory controller, the initialization sequence would typically consist of a memory probe operation
to detect the amount of attached RAM. For a UART, it could consist of initializing the baud rate generator and
flushing the FIFOs. After the initialization is complete, the system configuration is printed:

 GRMON3 LEON debug monitor v3.0.0 32-bit professional version

 Copyright (C) 2018 Frontgrade Gaisler - All rights reserved.
 For latest updates, go to http://www.gaisler.com/
 Comments or bug-reports to support@gaisler.com

 GRLIB build version: 4111
 Detected frequency: 40 MHz

 Component Vendor
 LEON3 SPARC V8 Processor Frontgrade Gaisler
 AHB Debug UART Frontgrade Gaisler
 JTAG Debug Link Frontgrade Gaisler
 GRSPW2 SpaceWire Serial Link Frontgrade Gaisler
 LEON2 Memory Controller European Space Agency
 AHB/APB Bridge Frontgrade Gaisler
 LEON3 Debug Support Unit Frontgrade Gaisler
 Generic UART Frontgrade Gaisler
 Multi-processor Interrupt Ctrl. Frontgrade Gaisler
 Modular Timer Unit Frontgrade Gaisler
 General Purpose I/O port Frontgrade Gaisler

 Use command 'info sys' to print a detailed report of attached cores

grmon3>

More detailed system information can be printed using the ‘info sys’ command as listed below. The detailed system
view also provides information about address mapping, interrupt allocation and IP core configuration. Information
about which AMBA AHB and APB buses a core is connected to can be seen by adding the -v option. GRMON
assigns a unique name to all cores, the core name is printed to the left. See Appendix C, Tcl API for information
about Tcl variables and device names.

grmon3> info sys
 cpu0 Frontgrade Gaisler LEON3 SPARC V8 Processor
 AHB Master 0
 ahbuart0 Frontgrade Gaisler AHB Debug UART
 AHB Master 1
 APB: 80000700 - 80000800
 Baudrate 115200, AHB frequency 40000000.00
 ahbjtag0 Frontgrade Gaisler JTAG Debug Link
 AHB Master 2
 grspw0 Frontgrade Gaisler GRSPW2 SpaceWire Serial Link
 AHB Master 3
 APB: 80000A00 - 80000B00
 IRQ: 10
 Number of ports: 1
 mctrl0 European Space Agency LEON2 Memory Controller
 AHB: 00000000 - 20000000
 AHB: 20000000 - 40000000
 AHB: 40000000 - 80000000
 APB: 80000000 - 80000100
 8-bit prom @ 0x00000000
 32-bit sdram: 1 * 64 Mbyte @ 0x40000000
 col 9, cas 2, ref 7.8 us
 apbmst0 Frontgrade Gaisler AHB/APB Bridge
 AHB: 80000000 - 80100000
 dsu0 Frontgrade Gaisler LEON3 Debug Support Unit
 AHB: 90000000 - A0000000
 AHB trace: 128 lines, 32-bit bus
 CPU0: win 8, hwbp 2, itrace 128, V8 mul/div, srmmu, lddel 1
 stack pointer 0x43fffff0
 icache 2 * 4096 kB, 32 B/line lru
 dcache 1 * 4096 kB, 16 B/line
 uart0 Frontgrade Gaisler Generic UART
 APB: 80000100 - 80000200
 IRQ: 2
 Baudrate 38461
 irqmp0 Frontgrade Gaisler Multi-processor Interrupt Ctrl.
 APB: 80000200 - 80000300
 gptimer0 Frontgrade Gaisler Modular Timer Unit
 APB: 80000300 - 80000400
 IRQ: 8
 8-bit scalar, 2 * 32-bit timers, divisor 40
 grgpio0 Frontgrade Gaisler General Purpose I/O port
 APB: 80000800 - 80000900

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 10

2.2.1. LEON2 target initialization

The plug and play information was introduced in the LEON3 processor (GRLIB), and is not available for LEON2
systems. LEON2 is supported by starting GRMON with the -sys leon2 switch or one of the switches that
correspond to a known LEON2 device, see Section 6.12, “LEON2 support”.

A LEON2 system has a fixed set of IP cores and address mapping. GRMON will use an internal plug and play table
that describes this configuration. The plug and play table used for LEON2 is fixed, and no automatic detection of
present cores is attempted. Only those cores that need to be initialized by GRMON are included in the table, so
the listing might not correspond to the actual target. It is however possible to load a custom configuration file that
describes the target system configuration using see Section 2.2.2, “Configuration file target initialization”

2.2.2. Configuration file target initialization

It is possible to provide GRMON with a configuration file that describes a static configuration by starting GRMON
with the switch -cfg filename.

The format of the plug and play configuration file is described in section Appendix D, Fixed target configuration
file format. It can be used for both LEON3 and LEON2 systems. An example configuration file is also supplied
with the GRMON professional distribution in share/src/cfg/leon3.xml.

2.3. Memory register reset values

To ensure that the memory registers has sane values, GRMON will reset the registers when commands that access
the memories are issued, for example run, load commands and similar commands. To modify the reset values,
use the commands listed in Section 6.14.2, “Commands”.

2.4. Hardware reset

The behaviour of GRMON will be undefined after a hardware resets signal is asserted. Most debug links will drop
the connection, but some will remain connected, for example JTAG. Therefor it is recommended that you always
restart GRMON after a reset signal has been asserted.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 11

3. Operation

This chapter describes how GRMON can be controlled by the user in a terminal based interactive debug session
and how it can be automated with scripts for batch execution. The first sections describe and exemplifies typical
operations for interactive use. The later sections describe automation concepts. Most interactive commands are
applicable also for automated use.

GRMON graphical user interface is described in Chapter 4, Graphical user interface.

3.1. Overview

An interactive GRMON debug session typically consists of the following steps:

1. Starting GRMON and attaching to the target system
2. Examining the hardware configuration
3. Uploading application program
4. Setup debugging, for example insert breakpoints and watchpoints
5. Executing the application
6. Debugging the application and examining the CPU and hardware state

Step 2 though 6 is performed using the GRMON terminal interface or by attaching GDB and use the standard
GDB interface. The GDB section describes how GRMON specific commands are accessed from GDB.

The following sections will give an overview how the various steps are performed.

3.2. Starting GRMON

On a Linux host, GRMON is started by giving the grmon command together with command line options in a
terminal window. It can run either the GUI or a commandline interface depending on if a debug link option is
provided or not.

On Windows hosts, there are two executable provided. The file grmon.exe is intended to be started in a Windows
command prompt (cmd.exe). It can run either the GUI or a commandline interface depending on if a debug link
option is provided or not. The executable grmon-gui.exe will always spawn a GUI.

Command line options are grouped by function as indicated below.

• The debug link options: setting up a connection to GRLIB target
• General options: debug session behavior options
• Debug driver options: configure the hardware, skip core auto-probing etc.

If any debug-link option is given to grmon or grmon.exe, then the GRMON command line interface will be started.

If no debug-link option is given to grmon or grmon.exe, then the GRMON graphical user interface will be started.
For more information, see Chapter 4, Graphical user interface.

Below is an example of GRMON connecting to a GR712 evaluation board using the FTDI USB serial interface,
tunneling the UART output of APBUART0 to GRMON and specifying three RAM wait states on read and write:

$ grmon -ftdi -u -ramws 3

To connect to a target using the AHBUART debug link, the following example can be used:

$ grmon -uart -u

The -uart option uses the first UART of the host (ttyS0 or COM1) with a baud rate of 115200 baud by default.

3.2.1. Debug link options

GRMON connects to a GRLIB target using one debug link interface, the command line options selects which
interface the PC uses to connect to the target and optionally how the debug link is configured. All options are
described in Chapter 5, Debug link.

3.2.2. Debug driver options

The debug drivers provide an interface to view and access AMBA devices during debugging and they offer device
specific ways to configure the hardware when connecting and before running the executable. Drivers usually au-

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 12

to-probe their devices for optimal configuration values, however sometimes it is useful to override the auto-probed
values. Some options affects multiple drivers. The debug driver options are described in Chapter 6, Debug drivers.

3.2.3. General options

The general options are mostly target independent options configuring the behavior of GRMON. Some of them
affects how the target system is accessed both during connection and during the whole debugging session. All
general options are described below.

grmon [options]

Options:

-abaud baudrate
Set baud-rate for all UARTs in the system, (except the debug-link UART). By default, 38400 baud is used.

-ambamb [maxbuses]
Enable auto-detection of AHBCTRL_MB system and (optionally) specifies the maximum number of buses
in the system if an argument is given. The optional argument to -ambamb is decoded as below:
0, 1: No Multi-bus (MB) (max one bus)
2..3: Limit MB support to 2 or 3 AMBA PnP buses
4 or no argument: Selects Full MB support

-batch filename
Only run startup scipts then quit. Use -c or -e to set the startup scripts.

-c filename
Run the commands in the batch file at start-up.

-cfg filename
Load fixed PnP configuration from a xml-file. See Appendix D, Fixed target configuration file format.

-e string
Run a command at start-up.

-echo
Echo all the commands in the batch file at start-up. Has no effect unless -c or -e is also set.

-edac
Enable EDAC operation in memory controllers that support it.

-freq sysclk
Overrides the detected system frequency. The frequency is specified in MHz.

-gdb [port]
Listen for GDB connection directly at start-up. Optionally specify the port number for GDB communica-
tions. Default port number is 2222.

-gui
Start the GRMON graphical user interface. This option can be combined with an option which specifies
the debug-link to use. See Chapter 4, Graphical user interface for more information.

-guiport port
Force the GUI to connect via the specified TCP port. See Chapter 4, Graphical user interface for more
information.

-ioarea address
Specify the location of the I/O area. (Default is 0xfff00000).

-log filename
Log session to the specified file. If the file already exists the new session is appended. This should be used
when requesting support.

-nologheader
Suppress writing header to log.

-nologsys
Suppress writing system information to the logfile during startup.

-nologtag
Suppress writing timetag to log.

-nologtime
Suppress writing tags to log.

-ni
Read plug n' play and detect all system device, but don't do any target initialization. See Section 3.4.11,
“Attaching to a target system without initialization” for more information.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 13

-nopnp
Disable the plug n' play scanning. GRMON won't detect any hardware and any hardware dependent func-
tionality won't work. See Section 3.4.12, “Attaching to a target system without Plug and Play scanning”.

-u [device]
Put UART 1 in FIFO debug mode if hardware supports it, else put it in loop-back mode. Debug mode will
enable both reading and writing to the UART from the monitor console. Loop-back mode will only enable
reading. See Section 3.9, “Forwarding application console I/O”. The optional device parameter is used to
select a specific UART to be put in debug mode. The device parameter is an index starting with 0 for the
first UART and then increasing with one in the order they are found in the bus scan. If the device parameter
is not used the first UART is selected.

-ucli [device]
Put UART in debug or loop-back mode to forward application console I/O to GRMON CLI on startup. The
command line shell will be used for forwarding instead of the regular prompt. See Section 3.9, “Forwarding
application console I/O”. The optional device parameter is used to select a specific UART to be put in debug
mode. The device parameter is an index starting with 0 for the first UART and then increasing with one in
the order they are found in the bus scan. If the device parameter is not used the first UART is selected.

-udm [device]
Put UART 1 in FIFO debug mode if hardware supports it. Debug mode will enable both reading and writing
to the UART from the monitor console. See Section 3.9, “Forwarding application console I/O”. The optional
device parameter is used to select a specific UART to be put in debug mode. The device parameter is an
index starting with 0 for the first UART and then increasing with one in the order they are found in the bus
scan. If the device parameter is not used the first UART is selected.

-ulb [device]
Put UART 1 in loop-back mode. Loop-back mode will only enable reading from the UART to the monitor
console. See Section 3.9, “Forwarding application console I/O”. The optional device parameter is used to
select a specific UART to be put in debug mode. The device parameter is an index starting with 0 for the
first UART and then increasing with one in the order they are found in the bus scan. If the device parameter
is not used the first UART is selected.

-ucmd filename
Load script specified by filename into all shells, including the system shell.

-udrv filename
Load script specified by filename into system shell.

3.3. GRMON command-line interface (CLI)

The GRMON4 command-line interface features a Tcl 8.6 interpreter which will interpret all entered commands
substituting variables etc. before GRMON is actually called. Variables exported by GRMON can also be used
to access internal states and hardware registers without going through commands. The GRMON Tcl interface is
described in Section 3.5, “Tcl integration”.

Short forms of the commands are allowed, e.g lo, loa, or load, are all interpreted as load. Tab completion is available
for commands, Tcl variables, text-symbols, file names, etc.

The commands can be separated in to three categories:

• Tcl internal commands and reserved key words
• GRMON built-in commands always available regardless of target
• GRMON commands accessing debug drivers

Tcl internal and GRMON built-in commands are available regardless of target hardware present whereas debug
driver commands may only be present on supported systems. The Tcl and driver commands are described in
Section 3.5, “Tcl integration” and Chapter 6, Debug drivers respectively. In Table 3.1 is a summary of all GRMON
built-in commands. For the full list of commands, see Appendix A, Command index.

Table 3.1. BUILT-IN commands

about Show information about GRMON

amem Asynchronous bus read

batch Execute batch script

bdump Dump memory to a file

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 14

bload Load a binary file

disassemble Disassemble memory

dtb Setup a DTB to be uploaded or print filenames of DTB files

dump Dump memory to a file

eeload Load a file into an EEPROM

execsh Run commands in the execution shell

exit Exit GRMON

fpgaload Upload bitstream to GR740-MINI board FPGA

gdb Control the built-in GDB remote server

gui Control the graphical user interface

help Print all commands or detailed help for a specific command

info Show information

load Load a file or print filenames of uploaded files

memb AMBA bus 8-bit memory read access, list a range of addresses

memd AMBA bus 64-bit memory read access, list a range of addresses

memh AMBA bus 16-bit memory read access, list a range of addresses

mem AMBA bus 32-bit memory read access, list a range of addresses

nolog Suppress stdout of a command

quit Quit the GRMON console

reset Reset drivers

rtg4fddr Print initialization sequence

rtg4serdes Print initialization sequence

sf2mddr Print initialization sequence

sf2serdes Print initialization sequence

shell Execute shell process

silent Suppress stdout of a command

symbols Load, print or lookup symbols

system Attach or detach devices

tps Control the TPS service

usrsh Run commands in threaded user shell

verify Verify that a file has been uploaded correctly

wash Clear or set memory areas

wmemb AMBA bus 8-bit memory write access

wmemd AMBA bus 64-bit memory write access

wmemh AMBA bus 16-bit memory write access

wmems Write a string to an AMBA bus memory address

wmem AMBA bus 32-bit memory write access

3.4. Common debug operations

This section describes and gives some examples of how GRMON is typically used, the full command reference
can be found in Appendix A, Command index.

3.4.1. Examining the hardware configuration

When connecting for the first time it is essential to verify that GRMON has auto-detected all devices and their
configuration correctly. At start-up GRMON will print the cores and the frequency detected. From the command
line one can examine the system by executing info sys as below:

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 15

grmon3> info sys
 cpu0 Frontgrade Gaisler LEON3-FT SPARC V8 Processor
 AHB Master 0
 cpu1 Frontgrade Gaisler LEON3-FT SPARC V8 Processor
 AHB Master 1
 greth0 Frontgrade Gaisler GR Ethernet MAC
 AHB Master 3
 APB: 80000E00 - 80000F00
 IRQ: 14
 grspw0 Frontgrade Gaisler GRSPW2 SpaceWire Serial Link
 AHB Master 5
 APB: 80100800 - 80100900
 IRQ: 22
 Number of ports: 1
 grspw1 Frontgrade Gaisler GRSPW2 SpaceWire Serial Link
 AHB Master 6
 APB: 80100900 - 80100A00
 IRQ: 23
 Number of ports: 1
 mctrl0 Frontgrade Gaisler Memory controller with EDAC
 AHB: 00000000 - 20000000
 AHB: 20000000 - 40000000
 AHB: 40000000 - 80000000
 APB: 80000000 - 80000100
 8-bit prom @ 0x00000000
 32-bit static ram: 1 * 8192 kbyte @ 0x40000000
 32-bit sdram: 2 * 128 Mbyte @ 0x60000000
 col 10, cas 2, ref 7.8 us
 apbmst0 Frontgrade Gaisler AHB/APB Bridge
 AHB: 80000000 - 80100000
 dsu0 Frontgrade Gaisler LEON3 Debug Support Unit
 AHB: 90000000 - A0000000
 AHB trace: 256 lines, 32-bit bus
 CPU0: win 8, hwbp 2, itrace 256, V8 mul/div, srmmu, lddel 1, GRFPU
 stack pointer 0x407ffff0
 icache 4 * 4096 kB, 32 B/line lru
 dcache 4 * 4096 kB, 16 B/line lru
 CPU1: win 8, hwbp 2, itrace 256, V8 mul/div, srmmu, lddel 1, GRFPU
 stack pointer 0x407ffff0
 icache 4 * 4096 kB, 32 B/line lru
 dcache 4 * 4096 kB, 16 B/line lru
 uart0 Frontgrade Gaisler Generic UART
 APB: 80000100 - 80000200
 IRQ: 2
 Baudrate 38461, FIFO debug mode
 irqmp0 Frontgrade Gaisler Multi-processor Interrupt Ctrl.
 APB: 80000200 - 80000300
 EIRQ: 12
 gptimer0 Frontgrade Gaisler Modular Timer Unit
 APB: 80000300 - 80000400
 IRQ: 8
 16-bit scalar, 4 * 32-bit timers, divisor 80
 grgpio0 Frontgrade Gaisler General Purpose I/O port
 APB: 80000900 - 80000A00
 uart1 Frontgrade Gaisler Generic UART
 APB: 80100100 - 80100200
 IRQ: 17
 Baudrate 38461
 ...

The memory section for example tells us that GRMON are using the correct amount of memory and memory
type. The parameters can be tweaked by passing memory driver specific options on start-up, see Section 3.2,
“Starting GRMON”. The current memory settings can be viewed in detail by listing the registers with info reg or
by accessing the registers by the Tcl variables exported by GRMON:

grmon3> info sys
 ...
 mctrl0 Frontgrade Gaisler Memory controller with EDAC
 AHB: 00000000 - 20000000
 AHB: 20000000 - 40000000
 AHB: 40000000 - 80000000
 APB: 80000000 - 80000100
 8-bit prom @ 0x00000000
 32-bit static ram: 1 * 8192 kbyte @ 0x40000000
 32-bit sdram: 2 * 128 Mbyte @ 0x60000000
 col 10, cas 2, ref 7.8 us
 ...
 grmon3> info reg
 ...
 Memory controller with EDAC
 0x80000000 Memory config register 1 0x1003c0ff
 0x80000004 Memory config register 2 0x9ac05463
 0x80000008 Memory config register 3 0x0826e000

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 16

 ...
grmon3> puts [format 0x%08x $mctrl0:: [TAB-COMPLETION]
mctrl0::mcfg1 mctrl0::mcfg2 mctrl0::mcfg3 mctrl0::pnp::
mctrl0::mcfg1:: mctrl0::mcfg2:: mctrl0::mcfg3::
grmon3> puts [format 0x%08x $mctrl0::mcfg1]
 0x0003c0ff

grmon3> puts [format 0x%08x $mctrl0::mcfg2 :: [TAB-COMPLETION]
mctrl0::mcfg2::d64 mctrl0::mcfg2::sdramcmd
mctrl0::mcfg2::rambanksz mctrl0::mcfg2::sdramcolsz
mctrl0::mcfg2::ramrws mctrl0::mcfg2::sdramrf
mctrl0::mcfg2::ramwidth mctrl0::mcfg2::sdramtcas
mctrl0::mcfg2::ramwws mctrl0::mcfg2::sdramtrfc
mctrl0::mcfg2::rbrdy mctrl0::mcfg2::sdramtrp
mctrl0::mcfg2::rmw mctrl0::mcfg2::se
mctrl0::mcfg2::sdpb mctrl0::mcfg2::si
mctrl0::mcfg2::sdrambanksz
grmon3> puts [format %x $mctrl0::mcfg2::ramwidth]
 2

3.4.2. Uploading application and data to target memory

A software application can be uploaded to the target system memory using the load command:

grmon3> load v8/stanford.exe
 40000000 .text 54.8kB / 54.8kB [===============>] 100%
 4000DB30 .data 2.9kB / 2.9kB [===============>] 100%
 Total size: 57.66kB (786.00kbit/s)
 Entry point 0x40000000
 Image /home/daniel/examples/v8/stanford.exe loaded

The supported file formats are SPARC ELF-32, SPARC ELF-64 (MSB truncated to 32-bit addresses), RISC-V
ELF-64, RISC-V ELF-32, srecord and a.out binaries. Each section is loaded to its link address. The program entry
point of the file is used to set the %PC, %NPC when the application is later started with run. It is also possible to
load binary data by specifying file and target address using the bload command.

One can use the verify command to make sure that the file has been loaded correctly to memory as below. Any
discrepancies will be reported in the GRMON console.

grmon3> verify v8/stanford.exe
 40000000 .text 54.8kB / 54.8kB [===============>] 100%
 4000DB30 .data 2.9kB / 2.9kB [===============>] 100%
 Total size: 57.66kB (726.74kbit/s)
 Entry point 0x40000000
 Image of /home/daniel/examples/v8/stanford.exe verified without errors

On-going DMA can be turned off to avoid that hardware overwrites the loaded image by issuing the reset command
prior to load. This is important after the CPU has been executing using DMA in for example Ethernet network
traffic.

3.4.3. Running applications

After the application has been uploaded to the target with load the run command can be used to start execution.
The entry-point taken from the ELF-file during loading will serve as the starting address, the first instruction
executed. The run command issues a driver reset, however it may be necessary to perform a reset prior to loading
the image to avoid that DMA overwrites the image. See the reset command for details. Applications already
located in FLASH can be started by specifying an absolute address. The cont command resumes execution after
a temporary stop, e.g. a breakpoint hit. go also affects the CPU execution, the difference compared to run is that
the target device hardware is not initialized before starting execution.

grmon3> reset
grmon3> load v8/stanford.exe
 40000000 .text 54.8kB / 54.8kB [===============>] 100%
 4000DB30 .data 2.9kB / 2.9kB [===============>] 100%
 Total size: 57.66kB (786.00kbit/s)
 Entry point 0x40000000
 Image /home/daniel/examples/v8/stanford.exe loaded

grmon3> run
Starting
 Perm Towers Queens Intmm Mm Puzzle Quick Bubble Tree FFT
 34 67 33 117 1117 367 50 50 250 1133

Nonfloating point composite is 144

Floating point composite is 973

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 17

 CPU 0: Program exited normally.
 CPU 1: Power down mode

The output from the application normally appears on the target system UARTs and thus not in the GRMON
console. However, if GRMON is started with the -u switch, the UART is put into debug mode and the output
is tunneled over the debug-link and finally printed on the console by GRMON. See Section 3.9, “Forwarding
application console I/O”. Note that older hardware (GRLIB 1.0.17-b2710 and older) has only partial support for -
u, it will not work when the APBUART software driver uses interrupt driven I/O, thus Linux and vxWorks are not
supported on older hardware. Instead, a terminal emulator should be connected to UART 1 of the target system.

Since the application changes (at least) the .data segment during run-time the application must be reloaded before
it can be executed again. If the application uses the MMU (e.g. Linux) or installs data exception handlers (e.g.
eCos), GRMON should be started with -nb to avoid going into break mode on a page-fault or data exception.
Likewise, when a software debugger is running on the target (e.g. GDB natively in Linux user-space or WindRiver
Workbench debugging a task) soft breakpoints ("TA 0x01" instruction) will result in traps that the OS will handle
and tell the native debugger. To prevent GRMON from interpreting it as its own breakpoints and stop the CPU
one must use the -nswb switch.

3.4.4. Inserting breakpoints and watchpoints

All breakpoints are inserted with the bp command. The subcommand (soft, hard, watch, bus, data, delete) given to
bp determine which type of breakpoint is inserted, if no subcommand is given bp defaults to a software breakpoint.

Instruction breakpoints are inserted using bp soft or bp hard commands. Inserting a software breakpoint will
add a (SPARC "ta 0x1" or RISC-V "ebreak") instruction by modifying the target's memory before starting the
CPU, while bp hard will insert a hardware breakpoint using one of the LEON IU watchpoint registers or RISC-V
triggers.. To debug instruction code in read-only memories or memories which are self-modifying the only option
is hardware breakpoints. Note that it's possible to debug any RAM-based code using software breakpoints, even
where traps are disabled such as in trap handlers. Since hardware breakpoints triggers on the CPU instruction
address one must be aware that when the MMU is turned on, virtual addresses are triggered upon.

CPU data address watchpoints (read-only, write-only or read-write) are inserted using the bp watch command.
Watchpoints can be setup to trigger within a range determined by a bit-mask where a one means that the address
must match the address pattern and a zero mask indicate don't care. The lowest 2-bits are not available, meaning
that 32-bit words are the smallest address that can be watched. Byte accesses can still be watched but accesses to
the neighboring three bytes will also be watched.

AMBA-bus watchpoints can be inserted using bp bus or bp data. When a bus watchpoint is hit the trace buffer
will freeze. The processor can optionally be put in debug mode when the bus watchpoint is hit. This is controlled
by the tmode command:

grmon3> tmode break N

If N = 0, the processor will not be halted when the watchpoint is hit. A value > 0 will break the processor and set
the AHB trace buffer delay counter to the same value.

For hardware supported break/watchpoints the target must have been configured accordingly, otherwise a failure
will be reported. Note also that the number of watchpoints implemented varies between designs.

3.4.5. Displaying processor registers

The registers of the processor can be displayed using the reg command (for a LEON processor it will print the
current window).

For a LEON processor the other register windows can be displayed using reg wN, when N denotes the window
number.

Example 3.1. LEON Registers

grmon3> reg
 INS LOCALS OUTS GLOBALS
 0: 00000008 0000000C 00000000 00000000
 1: 80000070 00000020 00000000 00000001
 2: 00000000 00000000 00000000 00000002
 3: 00000000 00000000 00000000 00300003

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 18

 4: 00000000 00000000 00000000 00040004
 5: 00000000 00000000 00000000 00005005
 6: 407FFFF0 00000000 407FFFF0 00000606
 7: 00000000 00000000 00000000 00000077

 psr: F34010E0 wim: 00000002 tbr: 40000060 y: 00000000

 pc: 40003E44 be 0x40003FB8
 npc: 40003E48 nop

Example 3.2. RISC-V Registers

grmon3> reg
 a0: 0000000000000000 t0: 0000000000000000 s0: 0000000000000000
 a1: 0000000000000000 t1: 0000000000000000 s1: 0000000000000000
 a2: 0000000000000000 t2: 0000000000000000 s2: 0000000000000000
 a3: 0000000000000000 t3: 0000000000000000 s3: 0000000000000000
 a4: 0000000000000000 t4: 0000000000000000 s4: 0000000000000000
 a5: 0000000000000000 t5: 0000000000000000 s5: 0000000000000000
 a6: 0000000000000000 t6: 0000000000000000 s6: 0000000000000000
 a7: 0000000000000000 s7: 0000000000000000
 s8: 0000000000000000
 Machine mode sp: 000000003FFFFFF0 s9: 0000000000000000
 FPU dirty state tp: 0000000000000000 s10: 0000000000000000
 IRQ disabled gp: 0000000000000000 s11: 0000000000000000

 ra: 0000000000000000
 pc: 0000000000000000 nop

Individual registers can be accesses by providing the name of the register to the reg command. See command reg
wN documentation for more information about supported register names.

The registers are also available as Tcl variables in the the Tcl cpu namespace that GRMON provides. GRMON
exports cpu and cpuN namespaces, where N selects which CPU's registers are accessed, the cpu namespace
points to the active CPU selected by the cpu command.

grmon3> puts [format %x $::cpu::iu::o6]
 407ffff0

Use the float command to show the FPU registers (if present).

3.4.6. Backtracing function calls

When debugging an application it is often most useful to view how the CPU entered the current function. The bt
command analyze the previous stack frames to determine the backtrace. GRMON reads the register windows and
then switches to read from the stack depending on the %WIM and %PSR register.

The backtrace is presented with the caller's program counter (%PC) to return to (below where the CALL instruction
was issued) and the stack pointer (%SP) at that time. The first entry (frame #0) indicates the current location of
the CPU and the current stack pointer. The right most column print out the %PC address relative the function
symbol, i.e. if symbols are present.

grmon3> bt

 %pc %sp
 #0 0x40003e24 0x407ffdb8 <Fft+0x4>
 #1 0x40005034 0x407ffe28 <main+0xfc4>
 #2 0x40001064 0x407fff70 <_start+0x64>
 #3 0x4000cf40 0x407fffb0 <_hardreset_real+0x78>

On a LEON system, in order to display a correct backtrace for optimized code, where optimized leaf functions
are present, a symbol table must exist.

NOEL-V requires DWARF information to display backtrace correctly

In a MP system the backtrace of a specific CPU can be printed, either by changing the active CPU with the cpu
command or by passing the CPU index to bt.

3.4.7. Displaying memory contents

Any memory location can be displayed and written using the commands listed in the table below. Memory com-
mands that are prefixed with a v access the virtual address space seen by doing MMU address lookups for active
CPU.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 19

Table 3.2. Memory access commands

Command
Name

Description

mem AMBA bus 32-bit memory read access, list a range of addresses

wmem AMBA bus 32-bit memory write access

vmem AMBA bus 32-bit virtual memory read access, list a range of addresses

memb AMBA bus 8-bit memory read access, list a range of addresses

memh AMBA bus 16-bit memory read access, list a range of addresses

vmemb AMBA bus 8-bit virtual memory read access, list a range of addresses

vmemh AMBA bus 16-bit virtual memory read access, list a range of addresses

vwmemb AMBA bus 8-bit virtual memory write access

vwmemh AMBA bus 16-bit virtual memory write access

vwmems Write a string to an AMBA bus virtual memory address

vwmem AMBA bus 32-bit virtual memory write access

wmemb AMBA bus 8-bit memory write access

wmemh AMBA bus 16-bit memory write access

wmems Write a string to an AMBA bus memory address

amem AMBA bus 32-bit asynchronous memory read access

Most debug links only support 32-bit accesses, only JTAG links support unaligned access. An unaligned access
is when the address or number of bytes are not evenly divided by four. When an unaligned data read request is
issued, then GRMON will read some extra bytes to align the data, but only return the requested data. If a write
request is issued, then an aligned read-modify-write sequence will occur.

The mem command requires an address and an optional length, if the length is left out 64 bytes are displayed. If a
program has been loaded, text symbols can be used instead of a numeric address. The memory content is displayed
in hexadecimal-decimal format, grouped in 32-bit words. The ASCII equivalent is printed at the end of the line.

grmon> mem 0x40000000

 40000000 a0100000 29100004 81c52000 01000000 ...).....
 40000010 91d02000 01000000 01000000 01000000
 40000020 91d02000 01000000 01000000 01000000
 40000030 91d02000 01000000 01000000 01000000

grmon> mem 0x40000000 16

 40000000 a0100000 29100004 81c52000 01000000 ...).....

grmon> mem main 48

 40003278 9de3bf98 2f100085 31100037 90100000 /...1..7....
 40003288 d02620c0 d025e178 11100033 40000b4b & .%.x...3@..K
 40003298 901223b0 11100033 40000af4 901223c0 ..#....3@.....#.

The memory access commands listed in Table 3.2 are not restricted to memory: they can be used on any bus
address accessible by the debug link. However, for access to peripheral control registers, the command info reg
can provide a more user-friendly output.

All commands in Table 3.2, , except for amem, return to the caller when the bus access has completed, which
means that a sequence of these commands generates a sequence of bus accesses with the same ordering. In situa-
tions where the bus accesses order is not critical, the command amem can be used to schedule multiple concurrent
read accesses whose results can be retrieved at a later time. This is useful when GRMON is automated using Tcl
scripts.

3.4.8. Instruction disassembly

If the memory contents is machine code of the target processor, the contents can be displayed in assembly code
using the disassemble command:

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 20

grmon3> disassemble 0x40000000 10
 0x40000000: 88100000 clr %g4 <start+0>
 0x40000004: 09100034 sethi %hi(0x4000d000), %g4 <start+4>
 0x40000008: 81c12034 jmp %g4 + 0x34 <start+8>
 0x4000000c: 01000000 nop <start+12>
 0x40000010: a1480000 mov %psr, %l0 <start+16>
 0x40000014: a7500000 mov %wim, %l3 <start+20>
 0x40000018: 10803401 ba 0x4000d01c <start+24>
 0x4000001c: ac102001 mov 1, %l6 <start+28>
 0x40000020: 91d02000 ta 0x0 <start+32>
 0x40000024: 01000000 nop <start+36>

grmon3> dis main
 0x40004070: 9de3beb8 save %sp, -328, %sp <main+0>
 0x40004074: 15100035 sethi %hi(0x4000d400), %o2 <main+4>
 0x40004078: d102a3f4 ld [%o2 + 0x3f4], %f8 <main+8>
 0x4000407c: 13100035 sethi %hi(0x4000d400), %o1 <main+12>
 0x40004080: 39100088 sethi %hi(0x40022000), %i4 <main+16>
 0x40004084: 3710003a sethi %hi(0x4000e800), %i3 <main+20>
 0x40004088: d126e2e0 st %f8, [%i3 + 0x2e0] <main+24>
 0x4000408c: d1272398 st %f8, [%i4 + 0x398] <main+28>
 0x40004090: 400006a9 call 0x40005b34 <main+32>
 0x40004094: 901262f0 or %o1, 0x2f0, %o0 <main+36>
 0x40004098: 11100035 sethi %hi(0x4000d400), %o0 <main+40>
 0x4000409c: 40000653 call 0x400059e8 <main+44>
 0x400040a0: 90122300 or %o0, 0x300, %o0 <main+48>
 0x400040a4: 7ffff431 call 0x40001168 <main+52>
 0x400040a8: 3510005b sethi %hi(0x40016c00), %i2 <main+56>
 0x400040ac: 2510005b sethi %hi(0x40016c00), %l2 <main+60>

3.4.9. Using the trace buffer

The processor and associated debug support unit (DSU or RVDM) can be configured with trace buffers to store
both the latest executed instructions and the latest AHB bus transfers. The trace buffers are automatically enabled
by GRMON during start-up , but can also be individually enabled and disabled using tmode command. The
command ahb is used to show the AMBA buffer. The command inst is used to show the instruction buffer. The
command hist is used to display the contents of the instruction and the AMBA buffers mixed together. Below is
an example debug session that shows the usage of breakpoints, watchpoints and the trace buffer:

grmon3> lo v8/stanford.exe
 40000000 .text 54.8kB / 54.8kB [===============>] 100%
 4000DB30 .data 2.9kB / 2.9kB [===============>] 100%
 Total size: 57.66kB (786.00kbit/s)
 Entry point 0x40000000
 Image /home/daniel/examples/v8/stanford.exe loaded

grmon3> bp Fft
 Software breakpoint 1 at <Fft>

grmon3> bp watch 0x4000eae0
 Hardware watchpoint 2 at 0x4000eae0

grmon3> bp
 NUM ADDRESS MASK TYPE SYMBOL
 1 : 0x40003e20 (soft) Fft+0
 2 : 0x4000eae0 0xfffffffc (watch rw) floated+0

grmon3> run

 CPU 0: watchpoint 2 hit
 0x40001024: c0388003 std %g0, [%g2 + %g3] <_start+36>
 CPU 1: Power down mode

grmon3> inst
 TIME ADDRESS INSTRUCTION RESULT
 84675 40001024 std %g0, [%g2 + %g3] [4000eaf8 00000000 00000000]
 84678 4000101c subcc %g3, 8, %g3 [00000440]
 84679 40001020 bge,a 0x4000101c [00000448]
 84682 40001024 std %g0, [%g2 + %g3] [4000eaf0 00000000 00000000]
 84685 4000101c subcc %g3, 8, %g3 [00000438]
 84686 40001020 bge,a 0x4000101c [00000440]
 84689 40001024 std %g0, [%g2 + %g3] [4000eae8 00000000 00000000]
 84692 4000101c subcc %g3, 8, %g3 [00000430]
 84693 40001020 bge,a 0x4000101c [00000438]
 84694 40001024 std %g0, [%g2 + %g3] [TRAP]

grmon3> ahb
 TIME ADDRESS TYPE D[31:0] TRANS SIZE BURST MST LOCK RESP HIRQ
 84664 4000eb08 write 00000000 2 2 1 0 0 0 0000
 84667 4000eb0c write 00000000 3 2 1 0 0 0 0000
 84671 4000eb00 write 00000000 2 2 1 0 0 0 0000

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 21

 84674 4000eb04 write 00000000 3 2 1 0 0 0 0000
 84678 4000eaf8 write 00000000 2 2 1 0 0 0 0000
 84681 4000eafc write 00000000 3 2 1 0 0 0 0000
 84685 4000eaf0 write 00000000 2 2 1 0 0 0 0000
 84688 4000eaf4 write 00000000 3 2 1 0 0 0 0000
 84692 4000eae8 write 00000000 2 2 1 0 0 0 0000
 84695 4000eaec write 00000000 3 2 1 0 0 0 0000

grmon3> reg
 INS LOCALS OUTS GLOBALS
 0: 80000200 00000000 00000000 00000000
 1: 80000200 00000000 00000000 00000000
 2: 0000000C 00000000 00000000 4000E6B0
 3: FFF00000 00000000 00000000 00000430
 4: 00000002 00000000 00000000 4000CC00
 5: 800FF010 00000000 00000000 4000E680
 6: 407FFFB0 00000000 407FFF70 4000CF34
 7: 4000CF40 00000000 00000000 00000000

 psr: F30010E7 wim: 00000002 tbr: 40000000 y: 00000000

 pc: 40001024 std %g0, [%g2 + %g3]
 npc: 4000101c subcc %g3, 8, %g3

grmon3> bp del 2

grmon3> cont
 Towers Queens Intmm Mm Puzzle Quick Bubble Tree FFT
 CPU 0: breakpoint 1 hit
 0x40003e24: a0100018 mov %i0, %l0 <Fft+4>
 CPU 1: Power down mode

grmon3>
grmon3> hist
 TIME ADDRESS INSTRUCTIONS/AHB SIGNALS RESULT/DATA
 30046975 40003e20 AHB read mst=0 size=2 [9de3bf90]
 30046976 40005030 or %l2, 0x1e0, %o3 [40023de0]
 30046980 40003e24 AHB read mst=0 size=2 [91d02001]
 30046981 40005034 call 0x40003e20 [40005034]
 30046985 40003e28 AHB read mst=0 size=2 [b136201f]
 30046990 40003e2c AHB read mst=0 size=2 [f83fbff0]
 30046995 40003e30 AHB read mst=0 size=2 [82040018]
 30047000 40003e34 AHB read mst=0 size=2 [d11fbff0]
 30047005 40003e38 AHB read mst=0 size=2 [9a100019]
 30047010 40003e3c AHB read mst=0 size=2 [9610001a]

When printing executed instructions, the value within brackets denotes the instruction result, or in the case of
store instructions the store address and store data. The value in the first column displays the relative time, equal
to the DSU timer. The time is taken when the instruction completes in the last pipeline stage (write-back) of the
processor. In a mixed instruction/AHB display, AHB address and read or write value appears within brackets. The
time indicates when the transfer completed, i.e. when HREADY was asserted.

As the AHB trace is disabled when a breakpoint is hit, AHB accesses related to instruction cache fetches after the
time of break can be missed. The command ahb force can be used enable AHB tracing even when the processor
is in debug mode.

When switching between tracing modes with tmode the contents of the trace buffer will not be valid until execution
has been resumed and the buffer refilled.

3.4.10. Profiling

GRMON supports profiling of target applications when run on real hardware. The profiling function collects
(statistical) information on the amount of execution time spent in each function. Due to its non-intrusive nature,
the profiling data does not take into consideration if the current function is called from within another procedure.
Even so, it still provides useful information and can be used for application tuning.

To increase the number of samples, use the fastest debug link available on the target system. I.a. do not use I/O
forwarding (start GRMON without the -u commandline option)

grmon3> lo v8/stanford.exe
 40000000 .text 54.8kB / 54.8kB [===============>] 100%
 4000DB30 .data 2.9kB / 2.9kB [===============>] 100%
 Total size: 57.66kB (786.00kbit/s)
 Entry point 0x40000000

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 22

 Image /home/daniel/examples/v8/stanford.exe loaded

grmon3> profile on

grmon3> run
Starting
 Perm Towers Queens Intmm Mm Puzzle Quick Bubble Tree FFT

 CPU 0: Interrupted!
 0x40003ee4: 95a0c8a4 fsubs %f3, %f4, %f10 <Fft+196>
 CPU 1: Interrupted!
 0x40000000: 88100000 clr %g4 <start+0>

grmon3> prof
 FUNCTION SAMPLES RATIO(%)
 Trial 0000000096 27.35
 __window_overflow_rettseq_ret 0000000060 17.09
 main 0000000051 14.52
 __window_overflow_slow1 0000000026 7.40
 Fft 0000000023 6.55
 Insert 0000000016 4.55
 Permute 0000000013 3.70
 tower 0000000013 3.70
 Try 0000000013 3.70
 Quicksort 0000000011 3.13
 Checktree 0000000007 1.99
 _malloc_r 0000000005 1.42
 start 0000000004 1.13
 outbyte 0000000003 0.85
 Towers 0000000002 0.56
 __window_overflow_rettseq 0000000002 0.56
 ___st_pthread_mutex_lock 0000000002 0.56
 _start 0000000001 0.28
 Perm 0000000001 0.28
 __malloc_lock 0000000001 0.28
 ___st_pthread_mutex_trylock 0000000001 0.28

3.4.11. Attaching to a target system without initialization

When GRMON connects to a target system, it probes the configuration and initializes memory and registers. To
determine why a target has crashed, or to debug an application that is running, it might be desirable to connect to
the target without performing a (destructive) initialization. This can be done by specifying the -ni switch during
the start-up of GRMON. The CPUs cores still be forced into debug mode during GRMON startup.

The system information print-out (info sys) will not be able to display information correctly that depends on
initialization, for example the correct memory settings.

To continue the execution of the application, issue the cont or the detach command.

The run and reset commands may not have the intended effect since the debug drivers have not been initialized
during start-up.

If the user runs a software bootloader or initializes the system manually, then go command can be used to restart
the application. Otherwise it recommended to restart GRMON without -ni to restart the application.

3.4.12. Attaching to a target system without Plug and Play scanning

When GRMON connects to a target system, it will scan the Plug and play information (or read a configuration
file), to determine which kind of system it has connected to. If GRMON is started with the -nopnp switch, then
this will be skipped, and GRMON will not have any knowledge about the hardware. Therefore GRMON will not
make any access to the system during startup.

Most hardware dependent commands will have undefined behaviour. But the basic memory access commands
will work, i.e. mem, wmem and similar.

This mode can be used to check register values after a hardware reset has been asserted, or other situations when
you want stop GRMON from doing any accesses during startup.

3.4.13. Multi-processor support

In systems with more than one processor, the cpu command can be used to control the state and debugging focus
of the processors. In MP systems, the processors are enumerated with 0..N-1, where N is the number of processors.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 23

Each processor can be in two states; enabled or disabled. When enabled, a processor can be started by LEON soft-
ware or by GRMON. When disabled, the processor will remain halted regardless. One can pause a MP operating
system and disable a CPU to debug a hanged CPU for example.

Most per-CPU debugging commands such as displaying registers, backtrace or adding breakpoints will be directed
to the active processor only. Switching active processor can be done using the 'cpu active N' command, see exam-
ple below. The Tcl cpu namespace exported by GRMON is also changed to point to the active CPU's namespace,
thus accessing cpu will be the same as accessing cpu1 if CPU1 is the currently active CPU.

grmon3> cpu
 cpu 0: enabled active
 cpu 1: enabled

grmon3> cpu act 1

grmon3> cpu
 cpu 0: enabled
 cpu 1: enabled active

grmon3> cpu act 0

grmon3> cpu dis 1

grmon3> cpu
 cpu 0: enabled active
 cpu 1: disabled

grmon3> puts $cpu::fpu::f1
 -1.984328031539917

grmon3> puts $cpu0::fpu::f1
 -1.984328031539917

grmon3> puts $cpu1::fpu::f1
 2.3017966689845248e+18

Non-MP software can still run on the first CPU unaffected of the additional CPUs since it is the target software
that is responsible for waking other CPUs. All processors are enabled by default.

Note that it is possible to debug MP systems using GDB, but the user are required to change CPU itself. GRMON
specific commands can be entered from GDB using the monitor command.

3.4.14. Stack and entry point

The stack pointer is located in %O6 (%SP) register of SPARC CPUs. GRMON sets the stack pointer before starting
the CPU with the run command. The address is auto-detected to end of main memory, however it is overridable
using the -stack when starting GRMON or by issuing the stack command. Thus stack pointer can be used by
software to detect end of main memory.

The entry point (EP) determines at which address the CPU start its first instruction execution. The EP defaults to
main memory start and normally overridden by the load command when loading the application. ELF-files has
support for storing entry point. The entry point can manually be set with the ep command.

In a MP systems if may be required to set EP and stack pointer individual per CPU, one can use the cpu command
in conjunction with ep and stack.

3.4.15. Memory Management Unit (MMU) support

The target processor may optionally implements an MMU. GRMON has support for the reference MMU (SRM-
MU) described in the SPARCv8 specification. It also support the RISC-V Sv32, Sv39 and Sv48 schemes. GR-
MON support viewing and changing the MMU registers through the DSU, using the mmu command. GRMON
also supports address translation by reading the MMU table from memory similar to the MMU. The walk com-
mand looks up one address by walking the MMU table printing out every step taken and the result. To simply
print out the result of such a translation, use the va command.

The memory commands that are prefixed with a v work with virtual addresses, the addresses given are translated
before listing or writing physical memory. If the MMU is not enabled, the vmem command for example is an alias
for mem. See Section 3.4.7, “Displaying memory contents” for more information.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 24

Many commands are affected by that the MMU is turned on, such as the disassemble command.

3.4.16. CPU cache support

The target system optionally implements Level-1 instruction-cache and data-cache. GRMON supports the CPU's
cache by adopting certain operations depending on if the cache is activated or not. The user may also be able to
access the cache directly. This is however not normally needed, but may be useful when debugging or analyzing
different cache aspects. By default the L1-cache is turned on by GRMON , the cctrl command can be used to
change the cache control register. The commandline switches -nic and -ndc disables instruction and data cache
respectively.

With the icache and dcache commands it is possible to view and modify the current content of the cache or check
if the cache is consistent with the memory. Both caches can be flushed instantly using the commands cctrl flush.
The data cache can be flushed instantly using the commands dcache flush. The instruction cache can be flushed
instantly using the commands icache flush.

The GRLIB Level-2 cache is supported using the l2cache command.

3.5. Tcl integration

GRMON has built-in support for Tcl 8.6. All commands lines entered in the terminal will pass through a Tcl-
interpreter. This enables loops, variables, procedures, scripts, arithmetic and more for the user. I.a. it also provides
an API for the user to extend GRMON.

3.5.1. Shells

GRMON creates several independent TCL shells, each with its own set of commands and variables. I.e. changing
active CPU in one shell does not affect any other shell. In the commandline version there one shell available for
the user by default, the CLI shell, which is accessed from the terminal. In the GUI is possible to create and view
multiple shells.

Additional custom user shells for the commandline interface can be created with the command usrsh. Each custom
user shell has an associated Tcl interpreter running in a separate execution thread.

When the GDB service is running, a GDB shell is also available from GDB by using the command mon.

There is also a system shell and an execution shell running in the background that GRMON uses internally. Some
hooks must be loaded into these shells to work, see Appendix C, Tcl API for more information.

3.5.2. Commands

There are two groups of commands, the native Tcl commands and GRMON's commands. Information about the
native Tcl commands and their syntax can be found at the Tcl website [http://www.tcl.tk/]. The GRMON com-
mands' syntax documentation can be found in Appendix B, Command syntax.

The commands have three types of output:

1. Standard output. GRMON's commands prints information to standard output. This information is often
structured in a human readable way and cannot be used by other commands. Most of the GRMON commands
print some kind of information to the standard output, while very few of the Tcl commands does that.
Setting the variable ::grmon::settings:suppress_output to 1 will stop GRMON commands
from printing to the standard output, i.e. the TCL command puts will still print it's output. It is also possible to
put the command silent in front of another GRMON command to suppress the output of a single command,
e.g. grmon3> puts [expr [silent mem 0x40000000 4] + 4]

2. Return values. The return value from GRMON is seldom the same as the information that is printed to
standard output, it's often the important data in a raw format. Return values can be used as input to other
commands or to be saved in variables. All TCL commands and many GRMON commands have return
values. The return values from commands are normally not printed. To print the return value to standard
output one can use the Tcl command puts. I.a. if the variable ::grmon::settings:echo_result
to 1, then GRMON will always print the result to stdout.

3. Return code. The return code from a command can be accessed by reading the variable errorCode or
by using the Tcl command catch. Both Tcl and GRMON commands will have an error message as return

frontgrade.com/gaisler
http://www.tcl.tk/
http://www.tcl.tk/

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 25

value if it fails, which is also printed to standard output. More about error codes can be read about in the
Tcl tutorial or on the Tcler's Wiki [http://wiki.tcl.tk/].

For some of the GRMON commands it is possible to specify which core the commands is operation on. This is
implemented differently depending for each command, see the commands' syntax documentation in Appendix B,
Command syntax for more details. Some of these commands use a device name to specify which core to interact
with, see Appendix C, Tcl API for more information about device names.

3.5.3. API

It is possible to extend GRMON using Tcl. GRMON provides an API that makes it possible do write own device
drivers, implement hooks and to write advanced commands. See Appendix C, Tcl API for a detailed description
of the API.

3.6. Symbolic debug information

GRMON will automatically extract the symbol information from ELF-files, debug information is never read from
ELF-files. The symbols can be used to GRMON commands where an address is expected as below. Symbols are
tab completed.

grmon3> load v8/stanford.exe
 40000000 .text 54.8kB / 54.8kB [===============>] 100%
 4000DB30 .data 2.9kB / 2.9kB [===============>] 100%
 Image /home/daniel/examples/v8/stanford.exe loaded

grmon3> bp main
 Software breakpoint 1 at <main>

grmon3> dis strlen 5
 0x40005b88: 808a2003 andcc %o0, 0x3, %g0 <strlen+0>
 0x40005b8c: 12800012 bne 0x40005BD4 <strlen+4>
 0x40005b90: 94100008 mov %o0, %o2 <strlen+8>
 0x40005b94: 033fbfbf sethi %hi(0xFEFEFC00), %g1 <strlen+12>
 0x40005b98: da020000 ld [%o0], %o5 <strlen+16>

The symbols command can be used to display all symbols, lookup the address of a symbol, or to read in symbols
from an alternate (ELF) file:

grmon3> symbols load v8/stanford.exe

grmon3> symbols lookup main
 Found address 0x40004070

grmon3> symbols list
 0x40005ab8 GLOBAL FUNC putchar
 0x4000b6ac GLOBAL FUNC _mprec_log10
 0x4000d9d0 GLOBAL OBJECT __mprec_tinytens
 0x4000bbe8 GLOBAL FUNC cleanup_glue
 0x4000abfc GLOBAL FUNC _hi0bits
 0x40005ad4 GLOBAL FUNC _puts_r
 0x4000c310 GLOBAL FUNC _lseek_r
 0x4000eaac GLOBAL OBJECT piecemax
 0x40001aac GLOBAL FUNC Try
 0x40003c6c GLOBAL FUNC Uniform11
 0x400059e8 GLOBAL FUNC printf
...

Reading symbols from alternate files is necessary when debugging self-extracting applications (MKPROM), when
switching between virtual and physical address space (Linux) or when debugging a multi-core ASMP system
where each CPU has its own symbol table. It is recommended to clear old symbols with symbols clear before
switching symbol table, otherwise the new symbols will be added to the old table.

3.6.1. Multi-processor symbolic debug information

When loading symbols into GRMON it is possible to associate them with a CPU. When all symbols/images are
associated with CPU index 0, then GRMON will assume its a single-core or SMP application and lookup all
symbols from the symbols table associated with CPU index 0.

If different CPU indexes are specified (by setting active CPU or adding cpu# argument to the commands) when
loading symbols/images, then GRMON will assume its an AMP application that has been loaded. GRMON will
use the current active CPU (or cpu# argument) to determine which CPU index to lookup symbols from.

grmon3> cpu active 1

frontgrade.com/gaisler
http://wiki.tcl.tk/
http://wiki.tcl.tk/

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 26

grmon3> symbols ../tests/threads/rtems-mp2
 Loaded 1630 symbols

grmon3> bp _Thread_Handler
 Software breakpoint 1 at <_Thread_Handler>

grmon3> symbols ../tests/threads/rtems-mp1 cpu0
 Loaded 1630 symbols

grmon3> bp _Thread_Handler cpu0
 Software breakpoint 2 at <_Thread_Handler>

grmon3> bp
 NUM ADDRESS MASK TYPE CPU SYMBOL
 1 : 0x40418408 (soft) 1 _Thread_Handler+0
 2 : 0x40019408 (soft) 0 _Thread_Handler+0

3.7. GDB interface

This section describes the GDB interface support available in GRMON. GRMON supports GDB version 6.3, 6.4,
6.8 and 8.2. Other tools that communicate over the GDB protocol may also attach to GRMON, some tools such
as Eclipse Workbench and DDD communicate with GRMON via GDB.

GDB must be built for the target architecture, a native PC GDB does not work together with GRMON. The
toolchains that we distributes comes with a patched and tested version of GDB.

Please see the GDB documentation available from the official GDB homepage [http://www.gnu.org/soft-
ware/gdb/].

3.7.1. Connecting GDB to GRMON

GRMON can act as a remote target for GDB, allowing symbolic debugging of target applications. To initiate GDB
communications, start the monitor with the -gdb switch or use the GRMON gdb start command:

$ grmon -gdb
...
 Started GDB service on port 2222.
...
grmon3> gdb status
 GDB Service is waiting for incoming connection
 Port: 2222

Then, start GDB in a different window and connect to GRMON using the extended-remote protocol. By default,
GRMON listens on port 2222 for the GDB connection:

$ sparc-gaisler-elf-gdb /opt/bcc-2.0.7-rc.1-gcc/src/examples/stanford/stanford
GNU gdb (GDB) 8.2
Copyright (C) 2018 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "--host=x86_64-pc-linux-gnu --target=sparc-gaisler-elf".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
 <http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from /opt/bcc-2.0.7-rc.1-gcc/src/examples/stanford/stanford...done.
(gdb) target extended-remote :2222
Remote debugging using :2222
__bcc_entry_point () at /opt/bcc-2.0.7-rc.1-gcc/src/libbcc/shared/trap/trap_table_mvt.S:81
81 RESET_TRAP(__bcc_trap_reset_mvt); ! 00 reset
(gdb)

3.7.2. Executing GRMON commands from GDB

While GDB is attached to GRMON, most GRMON commands can be executed using the GDB monitor command.
Output from the GRMON commands is then displayed in the GDB console like below. Some DSU commands are
naturally not available since they would conflict with GDB. All commands executed from GDB are executed in a
separate Tcl interpreter, thus variables created from GDB will not be available from the GRMON terminal.

(gdb) monitor hist

frontgrade.com/gaisler
http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 27

 TIME ADDRESS INSTRUCTIONS/AHB SIGNALS RESULT/DATA
 30046975 40003e20 AHB read mst=0 size=2 [9de3bf90]
 30046976 40005030 or %l2, 0x1e0, %o3 [40023de0]
 30046980 40003e24 AHB read mst=0 size=2 [91d02001]
 30046981 40005034 call 0x40003e20 [40005034]
 30046985 40003e28 AHB read mst=0 size=2 [b136201f]
 30046990 40003e2c AHB read mst=0 size=2 [f83fbff0]
 30046995 40003e30 AHB read mst=0 size=2 [82040018]
 30047000 40003e34 AHB read mst=0 size=2 [d11fbff0]
 30047005 40003e38 AHB read mst=0 size=2 [9a100019]
 30047010 40003e3c AHB read mst=0 size=2 [9610001a]
(gdb)

3.7.3. Running applications from GDB

To load and start an application, use the GDB load and run command. When using the GDB load command
to upload an application, one should also call mon gdb postload to ensure that GRMON initializes the system
properly.

$ sparc-rtems-gdb v8/stanford.exe
(gdb) target extended-remote :2222
Remote debugging using :2222
main () at stanford.c:1033
1033 {
(gdb) mon gdb reset
(gdb) load
(gdb) mon gdb postload
Loading section .text, size 0xdb30 lma 0x40000000
Loading section .data, size 0xb78 lma 0x4000db30
Start address 0x40000000, load size 59048
Transfer rate: 18 KB/sec, 757 bytes/write.
(gdb) b main
Breakpoint 1 at 0x40004074: file stanford.c, line 1033.
(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /home/daniel/examples/v8/stanford.exe

Breakpoint 1, main () at stanford.c:1033
1033 {
(gdb) list
1028 /* Printcomplex(6, 99, z, 1, 256, 17); */
1029 };
1030 } /* oscar */ ;
1031
1032 main ()
1033 {
1034 int i;
1035 fixed = 0.0;
1036 floated = 0.0;
1037 printf ("Starting \n");
(gdb)

To interrupt execution, Ctrl-C can be typed in GDB terminal (similar to GRMON). The program can be restarted
using the GDB run command but the program image needs to be reloaded first using the load command. Software
trap 1 (TA 0x1) is used by GDB to insert breakpoints and should not be used by the application.

GRMON translates SPARC traps, or RISC-V exceptions, into (UNIX) signals which are properly communicated
to GDB. If the application encounters a fatal trap, execution will be stopped exactly before the failing instruction.
The target memory and register values can then be examined in GDB to determine the error cause.

GRMON implements the GDB breakpoint and watchpoint interface and makes sure that memory and cache are
synchronized.

3.7.4. Running SMP applications from GDB

If GRMON is running on the same computer as GDB, or if the executable is available on the remote computer that is
running GRMON, it is recommended to issue the GDB command set remote exec-file <remote-file-path>. After
this has been set, GRMON will automatically load the file, and symbols if available, when the GDB command
run is issued.

$ sparc-rtems-gdb /opt/rtems-4.11/src/rtems-4.11/testsuites/libtests/ticker/ticker.exe
GNU gdb 6.8.0.20090916-cvs
Copyright (C) 2008 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 28

This GDB was configured as "--host=i686-pc-linux-gnu --target=sparc-rtems"...
(gdb) target extended-remote :2222
Remote debugging using :2222
0x00000000 in ?? ()
(gdb) set remote exec-file /opt/rtems-4.11/src/rtems-4.11/testsuites/libtests/ticker/ticker.exe
(gdb) break Init
Breakpoint 1 at 0x40001318: file ../../../../../leon3smp/lib/include/rtems/score/thread.h, line 627.
(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /opt/rtems-4.11/src/rtems-4.11/testsuites/libtests/ticker/ticker.exe

If the executable is not available on the remote computer where GRMON is running, then the GDB command
load can be used to load the software to the target system.

$ sparc-rtems-gdb /opt/rtems-4.11/src/rtems-4.11/testsuites/libtests/ticker/ticker.exe
GNU gdb 6.8.0.20090916-cvs
Copyright (C) 2008 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "--host=i686-pc-linux-gnu --target=sparc-rtems"...
(gdb) target extended-remote :2222
Remote debugging using :2222
trap_table () at /opt/rtems-4.11/src/rtems-4.11/c/src/lib/libbsp/sparc/leon3/../../sparc/shared/start
/start.S:69
69 /opt/rtems-4.11/src/rtems-4.11/c/src/lib/libbsp/sparc/leon3/../../sparc/shared/start/start.S: No
such file or directory.
 in /opt/rtems-4.11/src/rtems-4.11/c/src/lib/libbsp/sparc/leon3/../../sparc/shared/start/start.S
Current language: auto; currently asm
(gdb) mon gdb reset
(gdb) load
(gdb) mon gdb postload
Loading section .text, size 0x1aed0 lma 0x40000000
Loading section .data, size 0x5b0 lma 0x4001aed0
Start address 0x40000000, load size 111744
Transfer rate: 138 KB/sec, 765 bytes/write.
(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /opt/rtems-4.11/src/rtems-4.11/testsuites/libtests/ticker/ticker.exe

3.7.5. Running AMP applications from GDB

If GRMON is running on the same computer as GDB, or if the executables are available on the remote computer
that is running GRMON, it is recommended to issue the GDB command set remote exec-file <remote-file-path>.
When this is set, GRMON will automatically load the file,and symbols if available, when the GDB command run is
issued. The second application needs to be loaded into GRMON using the GRMON command load <remote-file-
path> cpu1. In addition the stacks must also be set manually in GRMON using the command stack <address>
cpu# for both CPUs.

$ sparc-rtems-gdb /opt/rtems-4.10/src/samples/rtems-mp1
GNU gdb 6.8.0.20090916-cvs
Copyright (C) 2008 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "--host=i686-pc-linux-gnu --target=sparc-rtems"...
(gdb) target extended-remote :2222
Remote debugging using :2222
(gdb) set remote exec-file /opt/rtems-4.10/src/samples/rtems-mp1
(gdb) mon stack 0x403fff00 cpu0
 CPU 0 stack pointer: 0x403fff00
(gdb) mon load /opt/rtems-4.10/src/samples/rtems-mp2 cpu1
Total size: 177.33kB (1.17Mbit/s)
Entry point 0x40400000
Image /opt/rtems-4.10/src/samples/rtems-mp2 loaded
(gdb) mon stack 0x407fff00 cpu1
 CPU 1 stack pointer: 0x407fff00
(gdb) run
Starting program: /opt/rtems-4.10/src/samples/rtems-mp1
NODE[0]: is Up!
NODE[0]: Waiting for Semaphore A to be created (0x53454d41)
NODE[0]: Waiting for Semaphore B to be created (0x53454d42)
NODE[0]: Waiting for Task A to be created (0x54534b41)
^C[New Thread 151060481]

Program received signal SIGINT, Interrupt.
[Switching to Thread 151060481]

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 29

pwdloop () at /opt/rtems-4.10/src/rtems-4.10/c/src/lib/libbsp/sparc/leon3/startup/bspidle.S:26
warning: Source file is more recent than executable.
26 retl
Current language: auto; currently asm
(gdb)

If the executable is not available on the remote computer where GRMON is running, then the GDB command file
and load can be used to load the software to the target system. Use the GRMON command cpu act <num> before
issuing the GDB command load to specify which CPU is the target for the software being loaded. In addition the
stacks must also be set manually in GRMON using the command stack <address> cpu# for both CPUs.

$ sparc-rtems-gdb
GNU gdb 6.8.0.20090916-cvs
Copyright (C) 2008 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "--host=i686-pc-linux-gnu --target=sparc-rtems".
(gdb) target extended-remote :2222
Remote debugging using :2222
0x40000000 in ?? ()
(gdb) mon gdb reset
(gdb) file /opt/rtems-4.10/src/samples/rtems-mp2
A program is being debugged already.
Are you sure you want to change the file? (y or n) y
Reading symbols from /opt/rtems-4.10/src/samples/rtems-mp2...done.
(gdb) mon cpu act 1
(gdb) load
Loading section .text, size 0x2b3e0 lma 0x40400000
Loading section .data, size 0x1170 lma 0x4042b3e0
Loading section .jcr, size 0x4 lma 0x4042c550
Start address 0x40400000, load size 181588
Transfer rate: 115 KB/sec, 759 bytes/write.
(gdb) file /opt/rtems-4.10/src/samples/rtems-mp1
A program is being debugged already.
Are you sure you want to change the file? (y or n) y

Load new symbol table from "/opt/rtems-4.10/src/samples/rtems-mp1"? (y or n) y
Reading symbols from /opt/rtems-4.10/src/samples/rtems-mp1...done.
(gdb) mon cpu act 0
(gdb) load
Loading section .text, size 0x2b3e0 lma 0x40001000
Loading section .data, size 0x1170 lma 0x4002c3e0
Loading section .jcr, size 0x4 lma 0x4002d550
Start address 0x40001000, load size 181588
Transfer rate: 117 KB/sec, 759 bytes/write.
(gdb) mon stack 0x407fff00 cpu1
 CPU 1 stack pointer: 0x407fff00
(gdb) mon stack 0x403fff00 cpu0
 CPU 0 stack pointer: 0x403fff00
(gdb) mon gdb postload
(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /opt/rtems-4.10/src/samples/samples/rtems-mp1

3.7.6. GDB Thread support

GDB is capable of listing a operating system's threads, however it relies on GRMON to implement low-level
thread access. GDB normally fetches the threading information on every stop, for example after a breakpoint is
reached or between single-stepping stops. GRMON have to access the memory rather many times to retrieve the
information, GRMON. See Section 3.8, “Thread support” for more information.

Start GRMON with the -nothreads switch to disable threads in GRMON and thus in GDB too.

Note that GRMON must have access to the symbol table of the operating system so that the thread structures of
the target OS can be found. The symbol table can be loaded from GDB by one must bear in mind that the path is
relative to where GRMON has been started. If GDB is connected to GRMON over the network one must make
the symbol file available on the remote computer running GRMON.

(gdb) mon puts [pwd]
/home/daniel
(gdb) pwd
Working directory /home/daniel.
(gdb) mon sym load /opt/rtems-4.10/src/samples/rtems-hello
(gdb) mon sym
0x00016910 GLOBAL FUNC imfs_dir_lseek

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 30

0x00021f00 GLOBAL OBJECT Device_drivers
0x0001c6b4 GLOBAL FUNC _mprec_log10
...

When a program running in GDB stops GRMON reports which thread it is in. The command info threads can be
used in GDB to list all known threads, thread N to switch to thread N and bt to list the backtrace of the selected
thread.

Program received signal SIGINT, Interrupt.
[Switching to Thread 167837703]

0x40001b5c in console_outbyte_polled (port=0, ch=113 `q`) at rtems/.../leon3/console/debugputs.c:38
38 while ((LEON3_Console_Uart[LEON3_Cpu_Index+port]->status & LEON_REG_UART_STATUS_THE) == 0);

(gdb) info threads

 8 Thread 167837702 (FTPD Wevnt) 0x4002f760 in _Thread_Dispatch () at rtems/.../threaddispatch.c:109
 7 Thread 167837701 (FTPa Wevnt) 0x4002f760 in _Thread_Dispatch () at rtems/.../threaddispatch.c:109
 6 Thread 167837700 (DCtx Wevnt) 0x4002f760 in _Thread_Dispatch () at rtems/.../threaddispatch.c:109
 5 Thread 167837699 (DCrx Wevnt) 0x4002f760 in _Thread_Dispatch () at rtems/.../threaddispatch.c:109
 4 Thread 167837698 (ntwk ready) 0x4002f760 in _Thread_Dispatch () at rtems/.../threaddispatch.c:109
 3 Thread 167837697 (UI1 ready) 0x4002f760 in _Thread_Dispatch () at rtems/.../threaddispatch.c:109
 2 Thread 151060481 (Int. ready) 0x4002f760 in _Thread_Dispatch () at rtems/.../threaddispatch.c:109
* 1 Thread 167837703 (HTPD ready) 0x40001b5c in console_outbyte_polled (port=0, ch=113 `q`)
 at ../../../rtems/c/src/lib/libbsp/sparc/leon3/console/debugputs.c:38
 (gdb) thread 8

[Switching to thread 8 (Thread 167837702)]#0 0x4002f760 in _Thread_Dispatch ()
 at rtems/.../threaddispatch.c:109
109 _Context_Switch(&executing->Registers, &heir->Registers);
(gdb) bt

#0 0x4002f760 in _Thread_Dispatch () at rtems/cpukit/score/src/threaddispatch.c:109
#1 0x40013ee0 in rtems_event_receive(event_in=33554432, option_set=0, ticks=0, event_out=0x43fecc14)
 at ../../../../leon3/lib/include/rtems/score/thread.inl:205
#2 0x4002782c in rtems_bsdnet_event_receive (event_in=33554432, option_set=2, ticks=0,
 event_out=0x43fecc14) at rtems/cpukit/libnetworking/rtems/rtems_glue.c:641
#3 0x40027548 in soconnsleep (so=0x43f0cd70) at rtems/cpukit/libnetworking/rtems/rtems_glue.c:465
#4 0x40029118 in accept (s=3, name=0x43feccf0, namelen=0x43feccec) at rtems/.../rtems_syscall.c:215
#5 0x40004028 in daemon () at rtems/c/src/libnetworking/rtems_servers/ftpd.c:1925
#6 0x40053388 in _Thread_Handler () at rtems/cpukit/score/src/threadhandler.c:123
#7 0x40053270 in __res_mkquery (op=0, dname=0x0, class=0, type=0, data=0x0, datalen=0, newrr_in=0x0,
 buf=0x0, buflen=0)
 at ../rtems/cpukit/libnetworking/libc/res_mkquery.c:199
#8 0x00000008 in ?? ()
#9 0x00000008 in ?? ()
Previous frame identical to this frame (corrupt stack?)

In comparison to GRMON the frame command in GDB can be used to select a individual stack frame. One can
also step between frames by issuing the up or down commands. The CPU registers can be listed using the info
registers command. Note that the info registers command only can see the following registers for an inactive
task: g0-g7, l0-l7, i0-i7, o0-o7, PC and PSR. The other registers will be displayed as 0:

gdb) frame 5

#5 0x40004028 in daemon () at rtems/.../rtems_servers/ftpd.c:1925
1925 ss = accept(s, (struct sockaddr *)&addr, &addrLen);

(gdb) info reg

g0 0x0 0
g1 0x0 0
g2 0xffffffff -1
g3 0x0 0
g4 0x0 0
g5 0x0 0
g6 0x0 0
g7 0x0 0
o0 0x3 3
o1 0x43feccf0 1140772080
o2 0x43feccec 1140772076
o3 0x0 0
o4 0xf34000e4 -213909276
o5 0x4007cc00 1074252800
sp 0x43fecc88 0x43fecc88
o7 0x40004020 1073758240
l0 0x4007ce88 1074253448
l1 0x4007ce88 1074253448
l2 0x400048fc 1073760508
l3 0x43feccf0 1140772080
l4 0x3 3
l5 0x1 1
l6 0x0 0

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 31

l7 0x0 0
i0 0x0 0
i1 0x40003f94 1073758100
i2 0x0 0
i3 0x43ffafc8 1140830152
i4 0x0 0
i5 0x4007cd40 1074253120
fp 0x43fecd08 0x43fecd08
i7 0x40053380 1074082688
y 0x0 0
psr 0xf34000e0 -213909280
wim 0x0 0
tbr 0x0 0
pc 0x40004028 0x40004028 <daemon+148>
npc 0x4000402c 0x4000402c <daemon+152>
fsr 0x0 0
csr 0x0 0

It is not supported to set thread specific breakpoints. All breakpoints are global and stops the execution of all
threads. It is not possible to change the value of registers other than those of the current thread.

3.7.7. Virtual memory

There is no way for GRMON to determine if an address sent from GDB is physical or virtual. If an MMU unit is
present in the system and it is enabled, then GRMON will assume that all addresses are virtual and try to translate
them. When debugging an application that uses the MMU one typically have an image with physical addresses
used to load data into the memory and a second image with debug-symbols of virtual addresses. It is therefore
important to make sure that the MMU is enabled/disabled when each image is used.

The example below will show a typical case on how to handle virtual and physical addresses when debugging with
GDB. The application being debugged is Linux and it consists of two different images created with Linuxbuild.
The file image.ram contains physical addresses and a small loader, that among others configures the MMU,
while the file image contains all the debug-symbols in virtual address-space.

First start GRMON and start the GDB server.

$ grmon -nb -gdb

Then start GDB in a second shell, load both files into GDB, connect to GRMON and then upload the application
into the system. The addresses will be interpreted as physical since the MMU is disabled when GRMON starts.

$ sparc-linux-gdb
GNU gdb 6.8.0.20090916-cvs
Copyright (C) 2008 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "--host=i686-pc-linux-gnu --target=sparc-linux".
(gdb) file output/images/image.ram
Reading symbols from /home/user/linuxbuild-1.0.2/output/images/image.ram...(no d
ebugging symbols found)...done.
(gdb) symbol-file output/images/image
Reading symbols from /home/user/linuxbuild-1.0.2/output/images/image...done.
(gdb) target extended-remote :2222
Remote debugging using :2222
t_tflt () at /home/user/linuxbuild-1.0.2/linux/linux-2.6-git/arch/sparc/kernel/h
ead_32.S:88
88 t_tflt: SPARC_TFAULT /* Inst. Access Exception
 */
Current language: auto; currently asm
(gdb) mon gdb reset
(gdb) load
(gdb) monitor gdb postload
Loading section .text, size 0x10b0 lma 0x40000000
Loading section .data, size 0x50 lma 0x400010b0
Loading section .vmlinux, size 0x3f1a60 lma 0x40004000
Loading section .startup_prom, size 0x7ee0 lma 0x403f5a60
Start address 0x40000000, load size 4172352
Transfer rate: 18 KB/sec, 765 bytes/write.

The program must reach a state where the MMU is enabled before any virtual address can be translated. Software
breakpoints cannot be used since the MMU is still disabled and GRMON won't translate them into a physical.
Hardware breakpoints don't need to be translated into physical addresses, therefore set a hardware assisted break-
point at 0xf0004000, which is the virtual start address for the Linux kernel.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 32

(gdb) hbreak *0xf0004000
Hardware assisted breakpoint 1 at 0xf0004000: file /home/user/linuxbuild-1.0.2/l
inux/linux-2.6-git/arch/sparc/kernel/head_32.S, line 87.
(gdb) cont
Continuing.

Breakpoint 1, trapbase_cpu0 () at /home/user/linuxbuild-1.0.2/linux/linux-2.6-gi
t/arch/sparc/kernel/head_32.S:87
87 t_zero: b gokernel; nop; nop; nop;

At this point the loader has enabled the MMU and both software breakpoints and symbols can be used.

(gdb) break leon_init_timers
Breakpoint 2 at 0xf03cff14: file /home/user/linuxbuild-1.0.2/linux/linux-2.6-git
/arch/sparc/kernel/leon_kernel.c, line 116.

(gdb) cont
Continuing.

Breakpoint 2, leon_init_timers (counter_fn=0xf00180c8 <timer_interrupt>)
 at /home/user/linuxbuild-1.0.2/linux/linux-2.6-git/arch/sparc/kernel/leon_ke
rnel.c:116
116 leondebug_irq_disable = 0;
Current language: auto; currently c
(gdb) bt
#0 leon_init_timers (counter_fn=0xf00180c8 <timer_interrupt>)
 at /home/user/linuxbuild-1.0.2/linux/linux-2.6-git/arch/sparc/kernel/leon_ke
rnel.c:116
#1 0xf03ce944 in time_init () at /home/user/linuxbuild-1.0.2/linux/linux-2.6-gi
t/arch/sparc/kernel/time_32.c:227
#2 0xf03cc13c in start_kernel () at /home/user/linuxbuild-1.0.2/linux/linux-2.6
-git/init/main.c:619
#3 0xf03cb804 in sun4c_continue_boot ()
#4 0xf03cb804 in sun4c_continue_boot ()
Backtrace stopped: previous frame identical to this frame (corrupt stack?)
(gdb) info locals
eirq = <value optimized out>
rootnp = <value optimized out>
np = <value optimized out>
pp = <value optimized out>
len = 13
ampopts = <value optimized out>
(gdb) print len
$2 = 13

If the application for some reason need to be reloaded, then the MMU must first be disabled via the GRMON
command gdb reset. It is similar to the regular reset command, but it will retain some of the state which GDB
expects to be intact.

In addition all software breakpoints should be deleted before the application is restarted since the MMU has been
disabled and GRMON won't translate virtual addresses anymore.

(gdb) mon mmu mctrl 0
mctrl: 006E0000 ctx: 00000000 ctxptr: 40440800 fsr: 00000000 far: 00000000
(gdb) delete
Delete all breakpoints? (y or n) y
(gdb) monitor gdb reset

(gdb) load
Loading section .text, size 0x10b0 lma 0x40000000
Loading section .data, size 0x50 lma 0x400010b0
Loading section .vmlinux, size 0x3f1a60 lma 0x40004000
Loading section .startup_prom, size 0x7ee0 lma 0x403f5a60
Start address 0x40000000, load size 4172352
Transfer rate: 18 KB/sec, 765 bytes/write.
(gdb) monitor gdb postload
(gdb) hbreak *0xf0004000
Hardware assisted breakpoint 3 at 0xf0004000: file /home/user/linuxbuild-1.0.2/l
inux/linux-2.6-git/arch/sparc/kernel/head_32.S, line 87.
(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /home/user/linuxbuild-1.0.2/output/images/image.ram

Breakpoint 3, trapbase_cpu0 () at /home/user/linuxbuild-1.0.2/linux/linux-2.6-gi
t/arch/sparc/kernel/head_32.S:87
87 t_zero: b gokernel; nop; nop; nop;
Current language: auto; currently asm
(gdb) break leon_init_timers
Breakpoint 4 at 0xf03cff14: file /home/user/linuxbuild-1.0.2/linux/linux-2.6-git
/arch/sparc/kernel/leon_kernel.c, line 116.
(gdb) cont
Continuing.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 33

Breakpoint 4, leon_init_timers (counter_fn=0xf00180c8 <timer_interrupt>)
 at /home/user/linuxbuild-1.0.2/linux/linux-2.6-git/arch/sparc/kernel/leon_ke
rnel.c:116
116 leondebug_irq_disable = 0;
Current language: auto; currently c

3.7.8. Specific GDB optimization

GRMON detects GDB access to register window frames in memory which are not yet flushed and only reside
in the processor register file. When such a memory location is read, GRMON will read the correct value from
the register file instead of the memory. This allows GDB to form a function trace-back without any (intrusive)
modification of memory. This feature is disabled during debugging of code where traps are disabled, since no
valid stack frame exist at that point.

3.7.9. GRMON GUI considerations

The Graphical User Interface of GRMON can be used in parallel with GDB C/C++ level debugging. More details
are described in Section 4.6.1, “GDB interface”.

3.7.10. Limitations of GDB interface

GDB must be built for the target architecture, a native PC GDB does not work together with GRMON. The
toolchains that we distributes comes with a patched and tested version of GDB.

Do not use the GDB where commands in parts of an application where traps are disabled (e.g.trap or exception
handlers). Since the stack pointer is not valid at this point, GDB might go into an infinite loop trying to unwind
false stack frames. The thread support might not work either in some trap handler cases.

The step instruction commands si or stepi may be implemented by GDB inserting software breakpoints through
GRMON. This is an approach that is not possible when debugging in read-only memory such as boot sequences
executed in PROM/FLASH. One can instead use hardware breakpoints using the GDB command hbreak man-
ually.

3.8. Thread support

GRMON has thread support for the operating systems shown below. The thread information is accessed using the
GRMON thread command. The GDB interface of GRMON is also thread aware and the related GDB commands
are described in the GDB documentation and in Section 3.7.6, “GDB Thread support”.

Supported operating systems

• RTEMS
• VXWORKS
• PikeOS
• Bare-metal

GRMON needs the symbolic information of the image that is being debugged in order to retrieve the addresses
of the thread information. Therefore the symbols of the OS must be loaded automatically by the ELF-loader
using load or manually by using the symbols command. GRMON will traverse the thread structures located in
the target's memory when the thread command is issued or when GDB requests thread information. Bare-metal
threads are used by default if no OS threads can be found. In addition the startup switch -bmthreads can be
used to force bare-metal threads.

The target's thread structures are never changed, and they are only accessed when the thread command is executed.
Starting GRMON with the -nothreads switch disables the thread support in GRMON and the GDB server.

During debugging sessions it can help the developer a lot to view all threads, their stack traces and their states to
understand what is happening in the system.

3.8.1. GRMON thread options

The following command-line options are available for selecting how GRMON4 will handle threads.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 34

-nothreads
Disable thread support.

-bmthreads
Force bare-metal thread support

-rtems version
Set RTEMS version for thread support, where the required argument version is one of the following:
rcc-1.3.0
rcc-1.3-rc9
rcc-1.3-rc8
rcc-1.3-rc7
rcc-1.3-rc6
rtems-6.0
rtems-5.1
rtems-5.0
rtems-4.12
rtems-4.11
rtems-4.10
rtems-4.8
rtems-4.6
edisoft-4.8
The edisoft-4.8 option enabled RTEMS-4.8 edisoft configuration with hard FPU enabled RTEMS kernel
(no AMP support). NOTE: TIME field of thread command is not implemented.

3.8.2. GRMON thread commands

thread info lists all threads currently available in the operating system. The currently running thread is marked
with an asterisk.

grmon> thread info

 Name | Type | Id | Prio | Ticks | Entry point | PC | State

 Int. | internal | 0x09010001 | 255 | 138 | _CPU_Thread_Idle_body | 0x4002f760 | READY

 UI1 | classic | 0x0a010001 | 120 | 290 | Init | 0x4002f760 | READY

 ntwk | classic | 0x0a010002 | 100 | 11 | rtems_bsdnet_schedneti | 0x4002f760 | READY

 DCrx | classic | 0x0a010003 | 100 | 2 | rtems_bsdnet_schedneti | 0x4002f760 | Wevnt

 DCtx | classic | 0x0a010004 | 100 | 4 | rtems_bsdnet_schedneti | 0x4002f760 | Wevnt

 FTPa | classic | 0x0a010005 | 10 | 1 | split_command | 0x4002f760 | Wevnt

 FTPD | classic | 0x0a010006 | 10 | 1 | split_command | 0x4002f760 | Wevnt

* HTPD | classic | 0x0a010007 | 40 | 79 | rtems_initialize_webse | 0x40001b60 | READY

thread bt ?id? lists the stack backtrace. bt lists the backtrace of the currently executing thread as usual.

grmon> thread bt 0x0a010003

 %pc
#0 0x4002f760 _Thread_Dispatch + 0x11c
#1 0x40013ed8 rtems_event_receive + 0x88
#2 0x40027824 rtems_bsdnet_event_receive + 0x18
#3 0x4000b664 websFooter + 0x484
#4 0x40027708 rtems_bsdnet_schednetisr + 0x158

A backtrace of the current thread (equivalent to the bt command):

grmon> thread bt 0x0a010007

 %pc %sp
#0 0x40001b60 0x43fea130 console_outbyte_polled + 0x34
#1 0x400017fc 0x43fea130 console_write_support + 0x18
#2 0x4002dde8 0x43fea198 rtems_termios_puts + 0x128
#3 0x4002df60 0x43fea200 rtems_termios_puts + 0x2a0
#4 0x4002dfe8 0x43fea270 rtems_termios_write + 0x70
#5 0x400180a4 0x43fea2d8 rtems_io_write + 0x48

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 35

#6 0x4004eb98 0x43fea340 device_write + 0x2c
#7 0x40036ee4 0x43fea3c0 write + 0x90
#8 0x4001118c 0x43fea428 trace + 0x38
#9 0x4000518c 0x43fea498 websOpenListen + 0x108
#10 0x40004fb4 0x43fea500 websOpenServer + 0xc0
#11 0x40004b0c 0x43fea578 rtems_initialize_webserver + 0x204
#12 0x40004978 0x43fea770 rtems_initialize_webserver + 0x70
#13 0x40053380 0x43fea7d8 _Thread_Handler + 0x10c
#14 0x40053268 0x43fea840 __res_mkquery + 0x2c8

3.9. Forwarding application console I/O

If GRMON is started with -u [N] (N defaults to zero - the first UART), the target system APBUART[N] is
placed in FIFO debug mode or in loop-back mode. Debug mode was added in GRLIB 1.0.17-b2710 and is reported
by info sys in GRMON as "DSU mode (FIFO debug)", older hardware is still supported using loop-back mode.
In both modes flow-control is enabled. Both in loop-back mode and in FIFO debug mode the UART is polled
regularly by GRMON during execution of an application and all console output is printed on the GRMON console.
When -u is used there is no point in connecting a separate terminal to UART1.

In addition it is possible to enable or disable UART forwarding using the command forward. Optionally it is also
possible to forward the I/O to a custom TCL channel using this command.

With FIFO debug mode it is also possible to enter text in GRMON which is inserted into the UART receive
FIFO. These insertions will trigger interrupts if receiver FIFO interrupts are enabled. This makes it possible to use
GRMON as a terminal when running an interrupt-driven O/S such as Linux or VxWorks.

The following restrictions must be met by the application to support either loop-back mode or FIFO debug mode:

1. The UART control register must not be modified such that neither loop-back nor FIFO debug mode is
disabled

2. In loop-back mode the UART data register must not be read

This means that -u cannot be used with PROM images created by MKPROM. Also loop-back mode can not be
used in kernels using interrupt driven UART consoles (e.g. Linux, VxWorks).

The forward start, or the commandline option -ucli [N], can be used to make the current shell start forwarding
I/O. This can be used when running applications from GDB to redirect I/O to the GRMON terminal instead of
the GDB terminal.

RXVT must be disabled for debug mode to work in a MSYS console on Windows. This can be done by deleting
or renaming the file rxvt.exe inside the bin directory, e.g., C:\msys\1.0\bin. Starting with MSYS-1.0.11
this will be the default.

3.9.1. UART debug mode

When the application is running with UART debug mode enabled the following key sequences will be available.
The sequences can be used to adjust the input to what the target system expects. For a key sequence to take effect,
both key presses must be pressed within 1.5 seconds of each other. Otherwise, they will be forwarded as is.

Table 3.3. Uart control sequences

Key sequence Action

Ctrl+A B Toggle delete to backspace conversion

Ctrl+A C Send break (Ctrl+C) to the running application

Ctrl+A D Toggle backspace to delete conversion

Ctrl+A E Toggle local echo on/off

Ctrl+A H Show a help message

Ctrl+A N Enable/disable newline insertion on carriage return

Ctrl+A S Show current settings

Ctrl+A Z Send suspend (Ctrl+Z) to the running application

Ctrl+A Ctrl+A Send a single Ctrl+A to the running application

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 36

3.10. EDAC protection

3.10.1. Using EDAC protected memory

Some LEON Fault-Tolerant (FT) systems use EDAC protected memory. To enable the memory EDAC during ex-
ecution, GRMON should be started with the -edac switch. Before any application is loaded, the wash command
might be issued to write all RAM memory locations and thereby initialize the EDAC check-sums. If a LEON CPU
is present in the system GRMON will instruct the CPU to clear memory, clearing memory on a CPU-less system
over a slow debug-link can be very time consuming.

$ grmon -edac
...
grmon3> wash
 40000000 8.0MB / 8.0MB [===============>] 100%
 60000000 256.0MB / 256.0MB [===============>] 100%
 Finished washing!

By default wash writes to all EDAC protected writable memory (SRAM, SDRAM, DDR, etc.) areas which has
been detected or forced with a command line switch. start and stop parameters can also be given to wash a range.
Washing memory with EDAC disabled will not generate check bits, however it can be used to clear or set a memory
region even if the memory controller does not implement EDAC.

grmon3> wash 0x40000000 0x41000000
 40000000 16.0MB / 16.0MB [===============>] 100%
 Finished washing!

If the memory controller has support for EDAC with 8-bit wide SRAM memory, the upper part of the memory
will consist of check bits. In this case the wash will only write to the data area (the check bits will automatically be
written by the memory controller). The amount of memory written will be displayed in GRMON. See Section 3.11,
“PROM programming” for more information.

GRMON has support to write checkbits automatically to some PROM technologies when EDAC is enabled. If not
supported the check bits for 32-bit memory must be written by the user with a diagnostic access in the memory
controller registers. For 8-bit PROMs, the check bits can be generated by the mkprom2 utility and included in
the image.

3.10.2. LEON3-FT error injection

All RAM blocks (cache and register-file memory) in LEON3-FT are Single Event Upset (SEU) protected. Error
injection function emulates SEU in LEON3-FT memory blocks and lets the user test the fault-tolerant operation of
LEON3-FT by inserting random bit errors in LEON3-FT memory blocks during program execution. An injected
error flips a randomly chosen memory bit in one of the memory blocks, effectively emulating a SEU. The user
defines error rate and can choose between two error distribution modes:

1. Uniform error distribution mode. The 'ei un NR T' command instructs GRMON to insert NR errors during
the time period of T minutes. After T minutes has expired no more errors are inserted, but the application
will continue its execution.

2. Average error rate mode. With the 'ei av R' command the user selects at which rate errors are injected.
Average error rate is R errors per second. Randomly generated noise is added to every error injection sample.
The time between two samples vary between zero up to two periods depending on the noise, where one
period is 1/R seconds. Errors are inserted during the whole program execution.

GRMON can also perform error correction monitoring and report error injection statistics including number of
detected and injected errors and error coverage, see ei command reference.

Error injection is performed during the run-loop of GRMON, to improve the performance and accuracy other
services in the run-loop should be disabled. For example profiling and UART tunneling should be disabled, and
one should select the fastest debug-link.

grmon> load rtems-tasks
 40000000, .text 113.9kB / 113.9kB [===============>] 100%
 4001c7a0, .data 2.7kB / 2.7kB [===============>] 100%
 Total size: 116.56kB (786.00kbit/s)
 Entry point 0x40000000
 Image /home/daniel/examples/v8/stanford.exe loaded

grmon> ei un 100 1
Error injection enabled
100 errors will be injected during 1.0 min

grmon> ei stat en

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 37

Error injection statistics enabled

grmon> run

...

grmon> ei stat
 itag : 5/ 5 (100.0%) idata: 5/ 18 (27.8%)
 dtag : 1/ 1 (100.0%) ddata: 4/ 22 (18.2%)
 IU RF : 4/ 10 (25.0%)
 FPU RF: 0/ 4 (0.0%)
 Total : 19/ 60 (31.7%)
grmon>

The real time elapsed is always greater than LEON CPU experienced since the LEON is stopped during error
injection. Times and rates given to GRMON are relative the experienced time of the LEON. The time the LEON
is stopped is taken into account by GRMON, however minor differences is to be expected.

3.11. PROM programming

3.11.1. EEPROM

GRMON supports programming of EEPROM attached to the external memory bus, through the eeload command.

Programming checkbits for 32-bit memories will be handled automatically by the memory controller. Program-
ming checkbits automatically for 8-bit memories is not supported. Checkbits for 8-bit memories can be pro-
grammed by creating a section the ELF-file with the checkbits in it, or by loading a binary image with the check-
bits in it separately.

3.11.2. MRAM

GRMON supports programming of MRAM attached to the external memory bus, through the load command with
the option -wprot.

Programming checkbits for 32-bit memories will be handled automatically by the memory controller. Program-
ming checkbits automatically for 8-bit memories is not supported. Checkbits for 8-bit memories can be pro-
grammed by creating a section the ELF-file with the checkbits in it, or by loading a binary image with the check-
bits in it separately.

3.11.3. CFI compatible Flash PROM

GRMON supports programming of CFI compatible flash PROMs attached to the external memory bus, through the
flash command. Flash programming is only supported if the target system contains one of the following memory
controllers MCTRL, FTMCTRL, FTSRCTRL or SSRCTRL. The PROM bus width can be 8-, 16- or 32-bit. It is
imperative that the PROM width in the MCFG1 register correctly reflects the width of the external PROM.

To program 8-bit and 16-bit PROMs, GRMON must be able to do byte (or half-word) accesses to the target system.
To support this either connect with a JTAG debug link or have at least one working SRAM/SDRAM bank and
a Leon CPU available in the target system.

Programming the EDAC checkbits for 8- or 32-bit PROMs is also supported. GRMON will automatically program
the checkbits if EDAC is enabled. EDAC can be enabled by the -edac commandline option, using the mcfg3
command or setting the register bit via the TCL variable mctrl#::mcfg3::pe. When programming 32-bit
EDAC checkbits it is required that no other AHB master is accessing the memory. Other masters can for example
be DMA or SpaceWire RMAP accesses. When programming 8-bit EDAC checkbits, GRMON will ignore any
data that should have been written to the EDAC area of the memory.

There are many different suppliers of CFI devices, and some implements their own command set. The command
set is specified by the CFI query register 14 (MSB) and 13 (LSB). The value for these register can in most cases
be found in the datasheet of the CFI device. GRMON supports the command sets that are listed in Table 3.4,
“Supported CFI command set”.

Table 3.4. Supported CFI command set

Q13 Q14 Description

0x01 0x00 Intel/Sharp Extended Command Set

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 38

Q13 Q14 Description

0x02 0x00 AMD/Fujitsu Standard Command Set

0x03 0x00 Intel Standard Command Set

0x00 0x02 Intel Performance Code Command

Some flash chips provides lock protection to prevent the flash from being accidentally written. The user is required
to actively lock and unlock the flash. Note that the memory controller can disable all write cycles to the flash also,
however GRMON automatically enables PROM write access before the flash is accessed.

The flash device configuration is auto-detected, the information is printed out like in the example below. One can
verify the configuration so that the auto-detection is correct if problems are experienced. The block lock status (if
implement by the flash chip) can be viewed like in the following example:

grmon3> flash
 Manuf. : Intel
 Device : MT28F640J3
 Device ID : 09169e01734a9981
 User ID : ffffffffffffffff

 1 x 8 Mbytes = 8 Mbytes total @ 0x00000000

 CFI information
 Flash family : 1
 Flash size : 64 Mbit
 Erase regions : 1
 Erase blocks : 64
 Write buffer : 32 bytes
 Lock-down : Not supported
 Region 0 : 64 blocks of 128 kbytes

 grmon3> flash status
 Block lock status: U = Unlocked; L = Locked; D = Locked-down
 Block 0 @ 0x00000000 : L
 Block 1 @ 0x00020000 : L
 Block 2 @ 0x00040000 : L
 Block 3 @ 0x00060000 : L
...
 Block 60 @ 0x00780000 : L
 Block 61 @ 0x007a0000 : L
 Block 62 @ 0x007c0000 : L
 Block 63 @ 0x007e0000 : L

A typical command sequence to erase and re-program a flash memory could be:

grmon3> flash unlock all
 Unlock complete

grmon3> flash erase all
 Erase in progress
 Block @ 0x007e0000 : code = 0x80 OK
 Erase complete

grmon3> flash load rom_image.prom
...
grmon3> flash lock all
 Lock complete

3.11.4. SPI memory device

GRMON supports programming of SPI memory devices that are attached to a SPICTRL or SPIMCTRL core. The
flash programming commands are available through the cores' debug drivers. A SPI flash connected to the SPIC-
TRL controller is programmed using 'spi flash', for SPIMCTRL connected devices the 'spim flash' command
is used instead. See the command reference for respective command for the complete syntax, below are some
typical use cases exemplified.

When interacting with a memory device via SPICTRL the driver assumes that the clock scaler settings have been
initialized to attain a frequency that is suitable for the memory device. When interacting with a memory device via
SPIMCTRL all commands are issued with the normal scaler setting unless the alternate scaler has been enabled.

A command sequence to save the original first 32 bytes of data before erasing and programming the SPI memory
device connected via SPICTRL could be:

spi set div16

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 39

spi flash select 1
spi flash dump 0 32 32bytes.srec
spi flash erase
spi flash load romfs.elf

The first command initializes the SPICTRL clock scaler. The second command selects a SPI memory device
configuration and the third command dumps the first 32 bytes of the memory device to the file 32bytes.srec.
The fourth command erases all blocks of the SPI flash. The last command loads the ELF-file romfs.elf into
the device, the addresses are determined by the ELF-file section address.

Below is a command sequence to dump the data of a SPI memory device connected via SPIMCTRL. The first com-
mand tries to auto-detect the type of memory device. If auto-detection is successful GRMON will report the device
selected. The second command dumps the first 128 bytes of the memory device to the file 128bytes.srec.

spim flash detect
spim flash dump 0 128 128bytes.srec

3.12. Automated operation

GRMON can be used to perform automated non-interactive tasks. Some examples are:

• Test suite execution and checking
• Stand-alone memory test with scripted access patterns
• Generate SpaceWire or Ethernet traffic
• Peripheral register access during hardware bring-up without involving a CPU
• Evaluate how a large set of compiler option permutations affect application performance

3.12.1. Tcl commanding during CPU execution

In many situations it is necessary to execute GRMON Tcl commands at the same time as the processor is executing.
For example to monitor a specific register or a memory region of interest. Another use case is to change system
state independent of the processor, such as error injection.

When the target executes, the GRMON terminal is assigned to the target system console and is thus not available
for GRMON shell input. Furthermore, commands such as run and cont return to the user first when execution has
completed, which could be never for a non-behaving program.

Three different methods for executing Tcl commands during target execution are described below:

• Spawn one or more user Tcl shells. The user shells run in their own thread independent of the shell controlling
CPU execution. This is done with the usrsh command.

• Detach GRMON from the target. This means that the application continues running with GRMON no longer
having control over the execution. This is done with the detach and attach commands.

3.12.2. Communication channel between target and monitor

A communication channel between GRMON and the target can be created by sharing memory. Use cases include
when a target produces log or trace data in memory at run-time which is continuously consumed by GRMON
reading out the the data over the debug link. For this to work safely without the need to stop execution, some
arbitration over the data has to be implemented, such as a wait-free software FIFO.

As an example, the target processors could produce log entries into dedicated memory buffers which are monitored
by an exec hook. When new data is available for the consumer, the exec hook schedules an asynchronous bus read
with amem to fetch all new data. When the asynchronous bus read has finished, the exec hook acknowledges that
the data has been consumed so that the buffer can be reused for more produce data. One benefit of using amem is
that multiple buffers can be defined and fetched simultaneously independent of each other.

3.12.3. Test suite driver

GRMON can be used with a driver script for automatic execution of a test suite consisting of self-checking target
applications. For this purpose a script is created which contains multiple load and run commands followed by
system state checking at end of each target execution. State checking could by implemented by checking an appli-
cation return value in a CPU register using the reg command. In case an anomaly is detected by the driver script,
the system state is dumped with commands such as reg, bt, inst and ahb for later inspection. All command output

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 40

is written to a log file specified with the GRMON command line option -log. It is also useful to implement a
time-out mechanism in an exec hook to mitigate against non-terminating applications.

The example below shows a simple test suite driver which uses some of the techniques described in this section
to test the applications named test000.elf, test001.elf and test002.elf. It can be run by issuing

 $ grmon <debuglink> -u -c testsuite.tcl -log testsuite.log
 $ grep FAIL testsuite.log

in the host OS shell. Target state will be dumped in the log file testsuite.log for each test case which returns
nonzero or crashes.

Example 3.3. Test suite driver example

This is testsuite.tcl
set nfail 0

proc dumpstate {} {
 bt; thread info; reg; inst 256; ahb 256; info reg
}

proc testprog {tname} {
 global nfail
 puts "### TEST $tname BEGIN"
 load $tname
 set tstart [clock seconds]
 set results [run]
 set tend [clock seconds]
 puts [format "### Test executed %d seconds" [expr $tend - $tstart]]
 set exec_ok 0
 foreach result $results {
 if {$result == "SIGTERM"} {
 set exec_ok 1
 }
 }
 if {$exec_ok == 1} {
 puts "### PASS: $tname"
 } else {
 incr nfail 1
 puts "### FAIL: $tname ($results)"
 dumpstate
 }
 puts "### TEST $tname END"
}

proc printsummary {} {
 global nfail
 if {0 == $nfail} {
 puts "### SUMMARY: ALL TESTS PASSED"
 } else {
 puts "### SUMMARY: $nfail TEST(S) FAILED"
 }
}

after 2000
testprog test000.elf
testprog test001.elf
testprog test002.elf
printsummary
exit

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 41

4. Graphical user interface

This chapter describes how to operate the Graphical User Interface (GUI) introduced with GRMON3.

4.1. Overview

The GUI provides the user with a fully interactive environment with the possibility to monitor and control different
parts of the system in parallel. All functionality of the GRMON Tcl command line interface are accessible from
the terminal emulator view.

GRMON visualizes hardware state by views includes the following functions:

• Debug-link and system configuration dialog
• Multi-core LEON/NOEL-V and OS threads execution status and backtrace view
• Disassembly view with symbol and breakpoint information
• Memory, CPU register and I/O register inspection and edit views
• Optimized SPARC/LEON and RISC-V/NOEL-V IU register view
• Basic execution control such as single-stepping, continuing, breaking
• C/C++ source level debugging including source code view, stepping and line breakpoints
• Variables and expressions views.
• Application launch dialog
• Tcl terminal views with history, tab-completion, etc.
• Application terminals via UART forwarding
• GRLIB SOC system hardware overview
• Breakpoints view showing breakpoint and watchpoint information

Users which are already familiar with the GRMON CLI can use the GUI as a drop-in replacement with the added
interactive functionality.

Figure 4.1. The GRMON graphical user interface

4.2. Starting GRMON GUI

GRMON is started by executing the same grmon or grmon.exe binary as the CLI version. The switches described
in Section 3.2.3, “General options” determine the start-up operation.

If GRMON is started without any debug link command line options, then GRMON will start the GUI and open a
dialog window which allows for selecting debug link. This is described in Section 4.3, “Connect to target”.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 42

$ grmon

Specifying a debug link along with the -gui option will skip the dialog for selecting debug link. In this case the
GUI will start and the connection will be done according to the full command line. Below is an example of starting
the GUI and connecting to a system using the FTDI USB serial interface:

$ grmon -gui -ftdi

It is also possible to start the GUI from the command line interface by issuing the gui command. This is useful if
GRMON is first operated as a command line tool but the user selects to continue debugging using the graphical
representation of the system. The on-going debug session and hardware state will not be altered but can be operated
and inspected from the GUI.

The GUI will connect to GRMON through an available TCP port chosen randomly, but this can be overridden by
setting a port number with the -guiport option. Example:

$ grmon -gui -ftdi -guiport 42069

4.3. Connect to target

The System Configurations dialog is used to connect to the target system. It allows for selecting the debug link
and parameters which system initialization. See Figure 4.2.

Figure 4.2. System Configurations dialog. The Debug Link tab is selected and Advanced Parameters are
displayed.

The System Configurations is split into several tabs with group related settings. Here follows a brief summary of
each tab. Please browse the tabs to discover relevant settings.

• Debug Link - Choose debug link and set parameters
• System - Options related to initialization performed by GRMON when connecting to the target

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 43

• Operation - Controls how GRMON interacts with the target after connect
• Memory - Options related to memory controllers
• Misc - Driver specific options which need to be determined at connect
• GUI - Options related to how the GUI views are synchronized with the current target state

4.3.1. Debug link

The debug link to use is selected in the Choose debug link drop down menu in the Debug Link tab. as illustrated
in Figure 4.2. When a debug link has been selected, parameters specific for that debug link are displayed.

All debug links supported by GRMON4 are displayed in the drop down menu, including those which may not be
available on the host and target system. For more information on the GRMON4 debug links and their individual
options, see Chapter 5, Debug link.

4.3.2. Options

The options presented in System Configurations are equivalent to the command-line options available in GRMON4
CLI. Clicking on the "?" icon next to an option will open the option specific documentation. Target initialization
and system related options can be activated in the different tabs of the connection dialog. This is done by clicking
on the button to the left of the parameter name, or on the name itself. A selected parameter is marked with a button
with an "X" and a different background color.

Figure 4.3. A selected parameter

Figure 4.4. A non-selected parameter

The most common GRMON options are always displayed in the respective tab. More GRMON options can be
displayed by clicking the Show Advanced Parameters... button.

4.3.3. Argument contribution

When a parameter or setting is selected, the corresponding command line argument is shown in the Argument
contribution box. All selected parameters and settings from the current tab is shown in the box. Switching tabs
will show different argument contributions.

Note that the debug link always contributes with an argument to the Argument contribution box. For example
choosing the USB debug link will add the argument -usb.

4.3.4. Configurations

Multiple system configurations can be used and managed in the connection dialog. This is useful for example when
the same host is used to connect to many different target systems. Another use case for the system configurations
is as a convenient way for connecting to the same target, but with different initialization options.

To create a new System Configuration, either click the new configuration button , or clone the current config-

uration by clicking the copy button . Delete a configuration using the delete button . These options are also
available from the context menu of the configuration in the listing on the left of the dialog.

When a configuration is modified, the two buttons Revert and Apply become enabled. Pressing the Apply button
stores the configuration, and Revert will undo any changes since last storage.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 44

4.3.5. Connect

When the System Configuration is done, press the Connect to system button.

4.4. Launch configurations

A Launch configuration is a combination of application images and custom system preparations for images. In
its most basic form a launch configuration consists of a single application image selected by the user which is
loaded and started.

4.4.1. Target image setup

Once connected to a system, an image can be uploaded to the system. To setup the image and related settings,

click the Target Image Configuration button in the main tool bar, or in the main menu under File > Launch
Target Image...

Figure 4.5. The Target Image Configuration dialog

A Target Image Launch Configuration consists of one or several application images which are associated to dif-
ferent CPUs. There are three different types of image launch configurations:

• Single Core Image Launch
• SMP Target Image Launch
• AMP Target Image Launch

An Single Core Target Image Launch also provides a simple interface to setup the application. This image launch
type is appropriate for applications that will use a single core. In the Single Core Target Image Launch, properties
are always assigned to the first cpu.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 45

An SMP Target Image Launch provides an interface to setup the application for multiple cores. This image launch
type is appropriate for applications based on an SMP operating system, such as RTEMS SMP or VxWorks SMP.
In the SMP Target Image Launch, properties are always assigned to all CPUs.

In an AMP Target Image Launch, the user has full flexibility to assign launch properties for each CPU. This is
useful when different operating system instances are executed on different processors or sets of processors.

CPUs are added or removed by the user to match the target system. Each setting has a value and some of them can
be individually associated with one or more CPUs. For instance a breakpoint and symbol file might be associated
with CPU1, but not CPU2.

Associate a setting with a CPU by clicking the cell that intersect the setting and the CPU and tick the check box.
Untick the check-box to reverse the association. Some settings can occur more than one time for the same CPU (i.e.
Symbol file), meaning that several symbol files can be supplied. If an incompatible or unsupported combination
of settings is associated to a CPU, then the background of the cells for the settings are set to bright red.

To edit the value of a setting click the cell in the Value column. Different settings are edited in different ways. If
the cell after clicking it shows a button with "...", this button opens a dialog to change the value. For example the
Image setting is edited by choosing a file from a dialog.

If any of the settings are invalid, then the dialog shows an error message at the top, and the button Launch Target
Image are disabled. Once the invalid settings are corrected, the button becomes enabled and the Target Image
can be launched.

A Target Image Configuration can be launched automatically at connect to the system. This can be selected in the
System configuration dialog option named Launch Target Image Configuration when connected.

4.4.2. Launch properties

A simple launch configuration typically consists of only the Image and Run Mode properties. Additional properties
can be added as required. The following list describes all available properties.

Properties:

Image

File name of an image file to load. More than one image can be added and each image can be assigned
to any number of CPUs.

Command: load
Verify Image

Verify each image after load to memory. The property is not CPU specific. Only one Verify Image property
can be specified.

Command: verify
Symbol file

File name of a symbol file to load. The symbols will be loaded into GRMON but no content from the file
will be loaded into the target memory. More than one image can be added and each image can be assigned
to any number of CPUs.

Command: symbols
Run Mode

• Run - Reset GRMON drivers and start the execution from the beginning of the application.
• Go - Start the execution from the beginning of the application with the current system CPU state.

At most one Run Mode can be specified. The recommended mode is Run for most applications. Go is useful
when the application itself is initializing the target, such as a boot loader. The property is not CPU specific.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 46

Note that it is also possible to omit the Run Mode property. In that case, the application could be started
with the run command in a shell.

Command: run, go
Break at Application

Inserts a breakpoint at application start. The breakpoint location is OS dependent, for example main() in a
bare-metal application and Init() in an RTEMS application. At most one Break at Application property
can be specified.

Command: bp
Break at Entry

Inserts a breakpoint at the entry point of the loaded image. At most one Break at Entry property can be
specified.

Command: bp
Breakpoint

Inserts a software (soft) breakpoint. The Value field can be either an address, symbol name or
filename:linenumber. More than one soft breakpoint can be added and each can be assigned to any number
of CPUs.

Command: bp soft
HW Breakpoint

Inserts a hardware (hard) breakpoint. The Value field can be either an address, symbol name or
filename:linenumber. More than one hard breakpoint can be added and each can be assigned to any number
of CPUs. Note that the number of available hardware breakpoints is target specific.

Command: bp hard
R/W Watchpoint, Read Watchpoint, Write Watchpoint

Inserts a read/write, read or write hardware watchpoint. The Value field can be either an address, symbol
name or filename:linenumber. More than one hard breakpoint can be added and each can be assigned to
any number of CPUs.

Command: bp watch

Command: bp watch -read

Command: bp watch -write
Wash Memory

Clear all or part of memory before loading images. Multiple ranges can be defined by adding more Wash
Memory properties. The property is not CPU specific.

Command: wash
Stack Pointer, Entry point

Override stack pointer or entry point setting. An address or symbol can be specified. At most one stack
pointer per CPU can be assigned. At most one entry point per CPU can be assigned.

Command: stack

Command: ep
dtb

File name of a dtb file to load.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 47

Command: dtb

4.5. Perspectives

There are four different perspectives and they have the same layout and contain the same views by default, see
Figure 4.6, “Default perspective”. You can add, remove and reposition any views as you like and the changes
will be saved to the active persective automatically, so it can be reused the next session. The perspectives can be

opened with the following buttons . They can also be opened from Window > Open Perspective. Each
perspective can be reset to its default by clicking Window -> Reset Perspective.

Figure 4.6. Default perspective

4.6. C/C++ source level debugging

The GUI includes the following C/C++ debugging functionality.

• Source editor for displaying source code
• Mixed mode in the Disassembly view for showing both source code and assembly instructions
• Source code stepping
• Breakpoints on source lines
• Executables view for inspecting files contained in an executable
• Outline view for checking all symbols in a source file
• Variables view to inspect variables of the current stackframe
• Expressions view to monitor user selected symbols

4.6.1. GDB interface

The GUI can also be used simultaneously with GDB as described in Section 3.7, “GDB interface”. When GDB
has connected to GRMON, GDB is in control of the debugging. Similar to the command line interface it is not

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 48

possible to alter processor state or breakpoints without destroying GDB's internal representation. Doing so will
leave GDB in an undefined state and cause various issues.

When GDB has stopped the execution the GUI can be used to view all hardware state. It is also possible to update
hardware state not specifically controlled by GDB such as I/O registers.

The GUI will by default gain focus when GDB stops execution. To prevent this, click the drop down menu in the
Debug view, choose Preferences. Click Run/Debug and uncheck Activate the workbench when a breakpoint is hit
and Active the debug view when a breakpoint is hit.

4.7. Views

GRMON4 GUI provides different views for displaying and managing the target system state. CPU, IO Registers,
System, Router, and Messages view are customized for GRLIB/LEON/NOEL-V systems. Other views are derived
from the Eclipse framework.

4.7.1. Debug View

Debug view shows all CPUs and threads, called contexts, of the connected system. This view is central, as the
selected context is used as input to many of the views: Breakpoints, CPU, Disassembly, Expressions, Outline,
Registers, Source, Variables. Furthermore, if a stack frame is selected, it will be used as input to the mentioned
views, otherwise the top frame is used.

Debug View can be opened from the main menu under Window > Show View > Debug.

Figure 4.7. Here we see a system with two CPUs and two RTEMS threads. The top stack frame of CPU0 is selected
and will therefore be used as input for the views mentioned above.

4.7.2. System Information View

This view shows a system overview with information about the IP-cores. The cores are listed with name, vendor,
function, bus connection, address range when relevant and the driver info available.

The information shown is retrieved by GRMON from the system. If any changes are expected in the available
IP-cores, or their related information, all the information can be retrieved anew from the system by pressing the
Refresh button.

As default, the view shows only basic information for the IP-cores. Press the Show Details button in the toolbar
to toggle between showing basic and all information.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 49

Figure 4.8. The system information view

4.7.3. IO Registers View

The IO Registers view allows users to inspect and modify I/O registers of AMBA devices available on the target
hardware. Individual registers may be expanded into bit-fields which are presented as bit-masks or numbers. It
functions much like the Eclipse Registers view, but is optimized for GRLIB SoC systems.

Registers are grouped under the AMBA device it belongs to. A device may have registers from both APB and
AHB I/O space. The view presents the same information as the info CLI command.

The register view adapts to the register information available in GRMON. Users can add registers and bit-field
declarations for custom IP-cores by means of Tcl drivers as described in Appendix C, Tcl API. Registers unknown
to GRMON will not appear in the view.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 50

Figure 4.9. The I/O registers view

Register values that are changed since last update are highlighted with yellow. When expanding the register nodes
in the tree of the view, the left column is auto expanded to fit the content.

For bit registers consisting of only one bit, a flag, the value can be toggled by clicking the value, and then checking
or un-checking the check-box.

By default, the most common registers are presented in the view. However all registers known to GRMON may
be presented by pressing the icon on the right top corner. Note that doing so may change the state of the hardware
since reading certain registers may affect the state of the hardware.

Values for registers are retrieved only when they are to be shown in the view. Unless another view or operation
requires the values of the registers to be loaded, the values are not retrieved until they are visible in the view.

The register values are updated from the target hardware because of a few different reason.

• Edit - when the value of a register changes as result of an edit
• Suspend - when a process is suspended, the visible registers are updated
• Refresh - the values can be re-fetched from the target hardware by pressing the refresh button, or by using

the periodic refresh.

Note that changed values will not be highlighted if the register values are updated via refresh, either by clicking
the refresh button or by periodic refreshes.

Click the arrow down icon in the toolbar to access the view pull down menu. Under the Layout item are different
options on how to customize the appearance of the view. For instance which columns to display can be specified
under Select Columns....

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 51

Figure 4.10. The I/O registers menu

4.7.4. CPU Registers View

The CPU Registers view shows a selection of the CPU registers in a fixed and compact format. Which CPU
registers are shown for, depends on what CPU is relevant for the selected context in the Debug view.

Values are retrieved for the registers in two situations; either the register values is changed by a known mechanism
such as editing the value, or when the CPU execution is suspended. Values that have changed since last retrieval
are highlighted with a yellow background.

Figure 4.11. CPU registers view. The figure to the left shows registers for a LEON system and the figure to the
right for an RV64 system.

4.7.4.1. Pinning

The CPU Registers view can be pinned to a context. When the view is pinned it continues to show registers for
the same context even when the selection changes in the debug view. The view then shows the pinned CPU name
in the top of the view, e.g. “cpu0”.

4.7.4.2. Context menu

Right click on any register value in the view to show the context menu (not relevant for the disassembly). If the
text in the register value box is a valid hexadecimal value the two commands >>Open address in Memory view<<
and >>Show disassembly at address<< will be available.
Open address in Memory view

Shows the Memory view and adds a memory monitor at the selected register value used as an address. The user
must select the visualization, e.g. “Hex Integer”.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 52

Show disassembly at address

If no disassembly editors are open one will be opened, otherwise any opened will be used. The editor will focus
on the selected register value used as an address.

4.7.5. Registers View

The Registers view shows CPU registers for the selected context in the Debug view. The difference to the CPU
view is that the Registers shows a larger set of the registers, such as floating point, mmu and cache registers,
whereas the CPU view only show the most common registers.

Values are retrieved for the registers in two situations; either the register values is changed by a known mechanism
such as editing the value, or when the CPU execution is suspended. Values that have changed since last retrieval
are highlighted with a yellow background.

Figure 4.12. Registers for a LEON based system. We see that o7 was recently changed.

The value of a register can be changed by clicking on its value in the Hex or Decimal tab. Press enter for the
change to take effect.

4.7.5.1. Context menu

Right click on any register value in the view to show the context menu (not relevant for the disassembly). This
allows the user to >>Watch in Expressions<<.

Watch in Expressions

Creates an Expression to watch from the selected register.

4.7.6. Router View

The Router view displays the general state of the Spacewire router of the connected board, if there is one. There
are two tabs, Status, which displays the status of all the ports, including the configuration port, and Error, which
shows any active errors. The values can be refreshed in different ways: manual refresh via Refresh , refresh
whenever a CPU becomes suspended, Refresh on CPU suspension , or periodic refresh every x seconds, where
x can be chosen between 0.5-30, Periodic refresh . Errors can be cleared with Clear errors

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 53

Figure 4.13. Router view

The status tab of the Router view, for a gr740 system.

4.7.6.1. Status tab

The state of the configuration port (port 0) is on the top of the view and shows:

Self addressing Enabled or disabled.

Static routing Enabled or disabled.

Timers available Enabled or disabled.

Input port The number of the last port from which a packet was routed to the configuration port.

Initialization
clock divisor

Clock divisor value used by all the SpaceWire links to generate the 10 Mbit/s rate during
initialization.

Errors How many errors are currently active for any of the ports, including the configuration port.
For possible errors, see Configuration port errors and Port errors.

The bottom shows the state of the remaining ports:

Type SPW, AMBA or FIFO.

Link state Error reset, Error wait, Ready, Started, Connecting or Run state.

Active status Active or inactive.

Input port This field shows the number of the input port for either the currently ongoing packet transfer
on this port (if RTR.PSTS.PB = 1), or for the last packet transfer on this port (if RTR.PSTS.PB
= 0).

Run-state clock
divisor

Clock divisor value used for the corresponding port’s link interface when in run-state. Field
is only available for the SpaceWire ports.

Spill status Active or inactive.

Link-start-on-
request

Enabled or disabled. Only for SPW ports.

Spill-if-not-ready Enabled or disabled

Static routing Enabled or disabled

For the definition of these items, please consult grlib or your device manual.

4.7.6.2. Error tab

Possible errors for the configuration port:

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 54

Configuration port errors

• Early EOP
• Early EEP
• Packet type error
• Header CRC error
• Protocol ID error
• Error code
• SPW PnP error code

Possible errors for the other ports:

Port errors

• Timeout spill
• Memory error
• Invalid address error
• Credit error
• Escape error
• Disconnect error
• Parity error

For the definition of these errors, please consult grlib or your device manual.

4.7.7. Source Editor

The Source editor shows the source file that the current stack frame in the Debug view points to. If the source
file can't be found, there will be options to locate the file, edit the source lookup path or to show the Disassembly
view instead. The default source lookup path can be changed from Preferences, which can be opened from the
Window menu, under Source Lookup
Source editor can not be opened by itself. It will open as soon as an executable is loaded and it can be opened by
double-clicking a file in the Executables view.

Line breakpoints can be placed by double-clicking on the left margin or right-click and Toggle Breakpoint. The
breakpoint will be placed on the active context in the Debug view. If the system context is selected, the breakpoint
will be placed on all its CPUs except RTAs. Add breakpoint adds the option to place a hardware breakpoint and
has an option to change the default CPU scope. Watchpoints can be added from the Source editor from the right-
click menu and Add watchpoint. If a symbol is already selected, its name will be copied into the Watchpoint
property page.

Symbols can be watched by right-clicking and choosing Add Watch Expression. If a symbol is already selected,
then that symbol will be suggested to watch. The symbol will be opened in the Expressions view. Please read
more about it in ref.

The Source editor has some limited editing functionality, but please be aware that you can't compile your source
code with the GUI. Right-clicking and choosing Preferences opens up the Preferences menu, where you have
some basic content assist options, save actions, theming and code formatting options.

Quick Outline can be used to see all symbols in the current file. It can be opened from the right-click menu and
Quick Outline.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 55

Figure 4.14. The Source editor showing stanford.c, with execution stopped at row 1037. A line breakpoint can
be seen at row 1035.

Source stepping

There are several ways of source stepping through the code, and they will be described in this section.

Run to line places an internal breakpoint at the target line and does a cont. To use it, right-click on the target line
in the editor and choose Run to Line.

Step into selection is similar to the Run to Line command, with the difference that it is implemented by stepping.
To use it, right-click on the target line in the editor and choose Step into Selection.

Step into(F5) steps into the next source line, regardless if the line is in another function or not. Step over(F6) on
the other hand, does not step into functions.

Step out(F7) will place an internal breakpoint at the return address of the current function and do a cont.

Source stepping can be turned off by clicking Instruction stepping mode in the Debug view. This will force
Step into and Step over to step just one instruction. Be aware that Step out will still work as normal, since it does
not depend on source information: it only needs the return address, which is stored in a register.

4.7.8. Terminals View

Terminals can be opened to interact with GRMON or to display the output from an application on the target system.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 56

Figure 4.15. The terminals view showing a GRMON terminal

Opening a new terminal

To open a new terminal tab to either GRMON or an application on the target system, click the new terminal button

 in the view's toolbar. A dialog will ask for the type of the terminal. This can be either GRMON Terminal or
Application terminal. The GRMON terminal has no settings that can be made.

When opening an Application terminal the dialog ask for what UART of the system to use. Already busy UARTs
will be grayed out and not selectable.

Figure 4.16. Opening a new terminal view

To open a whole new Terminals View click the new Terminal View button in the view's toolbar.

Control characters in GRMON Terminal

The terminal accepts control characters such as Ctrl+C to break execution, and tab for auto completion, among
many. Other examples are arrow up and down to access previous entries.

This also means that copy-paste can't be done via keyboard commands, and is only available from the context
menu of the terminal tab.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 57

For more information visit Eclipse's TM Terminal site [http://www.eclipse.org/tm/doc/index.php].

4.7.9. Memory View

The Memory View can be used to monitor and manipulate memory in the target system. It provides flexibility by
allowing different presentations (renderings) of target memory area.

Memory View is available from the main menu under Window > Show View > Memory. When adding a new
memory monitor, a dialog is displayed where the target address is specified.

Figure 4.17. Opening a new message view

Memory content is modified by double-clicking a cell and typing in a new value. The new value is written to the
target when enter is pressed.

Figure 4.18. The memory view

The Memory View can be used to access any addressable locations as seen by the current debug link. For example
IO registers in raw format. It is possible to specify the memory content presentation, for example ASCII string,
by adding a new rendering from the New Renderings... tab. Endian can also be selected in the right-click context
menu on a cell.

The Memory View is updated automatically at certain system events, for example when execution stops, or when
a breakpoint is hit and after single-step by the user. This behavior can be disabled as described in Section 4.8.1,
“Memory view update”.

Watchpoints can be created from a memory cell by right-clicking and choosing Add Watchpoint.

Even though GRMON GUI is CPU and context aware, the Memory View is global and always operate on physical
addresses: no MMU translation is performed by the Memory View.

4.7.10. Breakpoints View

Breakpoints View keeps track of all breakpoints and watchpoints, regardless if they were created in the GUI or
from the terminal. Here the user can modify or remove existing breakpoints and watchpoints and create new ones.
To open the view, go to Window > Show View > Breakpoints.

frontgrade.com/gaisler
http://www.eclipse.org/tm/doc/index.php
http://www.eclipse.org/tm/doc/index.php

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 58

Figure 4.19. Breakpoints view

In Figure 4.19, “Breakpoints view” we see a soft breakpoint on line 1000 in stanford.c , a hard breakpoint at

0x40000000 , a write watchpoint on the function main . There are two other watchpoint types, read , and

read/write . Selecting a breakpoint or watchpoint allows us to see its scope, which in the example above is cpu1.

A breakpoint/watchpoint can be removed by clicking . Clicking removes all.

Clicking disables all existing breakpoints/watchpoints, as well as any that are created, and they can not be
enabled again until pushing the button again. This is useful if you temporarily want to skip all breakpoints/watch-
points.

Clicking opens up a drop-down menu.

Figure 4.20. Drop down menu

Group By sorts the breakpoints in different ways, for instance by Breakpoint Type or Scope.

Add Address or Symbol Breakpoint opens up a breakpoint property page where the user can choose breakpoint type,
either Regular (soft) or Hard, what address or symbol to place the breakpoint on and whether the breakpoint should
be disabled or not. There is also an address mask which becomes available when choosing a Hard breakpoint.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 59

Figure 4.21. Breakpoint property page

Add Watchpoint opens up a watchpoint property page, which is similar to the breakpoint property page explained
above, with the difference that you cannot choose the breakpoint type (watchpoints are always Hard type) and you
can choose whether the watchpoint should be read, write or both.

Figure 4.22. Watchpoint property page

Add Line breakpoint opens up a line breakpoint property page, where you choose breakpoint type, file and linenum-
ber.

All breakpoints have a property called Scope, which describes which CPUs it is placed on. The default scope is
based on the active context in the Debug view. If the system context is selected, the default scope will be on all
CPUs except RTAs. If a CPU is selected, only that CPU will be included in the scope by default. It is equivalent
to specifying a CPU when placing a breakpoint/watchpoint in the terminal, i.e. putting a watchpoint on main with

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 60

scope cpu0 has the same effect as typing "bp watch main cpu0" in the terminal. When creating a breakpoint, the
scope can be changed via the breakpoint property page.

Figure 4.23. Scope page

Right-clicking in the Breakpoints view without selecting a breakpoint opens up a context menu.

Figure 4.24. Breakpoints view context menu

Here the user can save any breakpoint to a .bkpt file by Export Breakpoints and import it at some other time with
Import Breakpoints.

Right-clicking on a breakpoint gives the option to open up its address in the Disassembly view as well as in the
Memory view.

4.7.11. Disassembly View

Disassembly View provides a convenient method to inspect the instruction memory of an application. This view
has support for adding and removing breakpoints on a target address. It also provides, in combination with the CPU
Registers View, a powerful method for inspecting how CPU state is updated on instruction level when stepping.

Disassembly View is available from the main menu under Window > Show View > Other > Debug > Disassembly.

The currently highlighted row represents the instruction which is to be issued when execution continues. Execution
history is also highlighted in shaded color to represent instructions which have been recently executed. The right-
most column of the Disassembly View describes the name of the function which the instruction belongs to, together
with the offset from the function symbol.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 61

Figure 4.25. The disassembly view

Mixed mode can be toggled by pressing the Show Source . This mode shows both assembly instructions and
the associated source code, if the source code is available. This mode is toggled on by default.

Disassembly View is updated each time execution stops, for example when stepping or a breakpoint. Methods for
source stepping include:

• Step into the next line with the toolbar button named Step Into, also available via the F5 short key. This
stepping variant steps into functions.

• Step over the next line with the toolbar button named Step Over, also available via the F6 short key. This
stepping variant steps over functions.

• Step out to the previous function with the toolbar button named Step Out, also available via the F7 short key.

Methods for instruction stepping include:

• Single-step using the step command in a Tcl terminal.
• Toggle instruction step mode on with Instruction Stepping Mode in the Debug view and click either the Step

Into (F5), or Step Over tool button (F6). Note that Step Out is unchanged in instruction step mode.

A custom memory location can be disassembled by typing the address or symbol name in the box at the top of
the Disassembly View labeled Enter location here. It can be used to disassemble instructions not related to the
current CPU program counter.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 62

Figure 4.26. Disassembly view mixed mode

The Disassembly View is context aware and will disassemble virtual memory as determined by the current CPU
or thread context.

Figure 4.27. Disassembly view context menu

Right-clicking on an address opens a context menu, where the user can add a breakpoint. Choosing Toggle Break-
point adds a soft breakpoint on the target address, this can also be achieved by double-clicking on the address. The
breakpoint will be placed on the active context in the Debug view. If the system context is selected, the breakpoint
will be placed on all its CPUs, except RTAs. Clicking instead on Add Breakpoint, or Ctrl+double-click opens a
breakpoint property page with more breakpoint options, see Figure 4.21, “Breakpoint property page” in Break-
points view. Existing breakpoints can be removed by double-clicking on them and enabling/disabling a breakpoint
can be done by Shift+double-click or from the context menu.

Another useful feature in the context menu is Show Opcodes, which when clicked, creates a column to the right
of the address column and displays the op code of the respective address.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 63

In the context menu you have the option of not displaying the address column with Show Addresses and also the
option to display the function offsets with Show Function Offsets. This will be displayed in a column to the right
of the addresses, however this offset is already displayed in the column to the far right, regardless.

Figure 4.28. Breakpoints and op codes

In Figure 4.28, “Breakpoints and op codes” the op codes are enabled and can be seen in red. We also see two
breakpoints: a hard breakpoint at 0x40001258 and a soft breakpoint at 0x40001264.

4.7.12. Messages View

The Messages view displays messages from the application that may be helpful for the user. The messages ranges
from critical errors to less critical information of helpful nature. Messages can arise from many different situations,
such when running a target image, or changing a setting.

Messages are sorted by the date they were created, showing newer messages on the top of the list.

To see the full message with all information, double-click the message in the view. This will open a dialog with
all information available.

Copy messages to the clipboard by selecting one or many and press the Copy button or press the copy command
keyboard combination.

Remove one or more messages by selecting them and pressing the Remove button or press delete on the

keyboard. Remove all messages by clicking the Remove All button .

Figure 4.29. The message view

4.7.13. Executables View

Whenever an executable is loaded into GRMON, it will also appear in the Executables View, where the user
can inspect its file contents. Double-clicking a file will open it in the Source Editor. It is also possible to add
executables right into the Executables View without having to load them into GRMON.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 64

Binaries built with DWARF5 are not supported.

Executables View can be opened from the main menu under Window > Show View > Executables.

Figure 4.30. The executables view showing two loaded executables and one of their file contents.

4.7.14. Outline View

The Outline View shows all symbols of the currently active file in the Source Editor. Clicking a symbol will give
the Source Editor focus to it.

Outline View can be opened from the main menu under Window > Show View > Outline View.

Figure 4.31. The outline view showing the symbols of the currently active file, stanford.c in this case.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 65

4.7.15. Variables View

The Variables View shows local symbols of the currently active stack frame. The three different columns display
name, type and value of the variable, respectively, and the value can be changed by the user. The currently selected
variable will display size and also address or register, if applicable, in the lower part of the view.

Variables View can be opened from the main menu under Window > Show View > Variables View.

Figure 4.32. The Variables view showing the symbols of the currently active stack frame. Here, month, an uint32_t
is selected, which belongs to the time variable, which is of rtems_time_of_day type. We see that month has value
0xffff88a1, is 4 bytes, has an offset of 4 from the parent type and resides at address 0x4002dbe0.

Figure 4.33. Same example as the previous figure. Now argument is selected, which is of rtems_task_argument
type, has value 0x4002bef4, 4 bytes in size and resides in the i0 register.

4.7.16. Expressions View

In the Expressions view, the user can choose variables to keep track of (called Expressions), making it a com-
plement to the Variables view, which only keeps track of local stack variables. The easiest way of creating an
Expression is to find the target variable in the Source Editor, right-click and choose Add Watch Expression. It is

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 66

also possible to add Expressions with the Create a new watch expression button. The values of expressions can
be changed by the user. Keep in mind that an expression might not be able to be resolved if it goes out of scope.

Expressions View can be opened from the main menu under Window > Show View > Expressions.

Figure 4.34. The expressions view showing three variables, of which one is out of scope.

4.8. Target communication

4.8.1. Memory view update

GRMON4 GUI normally updates the memory views when target execution stops, for example on a breakpoint
or after single step. This can generate a large amount of traffic on a slow debug link in combination with large
memory views. To save bandwidth on the debug link, there is an option named Disable auto-updating memory
view after execution, available in the connection dialog GUI tab. The corresponding command-line option is -
tcf-nomemupdate.

4.9. Limitations

This section describes limitation of GRMON4 GUI and areas of incompatibility with GRMON4 CLI.

C/C++ debugging

The C/C++ features works best with unoptimized (O0) code. With optimized code, symbols might be op-
timized away such that they can't be inspected.

Name mangling can occur for C++ code.

DWARF5 is not fully supported. The Executables View can not parse binaries built with DWARF5.

4.10. Troubleshooting the GUI

This section lists some useful tips for troubleshooting the GUI.

The GUI doesn't start

Check the log for errors. On Linux it is located in ~/.grmon-4.0/workspace/.metadata/.log
and in $APPDATA$/Frontgrade Gaisler/GRMON/4.0/workspace/.metadata/.log for
Windows.

Clear the workspace folder and try again. This folder is located in ~/.grmon-4.0/workspace/ for
Linux and $APPDATA$/Frontgrade Gaisler/GRMON/4.0/workspace for Windows.

Check your Java version. Java 11 (64-bit) or later is required.

The following error is displayed when trying to launch the GUI: "The configuration area at '/path-to-workspace/
config' could not be created. Please choose a writable location using the '-configuration' command line option."

This error message is generated by the Eclipse launcher that launches the GUI, if a configuration folder
can not be created. Please disregard the -configuration option; it is an option to the Eclipse launcher and
not an option to GRMON.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 67

To resolve the error, open up share/grmon/gui<BITS>/configuration/config.ini and
change 'osgi.configuration.area' into whatever folder you like.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 68

5. Debug link

GRMON supports several different links to communicate with the target board. However all of the links may not
be supported by the target board. Refer to the board user manual to see which links that are supported. There are
also boards that have built-in adapters.

Refer to the board user manual to see which links that are supported.

The default communication link between GRMON and the target system is the host’s serial port connected to a
serial debug interface (AHBUART) of the target system. Connecting using any of the other supported link can
be performed by using the switches listed below. More switches that may affect the connection are listed at each
subsection.

-altjtag Connect to the target system using Altera Blaster cable (USB or parallel).

-eth Connect to the target system using Ethernet. Requires the EDCL core to be present in
the target system.

-digilent Connect to the target system Digilent HS1/HS2/HS3/SMT2/SMT3 cable.

-ftdi Connect to the target system using a JTAG cable based on a FTDI chip.

-gresb Connect to the target system through the GRESB bridge. The target needs a SpW core
with RMAP.

-jtag Connect to the target system the JTAG Debug Link using Xilinx Parallel Cable III or IV.

-usb Connect to the target system using the USB debug link. Requires the GRUSB_DCL core
to be present in the target.

-xilusb Connect to the target system using a Xilinx Platform USB cable.

-uart <device> Connect to the target system using a serial cable.

-user Connect to the target system using a custom user defined library.

8-/16-bit access to the target system is only supported by the JTAG debug links, all other interfaces access sub-
words using read-modify-write. All links supports 32-bit accesses. 8-bit access is generally not needed. An exam-
ple of when it is needed is when programming a 8 or 16-bit flash memory on a target system without a LEON
CPU available. Another example is when one is trying to access cores that have byte-registers, for example the
CAN_OC core, but almost all GRLIB cores have word-registers and can be accessed by any debug link.

The speed of the debug links affects the performance of GRMON. It is most noticeable when loading large appli-
cations, for example Linux or VxWorks. Another case when the speed of the link is important is during profiling,
a faster link will increase the number of samples. See Table 5.1 for a list of estimated speed of the debug links.

Table 5.1. Estimated debug link application download speed

Name Estimated speed

UART ~100 kbit/s

JTAG (Parallel port) ~200 kbit/s

JTAG (USB) ~1 Mbit/s

GRESB ~25 Mbit/s

USB ~30 Mbit/s

Ethernet ~35 Mbit/s

5.1. UART debug link

To attach GRMON using the AHBUART debug link, first connect a cable between the UART connectors on target
board and the host system. Then power-up and reset the target board and start GRMON with the -uart option.
Use the -uart <device> option in case the target is not connected to the first UART port of your host. On
some hosts, it might be necessary to lower the baud rate in order to achieve a stable connection to the target. In
this case, use the -baud switch with the 57600 or 38400 options. Below is a list of start-up switches applicable
for the AHBUART debug link.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 69

Extra options for UART debug link:

-uart <device>
By default, GRMON communicates with the target using the first uart port of the host. This can be over-
ridden by specifying an alternative device. Device names depend on the host operating system. On Linux
systems serial devices are named as /dev/tty## and on Windows they are named \\.\com#.

-baud <baudrate>
Use baud rate for the DSU serial link. By default, 115200 baud is used. Possible baud rates are 9600, 19200,
38400, 57600, 115200, 230400, 460800. Rates above 115200 need special uart hardware on both host and
target.

When using an USB-to-Serial adapter based on FTDI chips, there is a latency timer that will be a bottleneck,
especially when reading small amounts of data very often. For example when the I/O Forwarding is enabled or
collecting profiling information. In Linux this timer will be adjusted automatically by GRMON, but in Windows
it must be set manually. Open the Windows "Device Manager" and locate the serial port device. Right-click on
the device and select properties. In the tab "Port Settings", push the "Advanced" button. Set the "Latency Timer"
to lowest possible value and press the button "OK".

5.2. Ethernet debug link

If the target system includes a GRETH core with EDCL enabled then GRMON can connect to the system using
Ethernet. The default network parameters can be set through additional switches.

Extra options for Ethernet:

-eth [<ipnum>][:<port>]
Use the Ethernet connection and optionally use ipnum for the target system IP number and/or :port to
select which UDP port to use. Default IP address is 192.168.0.51 and the port number is random.

-edclmem <kB>
The EDCL hardware can be configured with different buffer size. Use this option to force the buffer size (in
KB) used by GRMON during EDCL debug-link communication. By default the GRMON tries to autodetect
the best value. Valid options are: 1, 2, 4, 8, 16, 32, 64.

-edclus <us>
Increase the EDCL timeout before resending a packet. Use this option if you have a large network delays.

The default IP address of the EDCL is normally determined at synthesis time. The IP address can be changed
using the edcl command. If more than one core is present i the system, then select core by appending the name.
The name of the core is listed in the output of info sys.

Note that if the target is reset using the reset signal (or power-cycled), the default IP address is restored. The edcl
command can be given when GRMON is attached to the target with any interface (serial, JTAG, PCI ...), allowing
to change the IP address to a value compatible with the network type, and then connect GRMON using the EDCL
with the new IP number. If the edcl command is issued through the EDCL interface, GRMON must be restarted
using the new IP address of the EDCL interface. The current IP address is also visible in the output from info sys.

grmon3> edcl
 Device index: greth0
 Edcl ip 192.168.0.51, buffer 2 kB

grmon3> edcl greth1
 Device index: greth1
 Edcl ip 192.168.0.52, buffer 2 kB

grmon3> edcl 192.168.0.53 greth1
 Device index: greth1
 Edcl ip 192.168.0.53, buffer 2 kB

grmon3> info sys greth0 greth1
 greth0 Frontgrade Gaisler GR Ethernet MAC
 APB: FF940000 - FF980000
 IRQ: 24
 edcl ip 192.168.0.51, buffer 2 kbyte
 greth1 Frontgrade Gaisler GR Ethernet MAC
 APB: FF980000 - FF9C0000
 IRQ: 25
 edcl ip 192.168.0.53, buffer 2 kbyte

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 70

5.3. JTAG debug link

The subsections below describe how to connect to a design that contains a JTAG AHB debug link (AHBJTAG).
The following commandline options are common for all JTAG interfaces. If more than one cable of the same type
is connected to the host, then you need to specify which one to use, by using a commandline option. Otherwise
it will default to the first it finds.

Extra options common for all JTAG cables:

-jtaglist
List all available cables of the selected type and exit application.

-jtagcable <n>
Specify which cable to use if more than one is connected to the computer. If only one cable of the same type
is connected to the host computer, then it will automatically be selected. It's also used to select parallel port.

-jtagserial <sn>
Specify which cable to use by serial number if more than one is connected to the computer.

-jtagdevice <n>
Specify which device in the chain to debug. Use if more than one is device in the chain is debuggable.

-jtagcomver <version>
Specify JTAG debug link version.

-jtagretry <num>
Set the number of retries.

-jtagcfg <filename>
Load a JTAG configuration file, defining unknown devices.

JTAG debug link version. The JTAG interface has in the past been unreliable in systems with very high
bus loads, or extremely slow AMBA AHB slaves, that lead to GRMON reading out AHB read data before the
access had actually completed on the AHB bus. Read failures have been seen in systems where the debug interface
needed to wait hundreds of cycles for an AHB access to complete. With version 1 of the JTAG AHB debug link
the reliability of the debug link has been improved. In order to be backward compatible with earlier versions of the
debug link, GRMON cannot use all the features of AHBJTAG version 1 before the debug monitor has established
that the design in fact contains a core with this version number. In order to do so, GRMON scans the plug and play
area. However, in systems that have the characteristics described above, the scanning of the plug and play area may
fail. For such systems the AHBJTAG version assumed by GRMON during plug and play scanning can be set with
the switch -jtagcomver<version>. This will enable GRMON to keep reading data from the JTAG AHB
debug interface until the AHB access completes and valid data is returned. Specifying the version in systems that
have AHBJTAG version 0 has no benefit and may lead to erroneous behavior. The option -jtagretry<num>
can be used to set the number of attempts before GRMON gives up.

JTAG chain devices. If more than one device in the JTAG chain are recognized as debuggable (FPGAs, ASICs
etc), then the device to debug must be specified using the commandline option -jtagdevice. In addition, all
devices in the chain must be recognized. GRMON automatically recognizes the most common FPGAs, CPLDs,
proms etc. But unknown JTAG devices will cause GRMON JTAG chain initialization to fail. This can be solved
by defining a JTAG configuration file. GRMON is started with -jtagcfg switch. An example of JTAG config-
uration file is shown below. If you report the device ID and corresponding JTAG instruction register length to
support@gaisler.com, then the device will be supported in future releases of GRMON.

JTAG Configuration file
Name Id Mask Ir length Debug I/F Instr. 1 Instr. 2
xc2v3000 0x01040093 0x0fffffff 6 1 0x2 0x3
xc18v04 0x05036093 0x0ffeffff 8 0
ETH 0x103cb0fd 0x0fffffff 16 0

Each line consists of device name, device id, device id mask, instruction register length, debug link and user
instruction 1 and 2 fields, where:

Name String with device name

Id Device identification code

Mask Device id mask is ANDed with the device id before comparing with the identification codes
obtained from the JTAG chain. Device id mask allows user to define a range of identification
codes on a single line, e.g. mask 0x0fffffff will define all versions of a certain device.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 71

Ir length Length of the instruction register in bits

Debug I/F Set debug link to 1 if the device implements JTAG Debug Link, otherwise set to 0.

Instr. 1 Code of the instruction used to access JTAG debug link address/command register (default is
0x2). Only used if debug link is set to 1.

Instr. 2 Code of the instruction used to access JTAG debug link data register (default is 0x3). Used only
if debug link is set to 1.

The JTAG configuration file can not be used with Altera blaster cable (-altjtag).

5.3.1. Xilinx parallel cable III/IV

If target system has the JTAG AHB debug link, GRMON can connect to the system through Xilinx Parallel Cable
III or IV. The cable should be connected to the host computers parallel port, and GRMON should be started with
the -jtag switch. Use -jtagcable to select port. On Linux, you must have read and write permission, i.e.
make sure that you are a member of the group 'lp'. I.a. on some systems the Linux module lp must be unloaded,
since it uses the port.

Extra options for Xilinx parallel cable:

-jtag
Connect to the target system using a Xilinx parallel cable III/IV cable

5.3.2. Xilinx Platform USB cable

JTAG debugging using the Xilinx USB Platform cable is supported on Linux and Windows 7 systems. The plat-
form cable models DLC9G and DLC10 are supported. The legacy model DLC9 is not supported. GRMON should
be started with -xilusb switch. Certain FPGA boards have a USB platform cable logic implemented directly on
the board, using a Cypress USB device and a dedicated Xilinx CPLD. GRMON can also connect to these boards,
using the --xilusb switch.

Extra options for Xilinx USB Platform cable:

-xilusb
Connect to the target system using a Xilinx USB Platform cable.

-xilmhz [12|6|3|1.5|0.75]
Set Xilinx Platform USB frequency. Valid values are 12, 6, 3, 1.5 or 0.75 MHz. Default is 3 MHz.

On Linux systems, the Xilinx USB drivers must be installed by executing ’./setup_pcusb’ in the ISE bin/bin/
lin directory (see ISE documentation). I.a. the program fxload must be available in /sbin on the used host,
and libusb must be installed.

On Windows hosts follow the instructions below. The USB cable drivers should be installed from Xilinx ISE,
ISE Webpack or Vivado Lab Tools. Xilinx ISE 9.2i or later is required, or Xilinx Vivado Lab Tools 2017.4. Then
install the filter driver, from the libusb-win32 project [http://libusb-win32.sourceforge.net], by running install-fil-
ter-win.exe from the libusb package.

1. Install the ISE, ISE-Webpack, iMPACT or Vivado Lab Tools by following their instructions. This will
install the drivers for the Xilinx Platform USB cable. Xilinx ISE 9.2i or later is required, or Vivado 2017.4.
After the installation is complete, make sure that the Xilinx tools can find the Platform USB cable.

2. Then run libusb-win32-devel-filter-1.2.6.0.exe, which can be found in the folder '<gr-
mon-ver>/share/grmon/', where <grmon-ver> is the path to the extracted win32 or win64 folder
from the the GRMON archive. This will install the libusb filter driver tools. Step through the installer dialog
boxes as seen in Figure 5.1 until the last dialog. The libusb-win32-devel-filter-1.2.6.0.exe
installation is compatible with both 64-bit and 32-bit Windows.

3. Make sure that 'Launch filter installer wizard' is checked, then press Finish. The wizard
can also be launched from the start menu.

frontgrade.com/gaisler
http://libusb-win32.sourceforge.net
http://libusb-win32.sourceforge.net

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 72

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 73

Figure 5.1.

4. At the first dialog, as seen in Figure 5.2, choose 'Install a device filter' and press Next.
5. In the second dialog, mark the Xilinx USB cable. You can identify it either by name Xilinx USB Cable

in the 'Description' column or vid:03fd in the 'Hardware ID' column. Then press Install to continue.
6. Press OK to close the pop-up dialog and then Cancel to close the filter wizard. You should now be able to

use the Xilinx Platform USB cable with both GRMON and iMPACT.

Figure 5.2.

The libusb-win32 filter installer wizard may have to be run again if the Xilinx Platform USB cable is connected
to another USB port or through a USB hub.

5.3.3. Altera USB Blaster or Byte Blaster

For GRLIB systems implemented on Altera devices GRMON can use USB Blaster or Byte Blaster cable to connect
to the system. GRMON is started with -altjtag switch. Drivers are included in the the Altera Quartus software,
see Actel's documentation on how to install on your host computer.

The connection requires Altera Quartus version less then or equal to 13.

On Linux systems, the path to Quartus shared libraries has to be defined in the LD_LIBRARY_PATH environment
variable, i.e.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 74

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/quartus/linux
$ grmon -altjtag

 GRMON3 LEON debug monitor v3.0.0 32-bit professional version
 ...

On Windows, the path to the Quartus binary folder must the added to the environment variable PATH, see Ap-
pendix F, Appending environment variables in how to this. The default installation path to the binary folder should
be similar to C:\altera\11.1sp2\quartus\bin, where 11.1sp2 is the version of Quartus.

Extra options for Altera Blaster:

-altjtag
Connect to the target system using Altera Blaster cable (USB or parallel).

5.3.4. FTDI FT4232/FT2232

JTAG debugging using a FTDI FT2232/FT4232 chip in MPSSE-JTAG-emulation mode is supported in Linux
and Windows. GRMON has support for two different back ends, one based on libftdi 0.20 and the other based
on FTDI's official d2xx library.

When using Windows, GRMON will use the d2xx back end per default. FTDI’s D2XX driver must be installed.
Drivers and installation guides can be found at FTDI's website [http://www.ftdichip.com].

In Linux, the libftdi back end is used per default. The user must also have read and write permission to the device
file. This can be achieved by creating a udev rules file, /etc/udev/rules.d/51-ftdi.rules, containing
the lines below and then reconnect the USB cable.

ATTR{idVendor}=="0403", ATTR{idProduct}=="6010", MODE="666"
 ATTR{idVendor}=="0403", ATTR{idProduct}=="6011", MODE="666"
 ATTR{idVendor}=="0403", ATTR{idProduct}=="6014", MODE="666"
 ATTR{idVendor}=="0403", ATTR{idProduct}=="6040", MODE="666"
 ATTR{idVendor}=="0403", ATTR{idProduct}=="6041", MODE="666"
 ATTR{idVendor}=="0403", ATTR{idProduct}=="6042", MODE="666"
 ATTR{idVendor}=="0403", ATTR{idProduct}=="6043", MODE="666"
 ATTR{idVendor}=="0403", ATTR{idProduct}=="6044", MODE="666"
 ATTR{idVendor}=="0403", ATTR{idProduct}=="6045", MODE="666"
 ATTR{idVendor}=="0403", ATTR{idProduct}=="6048", MODE="666"
 ATTR{idVendor}=="0403", ATTR{idProduct}=="cff8", MODE="666"

Extra options for FTDI:

-ftdi [libftdi|d2xx]
Connect to the target system using a JTAG cable based on a FTDI chip. Optionally a back end can be
specified. Defaults to libftdi on Linux and d2xx on Windows

-ftdidetach
On Linux, force the detachment of any kernel drivers attached to the USB device.

-ftdimhz <mhz>
Set FTDI frequency divisor. Values between 0.0 and 30.0 are allowed (values higher then 6.0 MHz are
hardware dependent) The frequency will be rounded down to the closest supported frequency supported
by the hardware. Default value of mhz is 1.0 MHz

-ftdivid <vid>
Set the vendor ID of the FTDI device you are trying to connect to. This can be used to add support for
3rd-party FTDI based cables.

-ftdipid <pid>
Set the product ID of the FTDI device you are trying to connect to. This can be used to add support for
3rd-party FTDI based cables.

-ftdigpio <val>
Set the GPIO signals of the FTDI device. The lower 16bits sets the level of the GPIO and the upper bits
set the direction.

Bits 0-3 Reserved

Bits 4-7 GPIOL 0-3 level

Bits 8-15 GPIOH 0-7 level

Bits 16-19 Reserved

Bits 20-23 GPIOL 0-3 direction

frontgrade.com/gaisler
http://www.ftdichip.com
http://www.ftdichip.com

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 75

Bits 24-31 GPIOH 0-7 direction

5.3.5. Amontec JTAGkey

The Amontec JTAGkey is based on a FTDI device, therefore see Section 5.3.4, “FTDI FT4232/FT2232” about
FTDI devices on how to connect. Note that the user does not need to specify VID/PID for the Amontec cable. The
drivers and installation guide can be found at Amontec's website [http://www.amontec.com].

5.3.6. Actel FlashPro 3/3x/4/5

Support for Actel FlashPro 3/3x/4/5 is only supported by the professional version.

On Windows 32-bit, JTAG debugging using the Microsemi FlashPro 3/3x/4 is supported for GRLIB systems
implemented on Microsemi devices. This also requires FlashPro 11.4 software or later to be installed on the host
computer (to be downloaded from Microsemi's website). Windows support is detailed at the website. GRMON
is started with the -fpro switch.

JTAG debugging using the Microsemi FlashPro 5 cable is supported on both Linux and Windows, for GRLIB sys-
tems implemented on Microsemi devices, using the FTDI debug link. See Section 5.3.4, “FTDI FT4232/FT2232”
about FTDI devices on how to connect. Note that the user does not need to specify VID/PID for the FlashPro 5
cable. This also requires FlashPro 11.4 software or later to be installed on the host computer (to be downloaded
from Microsemi's website).

Extra options for Actel FlashPro:

-fpro
Connect to the target system using the Actel FlashPro cable. (Windows)

5.3.7. Digilent HS1/HS2/HS3/SMT2/SMT3

JTAG debugging using a Digilent JTAG HS1/HS2/HS3/SMT2/SMT3 cable is supported on Linux and Windows
systems. Start GRMON with the -digilent switch to use this interface.

On Windows hosts, the Digilent Adept System software must be installed on the host computer, which can be
downloaded from Digilent's website.

On Linux systems, the Digilent Adept Runtime must be installed on the host computer, which can be downloaded
from Digilent's website. The Adept v2.19.2 Runtime supports the Linux distributions listed below.

CentOS 6 / Red Hat Enterprise Linux 6
CentOS 7 / Red Hat Enterprise Linux 7
Ubuntu 14.04
Ubuntu 16.10
Ubuntu 18.04

Extra options for Digilent cables:

-digilent
Connect to the target system using the Digilent cable.

-digifreq <hz>
Set Digilent cable frequency in Hz. Default is 1 MHz.

5.4. USB debug link

GRMON can connect to targets equipped with the GRUSB_DCL core using the USB bus. To do so start GRMON
with the -usb switch. Both USB 1.1 and 2.0 are supported. Several target systems can be connected to a single
host at the same time. GRMON scans all the USB buses and claims the first free USBDCL interface. If the first
target system encountered is already connected to another GRMON instance, the interface cannot be claimed and
the bus scan continues.

On Linux the GRMON binary must have read and write permission. This can be achieved by creating a udev
rules file, /etc/udev/rules.d/51-gaisler.rules, containing the line below and then reconnect the
USB cable.

frontgrade.com/gaisler
http://www.amontec.com
http://www.amontec.com

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 76

SUBSYSTEM=="usb", ATTR{idVendor}=="1781", ATTR{idProduct}=="0aa0", MODE="666"

On Windows a driver has to be installed. The first the time the device is plugged in it should be automatically
detected as an unknown device, as seen in Figure 5.3. Follow the instructions below to install the driver.

Figure 5.3.

1. Open the device manager by writing 'mmc devmgmt.msc' in the run-field of the start menu.
2. In the device manager, find the unknown device. Right click on it to open the menu and choose 'Update

Driver Software...' as Figure 5.4 shows.

Figure 5.4.

3. In the dialog that open, the first image in Figure 5.5, choose 'Browse my computer for driver
software'.

4. In the next dialog, press the Browse button and locate the path to <grmon-win32>/share/gr-
mon/drivers, where grmon-win32 is the path to the extracted win32 folder from the the GRMON
archive. Press 'Next' to continue.

5. A warning dialog might pop-up, like the third image in Figure 5.5. Press 'Install this driver
software anyway' if it shows up.

6. Press 'Close' to exit the dialog. The USB DCL driver is now installed and GRMON should be able to
connect to the target system using the USB DCL connection.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 77

Figure 5.5.

In Windows 8.1 or later the USB device will malfunction after the drivers has been installed. This can be fixed
by adding an entry into the Windows registry.

1. Click Start, click Run, type regedit in the Open box, and then click OK .
2. Locate and then click the following subkey in the registry: HKEY_LOCAL_MACHINE\SYSTEM\Cur-

rentControlSet\Control\UsbFlags
3. Locate the subkey 17810AA00000 or create a new key if doesn't exist. To create a new key on the Edit

menu, point to New, and then click Key. Type the name of the new key 17810AA00000
4. On the Edit menu, point to New, and then click DWORD (32-bit) Value.
5. Type SkipBOSDescriptorQuery for the name of the DWORD Value, and then press ENTER.
6. Right-click SkipBOSDescriptorQuery, and then click Modify.
7. In the Value data box, type 1, and then click OK.
8. Exit Registry Editor.
9. Unplug and re-plug the device for the workaround to take effect.

5.5. GRESB debug link

Targets equipped with a SpaceWire core with RMAP support can be debugged through the GRESB debug link
using the GRESB Ethernet to SpaceWire bridge. To do so start GRMON with the -gresb switch and use the
any of the switches below to set the needed parameters.

For further information about the GRESB bridge see the GRESB manual.

Extra options for the GRESB connection:

-gresb [<ipnum>]
Use the GRESB connection and optionally use ipnum for the target system IP number. Default is
192.168.0.50.

-link <num>
Use link linknum on the bridge. Defaults to 0.

-dna <dna>
The destination node address of the target. Defaults to 0xfe.

-sna <sna>
The SpW node address for the link used on the bridge. Defaults to 32.

-dpa <dpa1> [,<dpa2>, ... ,<dpa12>]
The destination path address. Comma separated list of addresses.

-spa <spa1> [,<spa2>, ..., <spa12>]
The source path address. Comma separated list of addresses.

-dkey <key>
The destination key used by the targets RMAP interface. Defaults to 0.

-clkdiv <div>
Divide the TX bit rate by div. If not specified, the current setting is used.

-gresbtimeout <sec>
Timeout period in seconds for RMAP replies. Defaults is 8.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 78

-gresbretry <n>
Number of retries for each timeout. Defaults to 0.

5.5.1. AGGA4 SpaceWire debug link

It is possible to debug the AGGA4 via SpaceWire, using the GRESB Ethernet SpaceWire Bridge, by combining the
commandline switches '-gresb' and '-sys agga4' when starting GRMON. In addition, the following options
can also be added: -link, -clkdiv, -gresbtimeout and -gresbretry.

The AGGA4 SpaceWire debug link does not use a regular SpaceWire packet protocol, therefore the GRESB must
be setup to tunnel all the packets as raw data. To achieve this the GRESB must be configured to use separate
routing tables, this setting can only be enabled via the web interface.

The GRESB routing tables for the SpaceWire port and the TCP port that will be used must also be configured.
The routing tables can be setup via the web interface or using the software distributed with the GRESB. All the
node addresses in the routing table for the SpaceWire port must be configured to forward packets to the TCP port
without any header deletion. The routing table for the TCP port must be setup in the same way but to forward the
packets from all nodes to the SpaceWire port instead. A Linux bash script and a Windows bat-script is provided
with GRMON professional distribution in folder share/grmon/tools, that can be used with the GRESB
software to setup the routing tables. The scripts must be able to find the GRESB software, so either the PATH
environment variable must be setup or execute the scripts from the GRESB software folder.

GRESB separate routing table mode shall be used when connecting to the AGGA4 SpaceWire debug link. This
can be configured in the GRESB web interface: "Routing table configuration"->"Set/view Mode"->"Set Separate
mode".

5.6. User defined debug link

In addition to the supported DSU communication interfaces (Serial, JTAG, ETH and PCI), it is possible for the
user to add a custom interface using a loadable module. The custom DSU interface must provide functions to read
and write data on the target system’s AHB bus.

Extra options for the user defined connection:

-dback <filename>
Use the user defined debug link. The debug link should be implemented in a loadable module pointed out
by the filename parameter.

-dbackarg <arg>
Set a custom argument to be passed to the user defined debug link during start-up.

5.6.1. API

The loadable module must export a pointer variable named DsuUserBackend that points to a struct ioif,
as described below:

struct ioif {
 int (*wmem) (unsigned int addr, const unsigned int *data, int len);
 int (*gmem) (unsigned int addr, unsigned int *data, int len);
 int (*open) (char *device, int baudrate, int port);
 int (*close) ();
 int (*setbaud) (int baud, int pp);
 int (*init) (char* arg);
};

struct ioif my_io = {my_wmem, my_gmem, NULL, my_close, NULL, my_init};
struct ioif *DsuUserBackend = &my_io;

On the Linux platform, the loadable module should be compiled into a library and loaded into GRMON as follows:

> gcc -fPIC -c my_io.c
> gcc -shared my_io.o -o my_io.so
> grmon -dback my_io.so -dbackarg "my argument"

On the Windows platform, the loadable module should be compiled into a library and loaded into GRMON as
follows:

> gcc -c my_io.c
> gcc -shared my_io.o -o my_io.dll

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 79

> grmon -dback my_io.dll -dbackarg "my argument"

The members of the struct ioif are defined as:

int (*wmem) (unsigned int addr, const unsigned int *data, int len);

A function that performs one or more 32-bit writes on the AHB bus. The parameters indicate the AHB
(start) address, a pointer to the data to be written, and the number of words to be written. The data is in
little-endian format (note that the AMBA bus on the target system is big-endian). If the len parameter is
zero, no data should be written. The return value should be the number of words written.

int (*gmem) (unsigned int addr, unsigned int *data, int len);

A function that reads one or more 32-bit words from the AHB bus. The parameters indicate the AHB (start)
address, a pointer to where the read data should be stored, and the number of words to be read. The returned
data should be in little-endian format (note that the AMBA bus on the target system is big-endian). If the
len parameter is zero, no data should be read. The return value should be the number of words read.

int (*open) (char *device, int baudrate, int port);

Not used, provided only for backwards compatibility. This function is replaced by the function init.
int (*close) ();

Called when disconnecting.
int (*setbaud) (int baud, int pp);

Not used, provided only for backwards compatibility.
int (*init) (char* arg);

Called when initiating a connection to the target system. The parameter arg is set using the GRMON start-up
switch -dbackarg <arg>. This allows to send arbitrary parameters to the DSU interface during start-up.

An example module is provided with the professional version of GRMON located at <grmon3>/share/gr-
mon/src/dsu_user_backend.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 80

6. Debug drivers

This section describes GRMON debug commands available through the TCL GRMON shell.

6.1. AMBA AHB trace buffer driver

The at command and its subcommands are used to control the AHBTRACE buffer core. It is possible to record
AHB transactions without interfering with the processor. With the commands it is possible to set up triggers formed
by an address and an address mask indicating what bits in the address that must match to set the trigger off. When
the triggering condition is matched the AHBTRACE stops the recording of the AHB bus and the log is available
for inspection using the at command. The at delay command can be used to delay the stop of the trace recording
after a triggering match.

Note that this is an stand alone AHB trace buffer it is not to be confused with the DSU AHB trace facility. When
a break point is hit the processor will not stop its execution.

The info sys command displays the size of the trace buffer in number of lines.

 ahbtrace0 Frontgrade Gaisler AMBA Trace Buffer
 AHB: FFF40000 - FFF60000
 Trace buffer size: 512 lines

6.2. Clock gating

The GRCLKGATE debug driver provides an interface to interact with a GRCLKGATE clock gating unit. A
command line switch can be specified to automatically reset and enable all clocks, controlled by clock gating
units, during GRMON's system initialization.

The GRCLKGATE core is accessed using the command grcg, see command description in Appendix B, Command
syntax for more information.

6.2.1. Switches
-cginit [,<mask>,<mask>,...]

Reset and enable all clock-signals controlled by GRCLKGATE during initialization. If no mask is set then
all clock-signals will be enabled. If a mask is specified, then clock-signals that will be enabled depends on
the mask. One mask per GRCLKGATE core.

6.3. Debug support drivers

The DSU driver for the LEON processor(s), and the RVDM driver for NOEL-V, are a central part of GRMON.
It handles most of the functions regarding application execution, debugging, processor register access, cache ac-
cess and trace buffer handling. The most common interactions with the DSU/RVDM are explained in Chapter 3,
Operation. Additional information about the configuration of the target processor and debugging support on the
target system can be listed with the command info sys.

 dsu0 Frontgrade Gaisler LEON4 Debug Support Unit
 AHB: D0000000 - E0000000
 AHB trace: 64 lines, 32-bit bus
 CPU0: win 8, hwbp 2, itrace 64, V8 mul/div, srmmu, lddel 1, GRFPU-lite
 stack pointer 0x4ffffff0
 icache 2 * 8 kB, 32 B/line lrr
 dcache 2 * 4 kB, 32 B/line lrr
 CPU1: win 8, hwbp 2, itrace 64, V8 mul/div, srmmu, lddel 1, GRFPU-lite
 stack pointer 0x4ffffff0
 icache 2 * 8 kB, 32 B/line lrr
 dcache 2 * 4 kB, 32 B/line lrr

 dm0 Frontgrade Gaisler RISC-V Debug Module
 AHB: fe000000 - ff000000
 hart0: DXLEN 64, MXLEN 64, SXLEN 64, UXLEN 64
 ISA A D F I M, Modes M S U
 Stack pointer 0x3ffffff0
 icache 4 * 4 kB, 32 B/line, rnd
 dcache 4 * 4 kB, 32 B/line, rnd
 3 triggers,
 itrace 64 lines
 hart1: DXLEN 64, MXLEN 64, SXLEN 64, UXLEN 64
 ISA A D F I M, Modes M S U

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 81

 Stack pointer 0x3ffffff0
 icache 4 * 4 kB, 32 B/line, rnd
 dcache 4 * 4 kB, 32 B/line, rnd
 3 triggers,
 itrace 64 lines

6.3.1. Switches

Below is a list of commandline switches that affects how the DSU/RVDM driver interacts with the hardware.

-nb
When the -nb flag is set, the CPUs will not go into debug mode when a error trap occurs. Instead the OS
must handle the trap. (LEON only)

-nswb
When the -nswb flag is set, the CPUs will not go into debug mode when a software breakpoint occur. This
option is required when a native software debugger like GDB is running on the target CPU.

-dsudelay <ms>
Set polling period when executing application on the target processor. Normally GRMON will poll the
hardware as fast as possible.

-nic
Disable instruction cache

-ndc
Disable data cache

-stack <addr>
Set addr as stack pointer for applications, overriding the auto-detected value.

-mpgsz
Enable support for MMU page sizes larger then 4KiB. Must be supported by hardware. (DSU only)

-no-nmie
Don't enable NMIE in MNSTATUS CSR (nonmaskable interrupts) on RISC-V at reset. (RVDM only)

6.3.2. Commands

The driver for the debug support unit provides the commands listed in Table 6.1.

Table 6.1. DSU commands

ahb Print AHB transfer entries in the trace buffer

attach Stop execution and attach GRMON to processor again

at Print AHB transfer entries in the trace buffer

bp Add, delete or list breakpoints

bt Print backtrace

cctrl Display or set cache control register

cont Continue execution

cpu Enable, disable CPU or select current active cpu

dcache Show, enable or disable data cache

dccfg Display or set data cache configuration register

detach Resume execution with GRMON detached from processor

ei Error injection

ep Set entry point

float Display FPU registers

forward Control I/O forwarding

go Start execution without any initialization

hist Print AHB transfer or instruction entries in the trace buffer

icache Show, enable or disable instruction cache

iccfg Display or set instruction cache configuration register

inst Print instruction entries in the trace buffer

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 82

leon Print leon specific registers

mmu Translate virtual adresses

perf Measure performance

profile Enable, disable or show simple profiling

reg Show or set integer registers.

run Reset and start execution

stack Set or show the intial stack-pointer

step Step one or more instructions

stop Interrupts current CPU execution

tmode Select tracing mode between none, processor-only, AHB only or both

va Translate a virtual address

vmemb AMBA bus 8-bit virtual memory read access, list a range of addresses

vmemd AMBA bus 64-bit virtual memory read access, list a range of addresses

vmemh AMBA bus 16-bit virtual memory read access, list a range of addresses

vmem AMBA bus 32-bit virtual memory read access, list a range of addresses

vwmemb AMBA bus 8-bit virtual memory write access

vwmemd AMBA bus 64-bit virtual memory write access

vwmemh AMBA bus 16-bit virtual memory write access

vwmems Write a string to an AMBA bus virtual memory address

vwmem AMBA bus 32-bit virtual memory write access

walk Translate a virtual address, print translation

6.3.3. Tcl variables

The DSU driver exports one Tcl variable per CPU (cpuN), they allow the user to access various registers of
any CPU instead of using the standard reg, float and cpu commands. The variables are mostly intended for Tcl
scripting. See Section 3.4.13, “Multi-processor support” for more information how the cpu variable can be used.

6.4. Ethernet controller

The GRETH debug driver provides commands to configure the GRETH 10/100/1000 Mbit/s Ethernet controller
core. The driver also enables the user to read and write Ethernet PHY registers. The info sys command displays
the core’s configuration settings:

 greth0 Frontgrade Gaisler GR Ethernet MAC
 AHB Master 2
 APB: C0100100 - C0100200
 IRQ: 12
 edcl ip 192.168.0.201, buffer 2 kbyte

If more than one GRETH core exists in the system, it is possible to specify which core the internal commands
should operate on. This is achieved by appending a device name parameter to the command. The device name is
formatted as greth# where the # is the GRETH device index. If the device name is omitted, the command will
operate on the first device. The device name is listed in the info sys information.

The IP address must have the numeric format when setting the EDCL IP address using the edcl command, i.e. edcl
192.168.0.66. See command description in Appendix B, Command syntax and Ethernet debug interface in
Section 5.2, “Ethernet debug link” for more information.

6.4.1. Commands

The driver for the greth core provides the commands listed in Table 6.2.

Table 6.2. GRETH commands

edcl Print or set the EDCL ip

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 83

mdio Show PHY registers

phyaddr Set the default PHY address

wmdio Set PHY registers

6.5. GRPWM core

The GRPWM debug driver implements functions to report the available PWM modules and to query the waveform
buffer. The info sys command will display the available PWM modules.

 grpwm0 Frontgrade Gaisler PWM generator
 APB: 80010000 - 80020000
 IRQ: 13
 cnt-pwm: 3

The GRPWM core is accessed using the command grpwm, see command description in Appendix B, Command
syntax for more information.

6.6. USB Host Controller

The GRUSBHC host controller consists of two host controller types. GRMON provides a debug driver for each
type. The info sys command displays the number of ports and the register setting for the enhanced host controller
or the universal host controller:

 usbehci0 Frontgrade Gaisler USB Enhanced Host Controller
 AHB Master 4
 APB: C0100300 - C0100400
 IRQ: 6
 2 ports, byte swapped registers
 usbuhci0 Frontgrade Gaisler USB Universal Host Controller
 AHB Master 5
 AHB: FFF00200 - FFF00300
 IRQ: 7
 2 ports, byte swapped registers

If more than one EHCI or UHCI core exists in the system, it is possible to specify which core the internal commands
should operate on. This is achieved by appending a device name parameter to the command. The device name is
formatted as usbehci#/usbuhci# where the # is the device index. If the device name is omitted, the command
will operate on the first device. The device name is listed in the info sys information.

6.6.1. Switches
-nousbrst

Prevent GRMON from automatically resetting the USB host controller cores.

6.6.2. Commands

The drivers for the USB host controller cores provides the commands listed in Table 6.3.

Table 6.3. GRUSBHC commands

ehci Control the USB host ECHI core

uhci Controll the USB host UHCI core

6.7. I2C

The I2C-master debug driver initializes the core’s prescaler register for operation in normal mode (100 kb/s). The
driver supplies commands that allow read and write transactions on the I2C-bus. I.a. it automatically enables the
core when a read or write command is issued.

The I2CMST core is accessed using the command i2c, see command description in Appendix B, Command syntax
for more information.

6.8. I/O Memory Management Unit

The debug driver for GRIOMMU provides commands for configuring the core, reading core status information,
diagnostic cache accesses and error injection to the core’s internal cache (if implemented). The debug driver also

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 84

has support for building, modifying and decoding Access Protection Vectors and page table structures located in
system memory.

The GRIOMMU core is accessed using the command iommu, see command description in Appendix B, Command
syntax for more information.

The info sys command displays information about available protection modes and cache configuration.

 iommu0 Frontgrade Gaisler IO Memory Management Unit
 AHB Master 4
 AHB: FF840000 - FF848000
 IRQ: 31
 Device index: 0
 Protection modes: APV and IOMMU
 msts: 9, grps: 8, accsz: 128 bits
 APV cache lines: 32, line size: 16 bytes
 cached area: 0x00000000 - 0x80000000
 IOMMU TLB entries: 32, entry size: 16 bytes
 translation mask: 0xff000000
 Core has multi-bus support

6.9. Multi-processor interrupt controller

The debug driver for IRQMP provides commands for forcing interrupts and reading core status information. The
debug driver also supports ASMP and other extension provided in the IRQ(A)MP core. The IRQMP and IRQAMP
cores are accessed using the command irq, see command description in Appendix B, Command syntax for more
information.

The info sys command displays information on the cores memory map. I.a. if extended interrupts are enabled it
shows the extended interrupt number.

 irqmp0 Frontgrade Gaisler Multi-processor Interrupt Ctrl.
 APB: FF904000 - FF908000
 EIRQ: 10

6.10. L2-Cache Controller

The debug driver for L2C is accessed using the command l2cache, see command description in Appendix B,
Command syntax for more information. It provides commands for showing status, data and hit-rate. It also provides
commands for enabling/disabling options and flushing or invalidating the cache lines.

If the L2C core has been configured with memory protection, then the l2cache error subcommand can be used
to inject check bit errors and to read out error detection information.

L2-Cache is enabled by default when GRMON resets the system. This behavior can be disabled by giving the -
nl2c command line option which instead disables the cache. L2-Cache can be enabled/disabled later by the user
or by software in either case. If -ni is given, then L2-Cache state is not altered when GRMON starts.

When GRMON is started without -ni and -nl2c, the L2-Cache controller will be configured with EDAC dis-
abled, LRU replacement policy, no locked ways, copy-back replacement policy and not using HPROT to determine
cacheability. Pending EDAC error injection is also removed.

When connecting without -ni, if the L2-Cache is disabled, the L2-Cache contents will be invalidated to make
sure that any random power-up values will not affect execution. If the L2-Cache was already enabled, it is assumed
that the contents are valid and L2-Cache is flushed to backing memory and then invalidated.

When enabling L2-Cache, the subcommand l2cache disable flushinvalidate can be used to atomically invalidate
and write back dirty lines. The inverse operation is l2cache invalidate followed by l2cache enable. For debugging
the state of L2-Cache itself, it may be more appropriate to use l2cache disable as it does not have any side effects
on cache tags.

The info sys command displays the cache configuration.

 l2cache0 Frontgrade Gaisler L2-Cache Controller

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 85

 AHB Master 0
 AHB: 00000000 - 80000000
 AHB: F0000000 - F0400000
 AHB: FFE00000 - FFF00000
 IRQ: 28
 L2C: 4-ways, cachesize: 128 kbytes, mtrr: 16

6.10.1. Switches
-nl2c

Disable L2-Cache on start-up.
-nl2csplit

Disable L2 cache split support.

6.10.2. Errata

Workarounds for the issues described in GRLIB TN 0021 [http://download.gaisler.com/technical_notes/GR-
LIB-TN-0021.pdf] have been implemented when split is enabled.

Issues 1, 2 and 3 are most often not applicable since GRMON uses a single master on the bus and other masters
are inactive. If any other bus masters are active (e.g. cores with DMA capabilities, incoming SpaceWire RMAP
packets or running TCL scripts while the CPUs are executing) then it is up to the user to avoid these issues.

Issue 4 is resolved by writing L2CERR.COMP = 0.

Issue 5 is resolved by setting L2CACCC.DBPF = 0, L2CACCC.128WF = 1 and trigger a line fetch. This issue
can also be triggered after reset by the Plug and play scanning performed by GRMON during startup. It can be
avoided by using a fixed target XML description of the system (see Appendix D, Fixed target configuration file
format). GRMON will automatically use an internal fixed target XML description when connecting to the GR740.

Issues 6 and 7 do not apply to GRMON since no errors are propagated to the host computer.

6.11. Statistics Unit

The debug driver for L4STAT provides commands for reading and configuring the counters available in a L4STAT
core. The L4STAT core can be implemented with two APB interfaces. GRMON treats a core with dual interfaces
the same way as it would treat a system with multiple instances of L4STAT cores. If several L4STAT APB
interfaces are found the l4stat command must be followed by an interface index reported by info sys. The info sys
command displays also displays information about the number of counters available and the number of processor
cores supported.

 l4stat0 Frontgrade Gaisler LEON4 Statistics Unit
 APB: E4000100 - E4000200
 cpus: 2, counters: 4, i/f index: 0

 l4stat1 Frontgrade Gaisler LEON4 Statistics Unit
 APB: FFA05000 - FFA05100
 cpus: 2, counters: 4, i/f index: 1

The L4STAT core is accessed using the command l4stat, see command description in Appendix B, Command
syntax for more information.

If the core is connected to the DSU it is possible to count several different AHB events. In addition it is possible
to apply filter to the signals connected to the L4STAT (if the DSU supports filter), see command ahb filter
performance in Appendix B, Command syntax.

The l4stat set command is used to set up counting for a specific event. All allowed values for the event parameters
are listed with l4stat events. The number and types of events may vary between systems. Example 6.1 shows
how to set counter zero to count data cache misses on processor one and counter one to count instruction cache
misses on processor zero.

Example 6.1.

grmon3> l4stat 1 events
 icmiss - icache miss
 itmiss - icache tlb miss

frontgrade.com/gaisler
http://download.gaisler.com/technical_notes/GRLIB-TN-0021.pdf
http://download.gaisler.com/technical_notes/GRLIB-TN-0021.pdf
http://download.gaisler.com/technical_notes/GRLIB-TN-0021.pdf

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 86

 ichold - icache hold
 ithold - icache mmu hold
 dcmiss - dcache miss
 ... more events are listed ...

grmon3> l4stat 1 set 0 1 dcmiss
 cnt0: Enabling dcache miss on cpu/AHB 1

grmon3> l4stat 1 set 1 0 icmiss
 cnt1: Enabling icache miss on cpu/AHB 0

grmon3> l4stat 1 status
 CPU DESCRIPTION VALUE
 0: cpu1 dcache miss 0000000000
 1: cpu0 icache miss 0000000000
 2: cpu0 icache miss 0000000000 (disabled)
 3: cpu0 icache miss 0000000000 (disabled)

Some of the L4STAT events 0x40-0x7F can be counted either per AHB master or independent of master. The
l4stat command will only count events generated by the AHB master specified in the l4stat set command.

The L4STAT debug driver provides two modes that are used to continuously sample L4STAT counters. The driver
will print out the latest read value(s) together with total accumulated amount(s) of events while polling. A poll
operation can either be started directly or be deferred until the run command is issued. In both cases, counters
should first be configured with the type of event to count. When this is done, one of the two following commands
can be issued: l4stat pollst sp int hold or l4stat runpollst sp int

The behavior of the first command, l4stat poll, depends on the hold argument. If hold is 0 or not specified, the
specified counter(s) (st - sp) will be enabled and configured to be cleared on read. These counters will then be
polled with an interval of int seconds. After each read, the core will print out the current and accumulated values for
all counters. If the hold argument is 1, GRMON will not initialize the counters. Instead the first specified counter
(st) will be polled. When counter st is found to be enabled the polling operating will begin. This functionality
can be used to, for instance, let software signal when measurements should take place.

Polling ends when at least one of the following is true: User pressed CTRL+C (SIGINT) or counter st becomes
disabled. When polling stops, the debug driver will disable the selected counter(s) and also disable the automatic
clear feature.

The second command, l4stat runpoll, is used to couple the poll operation with the run command. When l4stat
runpoll st sp int has been issued, counters st - sp will be polled after the run command is given. The interval
argument in this case does not specify the poll interval seconds but rather in terms of iterations when GRMON
polls the Debug Support Unit to monitor execution. A suitable value for the int argument in this case depends on
the speed of the host computer, debug link and target system.

Example 6.2 is a transcript from a GRMON session where a vxWorks image is loaded and statistics are collected
while it runs.

Example 6.2.

grmon3> l4stat 1 set 0 0 icmiss 0
 cnt0: Configuring icache miss on cpu/AHB 0

grmon3> l4stat 1 set 1 0 dcmiss 0
 cnt1: Configuring dcache miss on cpu/AHB 0

grmon3> l4stat 1 set 2 0 load 0
 cnt2: Configuring load instructions on cpu/AHB 0

grmon3> l4stat 1 set 3 0 store 0
 cnt3: Configuring store instructions on cpu/AHB

grmon3> l4stat 1 status
 CPU DESCRIPTION VALUE
 0: cpu0 icache miss 0000000000 (disabled)
 1: cpu0 dcache miss 0000000000 (disabled)
 2: cpu0 load instructions 0000000000 (disabled)
 3: cpu0 store instructions 0000000000 (disabled)

grmon3> l4stat 1 runpoll 0 3 5000
 Setting up callbacks so that polling will be performed during 'run'

grmon3> load vxWorks

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 87

 00003000 .text 1.5MB / 1.5MB [===============>] 100%
 0018F7A8 .init$00 12B [===============>] 100%
 0018F7B4 .init$99 8B [===============>] 100%
 0018F7BC .fini$00 12B [===============>] 100%
 0018F7C8 .fini$99 8B [===============>] 100%
 0018F7E0 .data 177.5kB / 177.5kB [===============>] 100%
 Total size: 1.72MB (2.03Mbit/s)
 Entry point 0x3000
 Image vxWorks loaded

grmon3> run
 TIME COUNTER CURRENT READ CURRENT RATE TOTAL READ TOTAL RATE
 5.88 0 1973061 335783 1973061 335783
 5.88 1 7174279 1220946 7174279 1220946
 5.88 2 22943354 3904587 22943354 3904587
 5.88 3 491916 83716 491916 83716
 11.16 0 0 0 1973061 176718
 11.16 1 11014132 2082460 18188411 1629056
 11.16 2 33072417 6253057 56015771 5017087
 11.16 3 15751 2978 507667 45470
 ... output removed ...
 51.35 0 0 0 1973061 38425
 51.35 1 12113004 2079486 101754132 1981657
 51.35 2 36365101 6242936 306891414 5976697
 51.35 3 17273 2965 627067 12212

And alternative to coupling polling to the run command is to break execution, issue detach and then use the l4stat
poll command. There are a few items that may be worth considering when using poll and runpoll.

• All counters are not read in the same clock cycle. Depending on the debug link used there may be a significant
delay between the read of the first and the last counter.

• Measurements are timed on the host computer and reads experience jitter from several sources.
• A counter may overflow after 232 target clock cycles. The poll period (interval) should take this into account

so that counters are read (and thereby cleared) before an overflow can occur.
• Counters are disabled when polling stops
• l4stat runpoll is only supported for uninterrupted run. Commands like bp and cont may disrupt measure-

ments.
• If the L4STAT core has two APB interfaces, initialize it via the interface to which traffic causes the least

disturbance to other system bus traffic.

6.12. LEON2 support

A LEON2 system has a fixed set of IP cores and address mapping. GRMON will use an internal plug and play table
that describes this configuration. The plug and play table used for LEON2 is fixed, and no automatic detection of
present cores is attempted. Only those cores that need to be initialized by GRMON are included in the table, so
the listing might not correspond to the actual target.

By default, GRMON will enable the UART receivers and transmitters for the AT697E/F by setting the correspond-
ing bits in the IODIR register to output. This can be disabled by providing the commandline switch -at697-
nouart, GRMON will then reset the IODIR to inputs on all bits.

6.12.1. Switches
-sys at697
-sys at697e

Disable plug and play scanning and configure GRMON for an AT697E system
-sys at697f

Disable plug and play scanning and configure GRMON for an AT697F system
-at697-nouart

Disable GPIO alternate UART function. When this is set, GRMON will reset the GPIO dir register bits to
input. By default GRMON will setup the GPIO dir register to enable both UARTs for the AT697E/F.

-sys agga4
Disable plug and play scanning and configure GRMON for an AGGA4 system

-agga4-nognss
Disable the built-in support for the GNSS core to make sure that GRMON never makes any accesses to the
core. This flag should be used if no clock is provided to the GNSS core.

-sys leon2
Disable plug and play scanning and configure GRMON for a LEON2 system

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 88

6.13. On-chip logic analyzer driver

The LOGAN debug driver contains commands to control the LOGAN on-chip logic analyzer core. It allows to set
various triggering conditions and to generate VCD waveform files from trace buffer data.

The LOGAN core is accessed using the command la, see command description in Appendix B, Command syntax
for more information.

The LOGAN driver can create a VCD waveform file using the la dump command. The file setup.logan is
used to define which part of the trace buffer belong to which signal. The file is read by the debug driver before a
VCD file is generated. An entry in the file consists of a signal name followed by its size in bits separated by white-
space. Rows not having these two entries as well as rows beginning with an # are ignored. GRMON will look for
the file in the current directory. I.e. either start GRMON from the directory where setup.logan is located or
use the Tcl command cd, in GRMON, to change directory.

Example 6.3.

#Name Size
clk 1
seq 14
edclstate 4
txdstate 5
dataout0 32
dataout1 32
dataout2 32
dataout3 32
writem 1
writel 1
nak 1
lock 1

The Example 6.3 has a total of 128 traced bits, divided into twelve signals of various widths. The first signal in
the configuration file maps to the most significant bits of the vector with the traced bits. The created VCD file can
be opened by waveform viewers such as GTKWave or Dinotrace.

Figure 6.1. GTKWave

6.14. Memory controllers

SRAM/SDRAM/PROM/IO memory controllers. Most of the memory controller debug drivers provides
switches for timing, wait state control and sizes. They also probes the memory during GRMON's initialization.
In addition they also enables some commands. The mcfg# sets the reset value 1 of the registers. The info sys
shows the timing and amount of detected memory of each type. Supported cores: MCTRL, SRCTRL, SSRCTRL,
FTMCTRL, FTSRCTRL, FTSRCTRL8

1 The memory register reset value will be written when GRMON's resets the drivers, for example when run or load is called.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 89

 mctrl0 European Space Agency LEON2 Memory Controller
 AHB: 00000000 - 20000000
 AHB: 20000000 - 40000000
 AHB: 40000000 - 80000000
 APB: 80000000 - 80000100
 8-bit prom @ 0x00000000
 32-bit sdram: 1 * 64 Mbyte @ 0x40000000
 col 9, cas 2, ref 7.8 us

PC133 SDRAM Controller . PC133 SDRAM debug drivers provides switches for timing. It also probes the
memory during GRMON's initialization. In addition it also enables the sdcfg1 affects, that sets the reset value 1

of the register. Supported cores: SDCTRL, FTSDCTRL

DDR memory controller. The DDR memory controller debug drivers provides switches for timing. It also
performs the DDR initialization sequence and probes the memory during GRMON's initialization. It does not
enable any commands. The info sys shows the DDR timing and amount of detected memory. Supported cores:
DDRSPA

DDR2 memory controller. The DDR2 memory controller debug driver provides switches for timing. It also
performs the DDR2 initialization sequence and probes the memory during GRMON's initialization. In addition it
also enables some commands. The ddr2cfg# only affect the DDR2SPA, that sets the reset value 1 of the register.
The commands ddr2skew and ddr2delay can be used to adjust the timing. The info sys shows the DDR timing
and amount of detected memory Supported cores: DDR2SPA

 ddr2spa0 Frontgrade Gaisler Single-port DDR2 controller
 AHB: 40000000 - 80000000
 AHB: FFE00100 - FFE00200
 32-bit DDR2 : 1 * 256 MB @ 0x40000000, 8 internal banks
 200 MHz, col 10, ref 7.8 us, trfc 135 ns

Dual-port AHB(/CPU) On-Chip RAM. The On-Chip RAM debug drivers probes the memory during
GRMON's initialization. The scrubber is not enabled. The info sys the amount of detected memory. Supported
cores: LRAM

 ilram0 Frontgrade Gaisler Dual-port AHB(/CPU) On-Chip RAM
 AHB: 31000000 - 31100000
 APB: 8000b000 - 8000b100
 IRQ: 63
 32-bit static ram: 128 kB @ 0x31000000
 dlram0 Frontgrade Gaisler Dual-port AHB(/CPU) On-Chip RAM
 AHB: 30000000 - 30100000
 APB: 80001000 - 80001100
 IRQ: 63
 32-bit static ram: 64 kB @ 0x30000000

SPI memory controller. The SPI memory controller debug driver is affected by the common memory com-
mands, but provides commands spim to perform basic communication with the core. The driver also provides
functionality to read the CSD register from SD Card and a command to reinitialize SD Cards. The debug driver has
bindings to the SPI memory device layer. These commands are accessed via spim flash. Please see Section 3.11.4,
“SPI memory device” for more information. Supported cores: SPIMCTRL

6.14.1. Switches
-edac

Enable EDAC operation (FTMCTRL, FTSRCTRL, FTSRCTRL8, LRAM)
-edac8[4|5]

Overrides the auto-probed EDAC area size for 8-bit RAM. Valid values are 4 if the EDAC uses a quarter
of the memory, or 5 if the EDAC uses a fifth. (FTMCTRL)

-rsedac
Enable Reed-Solomon EDAC operation (FTMCTRL)

-mcfg1 <val>
Set the reset value for memory configuration register 1 (MCTRL, FTMCTRL, SSRCTRL)

-mcfg2 <valn>
Set the reset value for memory configuration register 2 (MCTRL, FTMCTRL)

-mcfg3 <val>
Set the reset value for memory configuration register 3 (MCTRL, FTMCTRL, SSRCTRL)

-pageb

Enable SDRAM page burst (FTMCTRL)

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 90

-normw
Disables read-modify-write cycles for sub-word writes to 16- bit 32-bit areas with common write strobe
(no byte write strobe). (MCTRL, FTMCTRL)

ROM switches:

-romwidth [8|16|32]
Set the rom bit width. Valid values are 8, 16 or 32. (MCTRL, FTMCTRL, SRCTRL, FTSRCTRL, FT-
SRCTRL8)

-romrws <n>
Set n number of wait-states for rom reads. (MCTRL, FTMCTRL, SSRCTRL)

-romwws <n>
Set n number of wait-states for rom writes. (MCTRL, FTMCTRL, SSRCTRL)

-romws <n>
Set n number of wait-states for rom reads and writes. (MCTRL, FTMCTRL, SSRCTRL)

SRAM switches:

-nosram
Disable SRAM and map SDRAM to the whole plug and play bar. (MCTRL, FTMCTRL, SSRCTRL)

-nosram5
Disable SRAM bank 5 detection. (MCTRL, FTMCTRL)

-ram <kB>
Overrides the auto-probed amount of static ram bank size. Bank size is given in kilobytes. (MCTRL, FTM-
CTRL)

-rambanks <n>
Overrides the auto-probed number of populated ram banks. (MCTRL, FTMCTRL)

-ramwidth [8|16|32]
Overrides the auto-probed ram bit width. Valid values are 8, 16 or 32. (MCTRL, FTMCTRL)

-ramrws <n>
Set n number of wait-states for ram reads. (MCTRL, FTMCTRL)

-ramwws <n>
Set n number of wait-states for ram writes. (MCTRL, FTMCTRL)

-ramws <n>
Set n number of wait-states for rom reads and writes. (MCTRL, FTMCTRL)

SDRAM switches:

-cas <cycles>
Programs SDRAM to either 2 or 3 cycles CAS latency and RAS/CAS delay. Default is 2. (MCTRL, FTM-
CTRL, SDCTRL, FTSDCTRL)

-ddr2cal
Run delay calibration routine on start-up before probing memory (see ddr2delay scan com-
mand).(DDR2SPA) (DDR2SPA)

-nosdram
Disable SDRAM. (MCTRL, FTMCTRL)

-ref <us>
Set the refresh reload value, default is 7.8us (64ms, 8,192-cycle refresh). (MCTRL, FTMCTRL, SDCTRL,
FTSDCTRL)

-regmem
Enable registered memory. (DDR2SPA)

-trcd <cycles>
Programs SDRAM to either 2 or 3 cycles RAS/CAS delay. Default is 2. (DDRSPA, DDR2SPA)

-trfc <ns>
Programs the SDRAM trfc to the specified timing. (MCTRL, FTMCTRL, DDRSPA, DDR2SPA, SDC-
TRL, FTSDCTRL)

-trp3
Programs the SDRAM trp timing to 3. Default is 2. (MCTRL, FTMCTRL, DDRSPA, DDR2SPA, SDC-
TRL, FTSDCTRL)

-twr
Programs the SDRAM twr to the specified timing. (DDR2SPA)

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 91

-sddcs <value>
Enable double chip select mode. (GR740 SDCTRL)

-sddel <value>
Set the SDCLK value. (MCTRL, FTMCTRL)

-sd2tdis
Disable SDRAM 2T signaling. By default 2T is enabled on GR740 during GRMON initialization. (GR740
SDCTRL)

-sdfreq <mhz>
Set SDRAM frequency in MHz. Default is the system frequency (except for GR740 which defaults to
50MHz). (MCTRL, FTMCTRL, SDCTRL, FTSDCTRL)

-gr712rc_hybrid
Enable GR712RC Hybrid mode where the memory is configured to CAS 2 and the GR712RC to CAS 3.
This can allow SDRAM to work at higher frequencies in a desktop environment. (FTMCTRL)

6.14.2. Commands

The driver for the Debug support unit provides the commands listed in Table 6.4.

Table 6.4. MEMCTRL commands

ddr2cfg1 Show or set the reset value of the memory register

ddr2cfg2 Show or set the reset value of the memory register

ddr2cfg3 Show or set the reset value of the memory register

ddr2cfg4 Show or set the reset value of the memory register

ddr2cfg5 Show or set the reset value of the memory register

ddr2delay Change read data input delay.

ddr2skew Change read skew

mcfg1 Show or set reset value of the memory controller register 1

mcfg2 Show or set reset value of the memory controller register 2

mcfg3 Show or set reset value of the memory controller register 3

sdcfg1 Show or set reset value of SDRAM controller register 1

sddel Show or set the SDCLK delay

spim Commands for the SPI memory controller

6.15. Memory scrubber

The MEMSCRUB core is accessed using the command scrub, see command description in Appendix B, Command
syntax for more information. It provides commands for reading the core’s status, and performing some basic
operations such as clearing memory.

The info sys command displays information on the configured burst length of the scrubber.

 memscrub0 Frontgrade Gaisler AHB Memory Scrubber
 AHB Master 1
 AHB: FFE01000 - FFE01100
 IRQ: 28
 burst length: 32 bytes

6.16. MIL-STD-1553B Interface

The info sys command displays the enabled parts of the core, and the configured codec clock frequency. The
GR1553B core is accessed using the command mil, see command description in Appendix B, Command syntax
for more information.

 gr1553b0 Frontgrade Gaisler MIL-STD-1553B Interface
 APB: FFA02000 - FFA02100
 IRQ: 26
 features: BC RT BM, codec clock: 20 MHz

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 92

 Device index: 0

Examining data structures. The mil bcx and mil bmx commands prints the contents of memory interpreted
as BC descriptors or BM entries, in human readable form, as seen in Example 6.4.

Example 6.4.

grmon3> mil bcx 0x40000080
 Address TType RTAddr:SA WC Bus Tries SlTime TO Options Result vStat BufPtr
 ========== ===== =========== == === ======= ====== == ======= ======= ==== ========
 0x40000080 BC-RT 05:30 1 B 01:Same 0 14 s NoRes 1 0000 40000000
 0x40000090 RT-BC 05:30 1 B 01:Same 0 14 s [Not written] 40000040
 0x400000a0 BC-RT 05:30 2 B 01:Same 0 14 s [Not written] 40000000
 0x400000b0 RT-BC 05:30 2 B 01:Same 0 14 s [Not written] 40000040
 0x400000c0 BC-RT 05:30 3 B 01:Same 0 14 s [Not written] 40000000
 0x400000d0 RT-BC 05:30 3 B 01:Same 0 14 s [Not written] 40000040
 0x400000e0 BC-RT 05:30 4 B 01:Same 0 14 s [Not written] 40000000

Data transfers. If the GR1553B core is BC capable, you can perform data transfers directly from the GRMON
command line. The commands exist in two variants: mil get and mil put that specify data directly on the command
line and through the terminal, and mil getm and mil putm that sends/receives data to an address in RAM.

In order to perform BC data transfers, you must have a temporary buffer in memory to store descriptors and data,
this is set up with the mil buf command.

The data transfer commands use the asynchronous scheduling feature of the core, which means that the command
can be performed even if a regular BC schedule is running in parallel. The core will perform the transfer while
the primary schedule is idle and will not affect the schedule. It can even be run with BC software active in the
background, as long as the software does not make use of asynchronous transfer lists.

If the primary schedule blocks the asynchronous transfer for more than two seconds, the transfer will be aborted
and an error message is printed. This can happen if the running schedule does not have any slack, or if it is stuck
in suspended state or waiting for a sync pulse with no previous slot time left. In this case, you need to stop the
ordinary processing (see mil halt) and retry the transfer.

Temporary data buffer. Many of the mil subcommands need a temporary data buffer in order to do their
work. The address of this buffer is set using the mil buf command and defaults to the start of RAM. By default
the driver will read out the existing contents and write it back after the transfer is done, this can be changed using
the mil bufmode command.

If the core is on a different bus where the RAM is at another address range, the scratch area address in the core’s
address space should be given as an additional coreaddr argument to the mil buf command.

Halting and resuming. The mil halt command will stop and disable the RT,BC and BM parts of the core,
preventing them from creating further DMA and 1553 bus traffic during debugging. Before this is done, the current
enable state is stored, which allows it to later be restored using mil resume. The core is halted gracefully and the
command will wait for current ongoing transfers to finish.

The state preserved between mil halt and mil resume are:

• BC schedules' (both primary and async) states and next positions. If schedule is not stopped, the last transfer
status is also preserved (as explained below)

• BC IRQ ring position
• RT address, enable status, subaddress table location, mode code control register, event log size and position
• BM enable status, filter settings, ring buffer pointers, time tag setup

State that is not preserved is:

• IRQ set/clear status
• BC schedule time register and current slot time left.
• RT bus words and sync register
• RT and BM timer values
• Descriptors and other memory contents

For the BC, some extra handling is necessary as the last transfer status is not accessible via the register interface.
In some cases, the BC must be probed for the last transfer status by running a schedule with conditional suspends
and checking which ones are taken. This requires the temporary data buffer to be setup (see mil buf).

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 93

Loop-back test. The debug driver contains a loop-back test command mil lbtest for testing 1553 transmission
on both buses between two devices. In this test, one of the devices is configured as RT with a loop-back subaddress
30. The other device is configured as BC, sends and receives back data with increasing transfer size up to the
maximum of 32 words.

The mil lbtest command needs a 16K RAM scratch area, which is either given as extra argument or selected using
the mil buf command as described in the previous section.

Before performing the loop-back test, the routine performs a test of the core’s internal time base, by reading out
the timer value at a time interval, and displays the result. This is to quickly identify if the clock provided to the
core has the wrong frequency.

In the RT case, the command first configures the RT to the address given and enables subaddress 30 in loop-
back mode with logging. The RT event log is then polled and events arriving are printed out to the console. The
command exits after 60 seconds of inactivity.

In the BC case, the command sets up a descriptor list with alternating BC-to-RT and RT-to-BC transfers of in-
creasing size. After running through the list, the received and transmitted data are compared. This is looped twice,
for each bus.

6.17. PCI

The debug driver for the PCI cores are mainly useful for PCI host systems. It provides a command that initializes
the host. The initialization sets AHB to PCI memory address translation to 1:1, AHB to PCI I/O address translation
to 1:1, points BAR1 to 0x40000000 and enables PCI memory space and bus mastering, but it will not configure
target bars. To configure the target bars on the pci bus, call pci conf after the core has been initialized. Commands
for scanning the bus, disabling byte twisting and displaying information are also provided.

The PCI cores are accessed using the command pci, see command description in Appendix B, Command syntax
for more information. Supported cores are GRPCI, GRPCI2 and PCIF.

The PCI commands have been split up into several sub commands in order for the user to have full control over
what is modified. The init command initializes the host controller, which may not be wanted when the LEON target
software has set up the PCI bus. The typical two different use cases are, GRMON configures PCI or GRMON scan
PCI to viewing the current configuration. In the former case GRMON can be used to debug PCI hardware and
the setup, it enables the user to set up PCI so that the CPU or GRMON can access PCI boards over I/O, Memory
and/or Configuration space and the PCI board can do DMA to the 0x40000000 AMBA address. The latter case
is often used when debugging LEON PCI software, the developer may for example want to see how Linux has
configured PCI but not to alter anything that would require Linux to reboot. Below are command sequences of
the two typical use cases on the ML510 board:

grmon3> pci init

grmon3> pci conf

 PCI devices found:

 Bus 0 Slot 1 function: 0 [0x8]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x5451 (M5451 PCI AC-Link Controller Audio Device)
 IRQ INTA# LINE: 0
 BAR 0: 1201 [256B]
 BAR 1: 82206000 [4kB]

 Bus 0 Slot 2 function: 0 [0x10]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x1533 (M1533/M1535/M1543 PCI to ISA Bridge [Aladdin IV/V/V+])

 Bus 0 Slot 3 function: 0 [0x18]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x5457 (M5457 AC'97 Modem Controller)
 IRQ INTA# LINE: 0
 BAR 0: 82205000 [4kB]
 BAR 1: 1101 [256B]

 Bus 0 Slot 6 function: 0 [0x30] (BRIDGE)
 Vendor id: 0x3388 (Hint Corp)
 Device id: 0x21 (HB6 Universal PCI-PCI bridge (non-transparent mode))
 Primary: 0 Secondary: 1 Subordinate: 1
 I/O: BASE: 0x0000f000, LIMIT: 0x00000fff (DISABLED)

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 94

 MEMIO: BASE: 0x82800000, LIMIT: 0x830fffff (ENABLED)
 MEM: BASE: 0x80000000, LIMIT: 0x820fffff (ENABLED)

 Bus 0 Slot 9 function: 0 [0x48] (BRIDGE)
 Vendor id: 0x104c (Texas Instruments)
 Device id: 0xac23 (PCI2250 PCI-to-PCI Bridge)
 Primary: 0 Secondary: 2 Subordinate: 2
 I/O: BASE: 0x00001000, LIMIT: 0x00001fff (ENABLED)
 MEMIO: BASE: 0x82200000, LIMIT: 0x822fffff (ENABLED)
 MEM: BASE: 0x82100000, LIMIT: 0x821fffff (ENABLED)

 Bus 0 Slot c function: 0 [0x60]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x7101 (M7101 Power Management Controller [PMU])

 Bus 0 Slot f function: 0 [0x78]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x5237 (USB 1.1 Controller)
 IRQ INTA# LINE: 0
 BAR 0: 82204000 [4kB]

 Bus 1 Slot 0 function: 0 [0x100]
 Vendor id: 0x102b (Matrox Electronics Systems Ltd.)
 Device id: 0x525 (MGA G400/G450)
 IRQ INTA# LINE: 0
 BAR 0: 80000008 [32MB]
 BAR 1: 83000000 [16kB]
 BAR 2: 82800000 [8MB]
 ROM: 82000001 [128kB] (ENABLED)

 Bus 2 Slot 2 function: 0 [0x210]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x5237 (USB 1.1 Controller)
 IRQ INTB# LINE: 0
 BAR 0: 82202000 [4kB]

 Bus 2 Slot 2 function: 1 [0x211]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x5237 (USB 1.1 Controller)
 IRQ INTC# LINE: 0
 BAR 0: 82201000 [4kB]

 Bus 2 Slot 2 function: 2 [0x212]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x5237 (USB 1.1 Controller)
 IRQ INTD# LINE: 0
 BAR 0: 82200000 [4kB]

 Bus 2 Slot 2 function: 3 [0x213]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x5239 (USB 2.0 Controller)
 IRQ INTA# LINE: 0
 BAR 0: 82203200 [256B]

 Bus 2 Slot 3 function: 0 [0x218]
 Vendor id: 0x1186 (D-Link System Inc)
 Device id: 0x4000 (DL2000-based Gigabit Ethernet)
 IRQ INTA# LINE: 0
 BAR 0: 1001 [256B]
 BAR 1: 82203000 [512B]
 ROM: 82100001 [64kB] (ENABLED)

When analyzing the system, the sub commands info and scan can be called without altering the hardware config-
uration:

grmon3> pci info

 GRPCI initiator/target (in system slot):

 Bus master: yes
 Mem. space en: yes
 Latency timer: 0x0
 Byte twisting: disabled

 MMAP: 0x8
 IOMAP: 0xfff2

 BAR0: 0x00000000
 PAGE0: 0x40000001
 BAR1: 0x40000000
 PAGE1: 0x40000000

grmon3> pci scan
 Warning: PCI driver has not been initialized

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 95

 Warning: PCI driver has not been initialized

 PCI devices found:

 Bus 0 Slot 1 function: 0 [0x8]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x5451 (M5451 PCI AC-Link Controller Audio Device)
 IRQ INTA# LINE: 0
 BAR 0: 1201 [256B]
 BAR 1: 82206000 [4kB]

 Bus 0 Slot 2 function: 0 [0x10]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x1533 (M1533/M1535/M1543 PCI to ISA Bridge [Aladdin IV/V/V+])

 Bus 0 Slot 3 function: 0 [0x18]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x5457 (M5457 AC'97 Modem Controller)
 IRQ INTA# LINE: 0
 BAR 0: 82205000 [4kB]
 BAR 1: 1101 [256B]

 Bus 0 Slot 6 function: 0 [0x30] (BRIDGE)
 Vendor id: 0x3388 (Hint Corp)
 Device id: 0x21 (HB6 Universal PCI-PCI bridge (non-transparent mode))
 Primary: 0 Secondary: 1 Subordinate: 1
 I/O: BASE: 0x0000f000, LIMIT: 0x00000fff (DISABLED)
 MEMIO: BASE: 0x82800000, LIMIT: 0x830fffff (ENABLED)
 MEM: BASE: 0x80000000, LIMIT: 0x820fffff (ENABLED)

 Bus 0 Slot 9 function: 0 [0x48] (BRIDGE)
 Vendor id: 0x104c (Texas Instruments)
 Device id: 0xac23 (PCI2250 PCI-to-PCI Bridge)
 Primary: 0 Secondary: 2 Subordinate: 2
 I/O: BASE: 0x00001000, LIMIT: 0x00001fff (ENABLED)
 MEMIO: BASE: 0x82200000, LIMIT: 0x822fffff (ENABLED)
 MEM: BASE: 0x82100000, LIMIT: 0x821fffff (ENABLED)

 Bus 0 Slot c function: 0 [0x60]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x7101 (M7101 Power Management Controller [PMU])

 Bus 0 Slot f function: 0 [0x78]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x5237 (USB 1.1 Controller)
 IRQ INTA# LINE: 0
 BAR 0: 82204000 [4kB]

 Bus 1 Slot 0 function: 0 [0x100]
 Vendor id: 0x102b (Matrox Electronics Systems Ltd.)
 Device id: 0x525 (MGA G400/G450)
 IRQ INTA# LINE: 0
 BAR 0: 80000008 [32MB]
 BAR 1: 83000000 [16kB]
 BAR 2: 82800000 [8MB]
 ROM: 82000001 [128kB] (ENABLED)

 Bus 2 Slot 2 function: 0 [0x210]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x5237 (USB 1.1 Controller)
 IRQ INTB# LINE: 0
 BAR 0: 82202000 [4kB]

 Bus 2 Slot 2 function: 1 [0x211]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x5237 (USB 1.1 Controller)
 IRQ INTC# LINE: 0
 BAR 0: 82201000 [4kB]

 Bus 2 Slot 2 function: 2 [0x212]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x5237 (USB 1.1 Controller)
 IRQ INTD# LINE: 0
 BAR 0: 82200000 [4kB]

 Bus 2 Slot 2 function: 3 [0x213]
 Vendor id: 0x10b9 (ULi Electronics Inc.)
 Device id: 0x5239 (USB 2.0 Controller)
 IRQ INTA# LINE: 0
 BAR 0: 82203200 [256B]

 Bus 2 Slot 3 function: 0 [0x218]
 Vendor id: 0x1186 (D-Link System Inc)
 Device id: 0x4000 (DL2000-based Gigabit Ethernet)
 IRQ INTA# LINE: 0

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 96

 BAR 0: 1001 [256B]
 BAR 1: 82203000 [512B]
 ROM: 82100001 [64kB] (ENABLED)

grmon3> pci bus reg

grmon3> info sys pdev0 pdev5 pdev10
 pdev0 Bus 00 Slot 01 Func 00 [0:1:0]
 vendor: 0x10b9 ULi Electronics Inc.
 device: 0x5451 M5451 PCI AC-Link Controller Audio Device
 class: 040100 (MULTIMEDIA)
 BAR1: 00001200 - 00001300 I/O-32 [256B]
 BAR2: 82206000 - 82207000 MEMIO [4kB]
 IRQ INTA# -> IRQX
 pdev5 Bus 00 Slot 09 Func 00 [0:9:0]
 vendor: 0x104c Texas Instruments
 device: 0xac23 PCI2250 PCI-to-PCI Bridge
 class: 060400 (PCI-PCI BRIDGE)
 Primary: 0 Secondary: 2 Subordinate: 2
 I/O Window: 00001000 - 00002000
 MEMIO Window: 82200000 - 82300000
 MEM Window: 82100000 - 82200000
 pdev10 Bus 02 Slot 03 Func 00 [2:3:0]
 vendor: 0x1186 D-Link System Inc
 device: 0x4000 DL2000-based Gigabit Ethernet
 class: 020000 (ETHERNET)
 subvendor: 0x1186, subdevice: 0x4004
 BAR1: 00001000 - 00001100 I/O-32 [256B]
 BAR2: 82203000 - 82203200 MEMIO [512B]
 ROM: 82100000 - 82110000 MEM [64kB]
 IRQ INTA# -> IRQW

A configured PCI system can be registered into the GRMON device handling system similar to the on-chip AMBA
bus devices, controlled using the pci bus commands. GRMON will hold a copy of the PCI configuration in memory
until a new pci conf, pci bus unreg or pci scan is issued. The user is responsible for updating GRMON's PCI
configuration if the configuration is updated in hardware. The devices can be inspected from info sys and Tcl
variables making read and writing PCI devices configuration space easier. The Tcl variables are named in a similar
fashion to AMBA devices, for example puts $pdev0::status prints the STATUS register of PCI device0. See pci
bus reference description and Appendix C, Tcl API.

Only the pci info command has any effect on non-host systems.

Also note that the pci conf command can fail to configure all found devices if the PCI address space addressable
by the PCI Host controller is smaller than the amount of memory needed by the devices.

The pci scan command may fail if the PCI buses (PCI-PCI bridges) haven't been enumerated correctly in a mul-
ti-bus PCI system.

After registering the PCI bus into GRMON's device handling system commands may access device information
and Tcl may access variables (PCI configuration space registers). Accessing bad PCI regions may lead to target
deadlock where the debug-link may disconnect/hang. It is the user's responsibility to make sure that GRMON's PCI
information is correct. The PCI bus may need to be re-scanned/unregistered when changes to the PCI configuration
has been made by the target OS running on the LEON.

6.17.1. PCI Trace

The pci trace commands are supported by the cores PCITRACE, GRPCI2 and GRPCI2_TB. The commands can
be used to control the trace and viewing trace data. With the commands it is possible to set up trigger conditions that
must match to set the trigger off. When the triggering condition is matched the AHBTRACE stops the recording
of the PCI bus and the log is available for inspection using the pci trace log command. The pci trace tdelay
command can be used to delay the stop of the trace recording after a triggering match.

The info sys command displays the size of the trace buffer in number of lines.

 pcitrace0 Frontgrade Gaisler 32-bit PCI Trace Buffer
 APB: C0101000 - C0200000
 Trace buffer size: 128 lines
 pci0 Frontgrade Gaisler GRPCI2 PCI/AHB bridge
 AHB Master 5
 AHB: C0000000 - D0000000

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 97

 AHB: FFF00000 - FFF40000
 APB: 80000600 - 80000700
 IRQ: 6
 Trace buffer size: 1024 lines
 pcitrace1 Frontgrade Gaisler GRPCI2 Trace buffer
 APB: 80040000 - 80080000
 Trace buffer size: 1024 lines

6.18. GR716B Real-Time Accelerator

The GR716B Real-Time Accelerator (RTA) consist of a small sub-system that includs a LEON3 core. The RTAs
must have their clocks enabled in the clock gating unit before they can be used. When connecting to a system
where they have been enabled, GRMON will reset the RTA cores and detach them (i.e. put them in a power-down
free running mode). GRMON can take control of the cores using the command attach.

When attached to GRMON the RTA cores can be controlled like normal multi-core system CPUs. See Sec-
tion 6.3.2, “Commands” for a list of cpu related commands can also be used to display information and control
the execution.

grmon3> cpu
 cpu 0: enabled active
 cpu 1: detached
 cpu 2: detached

grmon3> attach cpu2
 CPU 2: Power down mode

grmon3> cpu
 cpu 0: enabled active
 cpu 1: detached
 cpu 2: enabled

grmon3> reg cpu2
 INS LOCALS OUTS GLOBALS
 0: 00000000 00000000 00000000 00000000
 1: 00000000 00000000 00000000 00000000
 2: 00000000 00000000 00000000 00000000
 3: 00000000 00000000 00000000 00000000
 4: 00000000 00000000 00000000 00000000
 5: 00000000 00000000 00000000 00000000
 6: 00000000 00000000 70003ff0 00000000
 7: 00000000 00000000 00000000 00000000

 psr: f30000e0 wim: 00000002 tbr: 70000000 y: 00000000

 pc: 70000000 unimp
 npc: 70000004 unimp

Some commands, e.g. bp or load, will only associated it's data with the main cpu by default. To associate them
with an RTA core it must be specified when issuing the command.

grmon3> load /opt/sparc-bcc-2.3.0-gcc/src/libdrv/examples/rta/main_cpu.elf
 31000000 .text 16.9kB / 16.9kB [===============>] 100%
 30000000 .rodata 704B [===============>] 100%
 300002c0 .data 352B [===============>] 100%
 Total size: 17.91kB (575.25kbit/s)
 Entry point 0x31000038
 Image /opt/sparc-bcc-2.3.0-gcc/src/libdrv/examples/rta/main_cpu.elf loaded

grmon3> load /opt/sparc-bcc-2.3.0-gcc/src/libdrv/examples/rta/rta1.elf cpu2
 71000000 .text 12.8kB / 12.8kB [===============>] 100%
 70000000 .rodata 464B [===============>] 100%
 700001d0 .data 352B [===============>] 100%
 Total size: 13.55kB (563.33kbit/s)
 Entry point 0x71000038
 Image /opt/sparc-bcc-2.3.0-gcc/src/libdrv/examples/rta/rta1.elf loaded

grmon3> bp main
 Software breakpoint 1 at <main>

grmon3> bp main cpu2
 Software breakpoint 2 at <main>

grmon3> bp
 NUM ADDRESS MASK TYPE EN CPU SYMBOL FILE
 1 : 0x310003c8 (soft) Y 0 main+0
 2 : 0x710003dc (soft) Y 2 main+0

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 98

It is possible to run and debug an application on a RTA only. Easiest way to do this is to connect to a RTA
subsystem (see startup swiches below), but it is also possible when connected to the whole system. To achieve it
the RTA core must be attached and the main cpu must be disabled so GRMON will keep it in debug mode. The
command run cannot be used to start the RTA core, since it will put the RTA core in power-down before starting
the core. Instead the reset should be called, followed by a command to wake up the RTA using the interrupt
controller and then calling go to start it. The RTA core can be woken up by using the irq boot command or by
writing one of the the IRQMP core registers called mpstat or boot.

grmon3> attach cpu1
 CPU 1: Power down mode

grmon3> cpu active 1

grmon3> cpu disable 0

grmon3> load /opt/sparc-bcc-2.3.0-gcc/src/libdrv/examples/rta/rta0.elf cpu1
 61000000 .text 12.8kB / 12.8kB [===============>] 100%
 60000000 .rodata 464B [===============>] 100%
 600001d0 .data 352B [===============>] 100%
 Total size: 13.55kB (563.33kbit/s)
 Entry point 0x61000038
 Image /opt/sparc-bcc-2.3.0-gcc/src/libdrv/examples/rta/rta0.elf loaded

grmon3> bp main cpu1
 Software breakpoint 1 at <main>

grmon3> reset

grmon3> irq boot irqmp1

grmon3> go
 CPU 1: Breakpoint 1 hit
 0x610003dc: f83ba030 std %i4, [%sp + 0x30] <main+0>

6.18.1. Switches

Below is a list of commandline switches that affects how the RTA driver interacts with the hardware.

-sys gr716b-rta0
-sys gr716b-rta1

Connect to the RTA0 or RTA1 sub-system only. GRMON will only discover and initialize the RTA sub-
system core. The core will be attached to GRMON during startup and it will not enter power-down mode,
(i.e. it will behave like a normal single core system). Accesses to whole system can still me made using
the mem or wmem.

-gr716b-norta
Disable GRMON support for GR716B RTA subsystem and analog parts. The cores will be deteached from
GRMON during startup and nothing will be initlized. The intention of this option is to create a environment
where the cores run in the background without interferance from GRMON. The command system can be
used to attach and initlize the cores.

6.19. SPI

The SPICTRL debug driver provides commands to configure the SPI controller core. The driver also enables the
user to perform simple data transfers. The info sys command displays the core’s FIFO depth and the number of
available slave select signals.

 spi0 Frontgrade Gaisler SPI Controller
 APB: C0100000 - C0100100
 IRQ: 23
 FIFO depth: 8, 2 slave select signals
 Maximum word length: 32 bits
 Supports automated transfers
 Supports automatic slave select
 Controller index for use in GRMON: 0

The SPICTRL core is accessed using the command spi, see command description in Appendix B, Command syntax
for more information.

The debug driver has bindings to the SPI memory device layer. These commands are accessed via spi flash. Please
see Section 3.11.4, “SPI memory device” for more information.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 99

For information about the SPI memory controller (SPIMCTRL), see Section 6.14, “Memory controllers ”.

6.20. SpaceWire router

The SPWROUTER core is accessed using the command spwrtr, see command description in Appendix B, Com-
mand syntax for more information. It provides commands to display the core’s registers. The command can also
be used to display or setup the routing table.

The info reg command only displays a subset of all the registers available. Add -all to the info reg command to
print all registers, or specify one or more register to print a subset. Add -l to info reg to list all the register names.

grmon3> info reg -all -l spwrtr0
 GRSPW Router
 0xff880004 rtpmap_1 Port 1 routing table map
 0xff880008 rtpmap_2 Port 2 routing table map
 0xff88000c rtpmap_3 Port 3 routing table map
 ...

grmon3> info reg spwrtr0::pctrl_2 spwrtr0::rtpmap_2 spwrtr0::rtpmap_64
 GRSPW Router
 0xff880808 Port 2 control 0x1300002c
 GRSPW Router
 0xff880008 Port 2 routing table map 0x00000021
 GRSPW Router
 0xff880100 Logical addr. 64 routing table map 0x00001c38

In addition, all registers and register fields are available as variables, see Tcl API more information.

The info sys command displays how many ports are implemented in the router.

 spwrtr0 Frontgrade Gaisler GRSPW Router
 AHB: FF880000 - FF881000
 Instance id: 67
 SpW ports: 8 AMBA ports: 4 FIFO ports: 0

6.21. SVGA frame buffer

The SVGACTRL debug driver implements functions to report the available video clocks in the SVGA frame
buffer, and to display screen patters for testing. The info sys command will display the available video clocks.

 svga0 Frontgrade Gaisler SVGA frame buffer
 AHB Master 2
 APB: C0800000 - C0800100
 clk0: 25.00 MHz clk1: 25.00 MHz clk2: 40.00 MHz clk3: 65.00 MHz

The SVGACTRL core is accessed using the command svga, see command description in Appendix B, Command
syntax for more information.

The svga draw test_screen command will show a simple grid in the resolution specified via the format selection.
The color depth can be either 16 or 32 bits.

The svga draw file command will determine the resolution of the specified picture and select an appropriate
format (resolution and refresh rate) based on the video clocks available to the core. The required file format is
ASCII PPM which must have a suitable amount of pixels. For instance, to draw a screen with resolution 640x480,
a PPM file which is 640 pixels wide and 480 pixels high must be used. ASCII PPM files can be created with, for
instance, the GNU Image Manipulation Program (The GIMP).

The svga custom period horizontal-active-video horizontal-front-porch horizon-
tal-sync horizontal-back-porch vertical-active-video vertical-front-porch
vertical-sync vertical-back-porch command can be used to specify a custom format. The custom
format will have precedence when using the svga draw command.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 100

7. Support

For support contact the support team at support@gaisler.com.

When contacting support, please identify yourself in full, including company affiliation and site name and address.
Please identify exactly what product that is used, specifying if it is an IP core (with full name of the library
distribution archive file), component, software version, compiler version, operating system version, debug tool
version, simulator tool version, board version, etc.

The support service is only for paying customers with a support contract.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 101

Appendix A. Command index
This section lists all documented commands available in GRMON4.

Table A.1. GRMON command oveview

Command
Name

Description

about Show information about GRMON

ahb Print AHB transfer entries in the trace buffer

amem Asynchronous bus read

attach Stop execution and attach GRMON to processor again

at Print AHB transfer entries in the trace buffer

batch Execute batch script

bdump Dump memory to a file

bload Load a binary file

bp Add, delete or list breakpoints

bt Print backtrace

cctrl Display or set cache control register

cont Continue execution

cpu Enable, disable CPU or select current active cpu

dcache Show, enable or disable data cache

dccfg Display or set data cache configuration register

dcom Print or clear debug link statistics

ddr2cfg1 Show or set the reset value of the memory register

ddr2cfg2 Show or set the reset value of the memory register

ddr2cfg3 Show or set the reset value of the memory register

ddr2cfg4 Show or set the reset value of the memory register

ddr2cfg5 Show or set the reset value of the memory register

ddr2delay Change read data input delay.

ddr2skew Change read skew

detach Resume execution with GRMON detached from processor

disassemble Disassemble memory

dtb Setup a DTB to be uploaded or print filenames of DTB files

dump Dump memory to a file

edcl Print or set the EDCL ip

eeload Load a file into an EEPROM

ehci Control the USB host ECHI core

ei Error injection

ep Set entry point

execsh Run commands in the execution shell

exit Exit GRMON

flash Write, erase or show information about the flash

float Display FPU registers

forward Control I/O forwarding

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 102

Command
Name

Description

fpgaload Upload bitstream to GR740-MINI board FPGA

gdb Control the built-in GDB remote server

go Start execution without any initialization

gr1553b MIL-STD-1553B Interface commands

grcg Control clockgating

grpwm Control the GRPWM core

grtmtx Control GRTM devices

gui Control the graphical user interface

help Print all commands or detailed help for a specific command

hist Print AHB transfer or instruction entries in the trace buffer

i2c Commands for the I2C masters

icache Show, enable or disable instruction cache

iccfg Display or set instruction cache configuration register

info Show information

inst Print instruction entries in the trace buffer

iommu Control IO memory management unit

irq Force interrupts or read IRQ(A)MP status information

l2cache L2 cache control

l3stat Control Leon3 statistics unit

l4stat Control Leon4 statistics unit

la Control the LOGAN core

leon Print leon specific registers

load Load a file or print filenames of uploaded files

mcfg1 Show or set reset value of the memory controller register 1

mcfg2 Show or set reset value of the memory controller register 2

mcfg3 Show or set reset value of the memory controller register 3

mdio Show PHY registers

memb AMBA bus 8-bit memory read access, list a range of addresses

memd AMBA bus 64-bit memory read access, list a range of addresses

memh AMBA bus 16-bit memory read access, list a range of addresses

mem AMBA bus 32-bit memory read access, list a range of addresses

mil MIL-STD-1553B Interface commands

mmu Translate virtual adresses

nolog Suppress stdout of a command

pci Control the PCI bus master

perf Measure performance

phyaddr Set the default PHY address

profile Enable, disable or show simple profiling

quit Quit the GRMON console

reg Show or set integer registers.

reset Reset drivers

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 103

Command
Name

Description

rtg4fddr Print initialization sequence

rtg4serdes Print initialization sequence

run Reset and start execution

rviommu Control RISC-V IOMMU

scrub Control memory scrubber

sdcfg1 Show or set reset value of SDRAM controller register 1

sddel Show or set the SDCLK delay

sf2mddr Print initialization sequence

sf2serdes Print initialization sequence

shell Execute shell process

silent Suppress stdout of a command

spim Commands for the SPI memory controller

spi Commands for the SPI controller

spwrtr Spacewire router information

stack Set or show the intial stack-pointer

step Step one or more instructions

stop Interrupts current CPU execution

svga Commands for the SVGA controller

symbols Load, print or lookup symbols

system Attach or detach devices

thread Show OS-threads information or backtrace

timer Show information about the timer devices

tmode Select tracing mode between none, processor-only, AHB only or both

tps Control the TPS service

uhci Controll the USB host UHCI core

usrsh Run commands in threaded user shell

va Translate a virtual address

verify Verify that a file has been uploaded correctly

vmemb AMBA bus 8-bit virtual memory read access, list a range of addresses

vmemd AMBA bus 64-bit virtual memory read access, list a range of addresses

vmemh AMBA bus 16-bit virtual memory read access, list a range of addresses

vmem AMBA bus 32-bit virtual memory read access, list a range of addresses

vwmemb AMBA bus 8-bit virtual memory write access

vwmemd AMBA bus 64-bit virtual memory write access

vwmemh AMBA bus 16-bit virtual memory write access

vwmems Write a string to an AMBA bus virtual memory address

vwmem AMBA bus 32-bit virtual memory write access

walk Translate a virtual address, print translation

wash Clear or set memory areas

wmdio Set PHY registers

wmemb AMBA bus 8-bit memory write access

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 104

Command
Name

Description

wmemd AMBA bus 64-bit memory write access

wmemh AMBA bus 16-bit memory write access

wmems Write a string to an AMBA bus memory address

wmem AMBA bus 32-bit memory write access

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 105

Appendix B. Command syntax
This section lists the syntax of all documented commands available in GRMON4

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 106

1. about - syntax

NAME

about - Show information about GRMON

SYNOPSIS

about

DESCRIPTION
about

Show information about GRMON

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 107

2. ahb - syntax

NAME

ahb - Print AHB transfer entries in the trace buffer

SYNOPSIS

ahb ?length?
ahb subcommand ?args...?

DESCRIPTION
ahb ?length?

Print the AHB trace buffer. The ?length? entries will be printed, default is 10.
ahb break boolean

Enable or disable if the AHB trace buffer should break the CPU into debug mode. If disabled it will freeze
the buffer and the CPU will continue to execute. Default value of the boolean is true.

ahb force ?boolean?

Enable or disable the AHB trace buffer even when the processor is in debug mode. Default value of the
boolean is true.

ahb performance ?boolean?

Enable or disable the filter on the signals connected to the performance counters, see “LEON3 Statistics
Unit (L3STAT)” and “LEON4 Statistics Unit (L4STAT)”. Only available for DSU3 version 2 and above,
and DSU4.

ahb timer ?boolean?

Enable the timetag counter when in debug mode. Default value of the boolean is true. Only available for
DSU3 version 2 and above, and DSU4.

ahb delay cnt

If cnt is non-zero, the CPU will enter debug-mode after delay trace entries after an AHB watchpoint was
hit.

ahb filter reads ?boolean?
ahb filter writes ?boolean?
ahb filter addresses ?boolean? ?address mask?

Enable or disable filtering options if supported by the DSU core. When enabling the addresses filter, the
second AHB breakpoint register will be used to define the range of the filter. Default value of the boolean
is true. If left out, then the address and mask will be ignored. They can also be set with the command ahb
filter range. (Not available in all implementations)

ahb filter range address mask

Set the base address and mask that the AHB trace buffer will include if the address filtering is enabled.
(Only available in some DSU4 implementations).

ahb filter bwmask mask
ahb filter dwmask mask

Set which AHB bus/data watchpoints that the filter will affect.
ahb filter mmask mask
ahb filter smask mask

Set which AHB masters or slaves connected to the bus to exclude. (Only available in some DSU4 imple-
mentations)

ahb status

Print AHB trace buffer settings.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 108

RETURN VALUE

Upon successful completion, ahb returns a list of trace buffer entries. Each entry is a sublist on the format format:
{AHB time addr data rw trans size master lock resp bp}. The data field is a sublist of 1,2 or 4 words
with MSB first, depending on the size of AMBA bus. Detailed description about the different fields can be found in
the DSU core documentation in document grip.pdf. [http://download.gaisler.com/products/GRLIB/doc/grip.pdf]

The other subcommands have no return value.

EXAMPLE

Print 10 rows

grmon3> ahb
 TIME ADDRESS D[127:96] D[95:64] D[63:32] D[31:0] TYPE ...
 266718 FF900004 00000084 00000084 00000084 00000084 read ...
 266727 FF900000 0000000D 0000000D 0000000D 0000000D write ...
 266760 000085C0 C2042054 80A06000 02800003 01000000 read ...
 266781 000085D0 C2260000 81C7E008 91E80008 9DE3BF98 read ...
 266812 0000B440 00000000 00000000 00000000 00000000 read ...
 266833 0000B450 00000000 00000000 00000000 00000000 read ...
 266899 00002640 02800005 01000000 C216600C 82106040 read ...
 266920 00002650 C236600C 40001CBD 90100011 1080062E read ...
 266986 00000800 91D02000 01000000 01000000 01000000 read ...
 267007 00000810 91D02000 01000000 01000000 01000000 read ...

TCL returns:
{AHB 266718 0xFF900004 {0x00000084 0x00000084 0x00000084 0x00000084} R 0 2 2
0 0 0 0} {AHB 266727 0xFF900000 {0x0000000D 0x0000000D 0x0000000D 0x0000000D}
W 0 2 2 0 0 0 0} {AHB 266760 0x000085C0 {0xC2042054 0x80A06000 0x02800003
0x01000000} R 0 2 4 1 0 0 0} {AHB 266781 0x000085D0 ...

Print 2 rows

grmon3> ahb 2
 TIME ADDRESS D[127:96] D[95:64] D[63:32] D[31:0] TYPE ...
 266986 00000800 91D02000 01000000 01000000 01000000 read ...
 267007 00000810 91D02000 01000000 01000000 01000000 read ...

TCL returns:
{AHB 266986 0x00000800 {0x91D02000 0x01000000 0x01000000 0x01000000} R 0 2 4
1 0 0 0} {AHB 267007 0x00000810 {0x91D02000 0x01000000 0x01000000 0x01000000}
R 0 3 4 1 0 0 0}

SEE ALSO

Section 3.4.9, “Using the trace buffer”
tmode

frontgrade.com/gaisler
http://download.gaisler.com/products/GRLIB/doc/grip.pdf
http://download.gaisler.com/products/GRLIB/doc/grip.pdf

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 109

3. amem - syntax

NAME

amem - Asynchronous bus read

SYNOPSIS

amem
amem list
amem subcommand ?arg?

DESCRIPTION

The amem command is used to schedule bus read transfers for later retrieval of the result. Each transfer is asso-
ciated with a handle that has to be created before starting a transfer. Multiple concurrent transfers are supported
by using separate handles per transfer.

amem
amem list

List all amem handles and their states. An amem state is one of IDLE, RUN or DONE.
amem add name

Create a new amem handle named named name. The name is used as an identifier for the handle when
using other amem commands.

amem delete name

Delete the amem handle named name.
amem eval name address length

Schedule a bus read access for the handle name to read length bytes, starting at address. If a transfer
is already in progress, then the command will fail with the error code set to EBUSY.

amem wait name

Wait for an access to finish. The command returns when handle name is no longer in the RUN state.
amem result name

Return the result of a previous read access if finished, or raise an error if not finished.
amem prio name ?value?

Display or set debug link priority for a handle. 0 is the highest priority and 4 is the lowest.
amem state name

Display and return the current state of a handle.

RETURN VALUE

amem list returns a list of amem handle entries. Each entry is a sublist of the format: {name state}.

amem result returns the read data.

amem prio returns the priority.

amem state returns one of the strings IDLE, RUN or DONE.

EXAMPLE

Create a handle named myhandle and schedule a read of 1 MiB from address 0 in the background.

grmon3> amem add myhandle
 Added amem handle: myhandle

grmon3> amem eval myhandle 0 0x100000

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 110

grmon3> set myresult [amem result myhandle]

List handles

grmon3> amem list

grmon3> amem list
 NAME STATE ADDRESS LENGTH PRIO NREQ BYTES ERRORS
 myhandle IDLE - - 4 1 1048576 0
 test0 DONE 0x00000004 0x00000064 4 1 100 0

SEE ALSO

mem
Section 3.4.7, “Displaying memory contents”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 111

4. attach - syntax

attach - Stop execution and attach GRMON to processor again

SYNOPSIS

attach

DESCRIPTION

attach

This command will stop the execution on all CPUs that was started by the command detach and attach
GRMON again.

RETURN VALUE

Command attach has no return value.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 112

5. at - syntax

NAME

at - Print AHB transfer entries in the trace buffer

SYNOPSIS

at ?length?
at subcommand ?args...?

DESCRIPTION
at ?length? ?devname?

Print the AHB trace buffer. The ?length? entries will be printed, default is 10.
at bp1 ?options? ?address mask? ?devname?
at bp2 ?options? ?address mask? ?devname?

Sets AHB trace buffer breakpoint to address and mask. The AHB trace buffer will stop recording when
triggered. Available options are -read or -write.

at bsel ?bus? ?devname?

Selects bus to trace (not available in all implementations)
at delay ?cnt? ?devname?

Delay the stops the trace buffer recording after match.
at disable ?devname?

Stops the trace buffer recording
at enable ?devname?

Arms the trace buffer and starts recording.
at filter reads ?boolean? ?devname?
at filter writes ?boolean? ?devname?
at filter addresses ?boolean? ?address mask? ?devname?

Enable or disable filtering options if supported by the core. When enabling the addresses filter, the second
AHB breakpoint register will be used to define the range of the filter. Default value of the boolean is true. If
left out, then the address and mask will be ignored. They can also be set with the command at filter range.

at filter range ?address mask? ?devname?

Set the base address and mask that the AHB trace buffer will include if the address filtering is enabled.
at filter mmask mask ?devname?
at filter smask mask ?devname?

Set which AHB masters or slaves connected to the bus to exclude. (Only available in some DSU4 imple-
mentations)

at log ?devname?

Print the whole AHB trace buffer.
at status ?devname?

Print AHB trace buffer settings.

RETURN VALUE

Upon successful completion, at returns a list of trace buffer entries , on the same format as the command ahb. Each
entry is a sublist on the format format: {AHB time addr data rw trans size master lock resp irq
bp}. The data field is a sublist of 1,2 or 4 words with MSB first, depending on the size of AMBA bus. Detailed
description about the different fields can be found in the DSU core documentation in document grip.pdf. [http://
download.gaisler.com/products/GRLIB/doc/grip.pdf]

frontgrade.com/gaisler
http://download.gaisler.com/products/GRLIB/doc/grip.pdf
http://download.gaisler.com/products/GRLIB/doc/grip.pdf
http://download.gaisler.com/products/GRLIB/doc/grip.pdf

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 113

The other sub commands have no return value.

EXAMPLE

Print 10 rows

grmon3> at
 TIME ADDRESS D[127:96] D[95:64] D[63:32] D[31:0] TYPE ...
 266718 FF900004 00000084 00000084 00000084 00000084 read ...
 266727 FF900000 0000000D 0000000D 0000000D 0000000D write ...
 266760 000085C0 C2042054 80A06000 02800003 01000000 read ...
 266781 000085D0 C2260000 81C7E008 91E80008 9DE3BF98 read ...
 266812 0000B440 00000000 00000000 00000000 00000000 read ...
 266833 0000B450 00000000 00000000 00000000 00000000 read ...
 266899 00002640 02800005 01000000 C216600C 82106040 read ...
 266920 00002650 C236600C 40001CBD 90100011 1080062E read ...
 266986 00000800 91D02000 01000000 01000000 01000000 read ...
 267007 00000810 91D02000 01000000 01000000 01000000 read ...

TCL returns:
{AHB 266718 0xFF900004 {0x00000084 0x00000084 0x00000084 0x00000084} R 0 2 2 0
0 0 0 0} {AHB 266727 0xFF900000 {0x0000000D 0x0000000D 0x0000000D 0x0000000D}
W 0 2 2 0 0 0 0 0} {AHB 266760 0x000085C0 {0xC2042054 0x80A06000 0x02800003
0x01000000} R 0 2 4 1 0 0 0 0} {AHB 266781 0x000085D0 ...

Print 2 rows

grmon3> at 2
 TIME ADDRESS D[127:96] D[95:64] D[63:32] D[31:0] TYPE ...
 266986 00000800 91D02000 01000000 01000000 01000000 read ...
 267007 00000810 91D02000 01000000 01000000 01000000 read ...

TCL returns:
{AHB 266986 0x00000800 {0x91D02000 0x01000000 0x01000000 0x01000000} R 0 2 4 1
0 0 0 0} {at 267007 0x00000810 {0x91D02000 0x01000000 0x01000000 0x01000000}
R 0 3 4 1 0 0 0 0}

SEE ALSO

Section 3.4.9, “Using the trace buffer”
tmode

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 114

6. batch - syntax

NAME

batch - Execute a batch script

SYNOPSIS

batch ?options? filename ?args...?

DESCRIPTION
batch

Execute a TCL script. The batch is similar to the TCL command source, except that the batch command
sets up the variables argv0, argv and argc in the global namespace. While executing the scrip, argv0 will
contain the script filename, argv will contain a list of all the arguments that appear after the filename and
argc will be the length of argv.

OPTIONS
-echo

Echo all commands/procedures that the TCL interpreter calls.
-prefix ?string?

Print a prefix on each row when echoing commands. Has no effect unless -echo is also set.

RETURN VALUE

Command batch has no return value.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 115

7. bdump - syntax

NAME

bdump - Dump memory to a file.

SYNOPSIS

bdump address length ?filename?

DESCRIPTION

The bdump command may be used to store memory contents a binary file. It's an alias for 'dump -binary'.

bdump address length ?filename?

Dumps length bytes, starting at address, to a file in binary format. The default name of the file is
"grmon-dump.bin"

RETURN VALUE

Command bdump has no return value.

EXAMPLE

Dump 32KiB of data from address 0x40000000
grmon3> bdump 0x40000000 32768

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 116

8. bload - syntax

NAME

bload - Load a binary file

SYNOPSIS

bload ?options...? filename ?address? ?cpu#?

DESCRIPTION

The bload command may be used to upload a binary file to the system. It's an alias for 'load -binary'. When a file
is loaded, GRMON will reset the memory controllers registers first.

bload ?options...? filename ?address? ?cpu#?

The load command may be used to upload the file specified by filename. If the address argument
is present, then binary files will be stored at this address, if left out then they will be placed at the base
address of the detected RAM. The cpu# argument can be used to specify which CPU it belongs to. The
options is specified below.

OPTIONS
-delay ms

The -delay option can be used to specify a delay between each word written. If the delay is non-zero
then the maximum block size is 4 bytes.

-bsize bytes

The -bsize option may be used to specify the size blocks of data in bytes that will be written. Sizes that
are not even words may require a JTAG based debug link to work properly. See Chapter 5, Debug link
for more information.

-wprot

If the -wprot option is given then write protection on the core will be disabled

RETURN VALUE

Command bload returns a guessed entry point.

EXAMPLE

Load and then verify a binary data file at a 16MiB offset into the main memory starting at 0x40000000.

grmon3> bload release/ramfs.cpio.gz 0x41000000
grmon3> verify release/ramfs.cpio.gz 0x41000000

SEE ALSO

Section 3.4.2, “Uploading application and data to target memory”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 117

9. bp - syntax

NAME

bp - Add, delete or list breakpoints

SYNOPSIS

bp ?address? ?cpu#?
bp ?filename:linenum? ?cpu#?
bp type ?options? address ?mask? ?cpu#?
bp type ?options? filename:linenum ?mask? ?cpu#?
bp delete ?index?
bp enable ?index?
bp disable ?index?
bp map
bp map vaddr paddr
bp map clear

DESCRIPTION

The bp command may be used to list, add or delete all kinds of breakpoints. The address parameter that is
specified when creating a breakpoint can either be an address or symbol. This parameter can be replaced with the
filename and line number of a source file, if debug information is available, a so called line breakpoint. If there
is no instruction corresponding to that particular line number, the breakpoint will instead be planted on the next
line number that do have one. This happens, for instance, if you try to plant a breakpoint on a line consisting of a
comment or a declaration. mask parameter can be used to break on a range of addresses. If omitted, the default
value is 0xfffffffc (i.e. a single address).

Software breakpoints are inserted by replacing an instruction in the memory with a breakpoint instruction. I.e. any
CPU in a multi-core system that encounters this breakpoint will break.

Hardware breakpoints/watchpoints will be set to a single CPU core.

When adding a breakpoint a cpu# may optionally be specified to associate the breakpoint with a CPU. The CPU
index will be used to lookup symbols, MMU translations and for hardware breakpoints/watchpoints.

bp ?address? ?cpu#?

When omitting the address parameter this command will list breakpoints. If the address parameter is spec-
ified, it will create a software breakpoint.

bp ?filename:linenum? ?cpu#?

When omitting the filename, semi-colon and linenum parameters this command will list breakpoints. If the
parameters are specified, it will create a software breakpoint.

bp soft address ?cpu#?

Create a software breakpoint.
bp soft filename:linenum ?cpu#?

Create a software breakpoint.
bp hard address ?mask? ?cpu#?

Create a hardware breakpoint.
bp hard filename:linenum ?mask? ?cpu#?

Create a hardware breakpoint.
bp watch ?options? address ?mask? ?cpu#?

Create a hardware watchpoint. The options -read/-write can be used to make it watch only reads or
writes, by default it will watch both reads and writes.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 118

bp bus ?options? address ?mask? ?cpu#?

Create an AMBA-bus watchpoint. The options -read/-write can be used to make it watch only reads
or writes, by default it will watch both reads and writes.

bp data ?options? value ?mask? ?cpu#?

Create an AMBA data watchpoint. The value and mask parameters may be up to 128 bits, but number of
bits used depends on width of the bus on the system. Valid options are -addr and -invert. If -addr
is specified, then also -read or -write are valid. See below for a description of the options.

bp delete ?index..?

When omitting the index all breakpoints will be deleted. If one or more indexes are specified, then those
breakpoints will be deleted. Listing all breakpoints will show the indexes of the breakpoints.

bp enable ?index..?

When omitting the index all breakpoints will be enabled. If one or more indexes are specified, then those
breakpoints will be enabled. Listing all breakpoints will show the indexes of the breakpoints.

bp disable ?index..?

When omitting the index all breakpoints will be disabled. If one or more indexes are specified, then those
breakpoints will be disabled. Listing all breakpoints will show the indexes of the breakpoints.

bp map

List the memory mapping used for soft breakpoints when the MMU is not yet available.
bp map vaddr paddr

Setup memory mapping from virtual to physical addresses to be used with soft breakpoints when the MMU
is not yet available.

bp map clear

Clears the memory mapping used for soft breakpoints when the MMU is not yet available.

OPTIONS
-read

This option will enable a watchpoint to only watch loads at the specified address. The -read and -write
are mutual exclusive.

-write

This option will enable a watchpoint to only watch stores at the specified address. The -read and -write
are mutual exclusive.

-addr address mask

This option will combine an AMBA data watchpoint with a a bus watchpoint so it will only trigger if a
value is read accessed from a certain address range.

-invert

The AMBA data watchpoint will trigger if value is NOT set.
--

End of options. This might be needed to set if value the first parameter after the options is negative.

RETURN VALUE

Command bp returns an breakpoint id when adding a new breakpoint.

When printing all breakpoints, a list will be returned containing one element per breakpoint. Each element has
the format: {ID ADDR MASK TYPE ENABLED CPU SYMBOL FILE {DATA INV DATAMASK}}. AMBA
watchpoints and AMBA data watchpoints will only have associated CPUs if has a symbol. The last subelement is
only valid for AMBA data watchpoints. The file subelement will show filename and line number of the breakpoint
and is only valid for line breakpoints. The line number of a line breakpoint is adjusted if there is no corresponding
instruction on that line, but the line number shown by this command is the requested one.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 119

EXAMPLE

Create a software breakpoint at the symbol main:
grmon3> bp soft main

Create an AMBA bus watchpoint that watches loads in the address range of 0x40000000 to 0x400000FF:
grmon3> bp bus -read 0x40000000 0xFFFFFF00

Create a breakpoint at line 1000 in the file stanford.c:

grmon3> bp stanford.c:1000

Listing breakpoints:

grmon3> bp
NUM ADDRESS MASK TYPE EN CPU SYMBOL FILE
 1 : 0x40000000 0xffffff00 (bus r) Y 0 1 __bcc_entry_point+0
 2 : 0x4000498c (soft) Y 0 Fft+804 stanford.c:1000
 3 : 0x40004c18 (soft) Y 0 1 main+4
 4 : 0x40001958 0xffffffff (hard) Y 0 1 tower+4

SEE ALSO

Section 3.4.4, “Inserting breakpoints and watchpoints”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 120

10. bt - syntax

NAME

bt - Print backtrace

SYNOPSIS

bt ?cpu#?

DESCRIPTION
bt ?cpu#?

Print backtrace on current active CPU, optionally specify which CPU to show.

RETURN VALUE

Upon successful completion bt returns a list of tuples, where each tuple consist of a PC- and SP-register values.

EXAMPLE

Show backtrace on current active CPU
grmon3> bt

TCL returns:
{1073746404 1342177032} {1073746020 1342177136} {1073781172 1342177200}

Show backtrace on CPU 1
grmon3> bt cpu1

TCL returns:
{1073746404 1342177032} {1073746020 1342177136} {1073781172 1342177200}

SEE ALSO

Section 1.6, “NOEL-V Support”
Section 3.4.6, “Backtracing function calls”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 121

11. cctrl - syntax

NAME

cctrl - Display or set cache control register

SYNOPSIS

cctrl ?options? ?value? ?cpu#?
cctrl flush ?cpu#?

DESCRIPTION
cctrl ?options? ?value? ?cpu#?

Display or set cache control register
cctrl flush ?cpu#?

Flushes both instruction and data cache

OPTIONS
-v
-x

If option -v is specified, then GRMON will print the field names and values

If option -x is specified, then GRMON will interpret the specified value, and print its field information,
without writing the the value to the register. This option requires the value argument.

RETURN VALUE

Upon successful completion cctrl will return the value of the cache control register.

SEE ALSO

-nic and -ndc switches described in Section 6.3.1, “Switches”

SEE ALSO

Section 3.4.16, “CPU cache support”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 122

12. cont - syntax

NAME

cont - Continue execution

SYNOPSIS

cont ?options? ?count?

DESCRIPTION
cont ?options? ?count?

This command will continue the execution of instructions on the active CPU at the current location.

If the count parameter is set then the CPU will run the specified number of instructions. Note that the
count parameter is only supported by the DSU4.

OPTIONS

-noret

Do not evaluate the return value. Then this options is set, no return value will be set.

RETURN VALUE

Upon successful completion cont returns a list of signals, one per CPU. Possible signal values are SIGBUS,
SIGFPE, SIGILL, SIGINT, SIGSEGV, SIGTERM or SIGTRAP. If a CPU is disabled, then a empty string will
be returned instead of a signal value.

EXAMPLE

Continue execution from current PC
grmon3> cont

SEE ALSO

Section 3.4.3, “Running applications”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 123

13. cpu - syntax

cpu - Enable, disable CPU or select current active CPU

SYNOPSIS

cpu
cpu active cpuid
cpu count
cpu enable cpuid
cpu disable cpuid

DESCRIPTION

Control processors in LEON3 multi-processor (MP) systems.

cpu

Without parameters, the cpu command prints the processor status.
cpu active cpuid

Set current active CPU
cpu count cpuid

Return the number of CPUs
cpu enable cpuid
cpu disable cpuid

Enable/disable the specified CPU.

RETURN VALUE

Upon successful completion cpu returns the active CPU and a list of booleans, one per CPU, describing if they
are enabled or disabled.

The command cpu count returns the number of CPUs

The ohter sub commands has no return value.

EXAMPLE

Set current active to CPU 1
grmon3> cpu active 1

Print processor status in a two-processor system when CPU 1 is active and disabled.
grmon3> cpu

TCL returns:
1 {1 0}

SEE ALSO

Section 3.4.13, “Multi-processor support”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 124

14. dcache - syntax

NAME

dcache - Show, enable or disable data cache

SYNOPSIS

dcache ?boolean? ?cpu#?
dcache diag ?windex? ?lindex? ?cpu#?
dcache flush ?cpu#?
dcache way windex ?lindex? ?word value? ?cpu#?
dcache tag windex lindex ?value? ?tbmask? ?cpu#?
dcache stag windex lindex ?value? ?tbmask? ?cpu#?

DESCRIPTION

In all forms of the dcache command, the optional parameter ?cpu#? specifies which CPU to operate on. The
active CPU will be used if parameter is omitted.

dcache ?boolean? ?cpu#?

If ?boolean? is not given then show the content of all ways. If ?boolean? is present, then enable or
disable the data cache.

dcache diag ?windex? ?lindex? ?cpu#?

Check if the data cache is consistent with the memory. Optionally a specific way or line can be checked.
dcache flush ?cpu#?

Flushes the data cache
dcache way windex ?lindex? ?word value? ?cpu#?

Show the contents of specified way windex or optionally a specific line ?lindex?. If word and value
is set then it will write a single 32-bit word into position specified by word.

dcache tag windex lindex ?value? ?tbmask? ?cpu#?

Read or write a raw data cache tag value. Way and line is selected with windex and lindex. The param-
eter value, if given, is written to the tag. The optional parameter tbmask is xor-ed with the test check
bits generated by the cache controller during the write.

dcache stag windex lindex ?value? ?tbmask? ?cpu#?

Read or write a raw data cache snoop tag value. Way and line is selected with windex and lindex. The
parameter value, if given, is written to the snoop tag. The optional parameter tbmask is xor-ed with the
test check bits generated by the cache controller during the write.

RETURN VALUE

Command dcache diag returns a list of all inconsistent entries. Each element of the list contains CPU id, way id,
line id, word id, physical address, cached data and the data from the memory.

Command dcache tag returns the tag value on read.

The other dcache commands have no return value.

SEE ALSO

Section 3.4.16, “CPU cache support”
icache

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 125

15. dccfg - syntax

NAME

dccfg - Display or set data cache configuration register

SYNOPSIS

dccfg ?value? ?cpu#?

DESCRIPTION
dccfg ?value? ?cpu#?

Display or set data cache configuration register for the active CPU. GRMON will not keep track of this
register value and will not reinitialize the register when starting or resuming software execution.

RETURN VALUE

Upon successful completion dccfg will return the value of the data cache configuration register.

SEE ALSO

-nic and -ndc switches described in Section 6.3.1, “Switches”

SEE ALSO

Section 3.4.16, “CPU cache support”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 126

16. dcom - syntax

NAME

dcom - Print or clear debug link statistics

SYNOPSIS

dcom
dcom clear

DESCRIPTION
dcom
dcom clear

Print debug link statistics.

Clear debug link statistics.

RETURN VALUE

Upon successful completion dcom has no return value.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 127

17. ddr2cfg1 - syntax

ddr2cfg1 - Show or set the reset value of the memory register

SYNOPSIS

ddr2cfg1 ?value?

DESCRIPTION

ddr2cfg1 ?value?

Set the reset value of the memory register. If value is left out, then the reset value will be printed.

RETURN VALUE

Upon successful completion ddrcfg1 returns a the value of the register.

SEE ALSO

Section 6.14, “Memory controllers ”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 128

18. ddr2cfg2 - syntax

ddr2cfg2 - Show or set the reset value of the memory register

SYNOPSIS

ddr2cfg2 ?value?

DESCRIPTION

ddr2cfg2 ?value?

Set the reset value of the memory register. If value is left out, then the reset value will be printed.

RETURN VALUE

Upon successful completion ddrcfg2 returns a the value of the register.

SEE ALSO

Section 6.14, “Memory controllers ”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 129

19. ddr2cfg3 - syntax

ddr2cfg3 - Show or set the reset value of the memory register

SYNOPSIS

ddr2cfg3 ?value?

DESCRIPTION

ddr2cfg3 ?value?

Set the reset value of the memory register. If value is left out, then the reset value will be printed.

RETURN VALUE

Upon successful completion ddrcfg3 returns a the value of the register.

SEE ALSO

Section 6.14, “Memory controllers ”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 130

20. ddr2cfg4 - syntax

ddr2cfg4 - Show or set the reset value of the memory register

SYNOPSIS

ddr2cfg4 ?value?

DESCRIPTION

ddr2cfg4 ?value?

Set the reset value of the memory register. If value is left out, then the reset value will be printed.

RETURN VALUE

Upon successful completion ddrcfg4 returns a the value of the register.

SEE ALSO

Section 6.14, “Memory controllers ”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 131

21. ddr2cfg5 - syntax

ddr2cfg5 - Show or set the reset value of the memory register

SYNOPSIS

ddr2cfg5 ?value?

DESCRIPTION

ddr2cfg5 ?value?

Set the reset value of the memory register. If value is left out, then the reset value will be printed.

RETURN VALUE

Upon successful completion ddrcfg5 returns a the value of the register.

SEE ALSO

Section 6.14, “Memory controllers ”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 132

22. ddr2delay - syntax

ddr2delay - Change read data input delay

SYNOPSIS

ddr2delay ?subcommand? ?args...?

DESCRIPTION

ddr2delay inc ?steps?
ddr2delay dec ?steps?
ddr2delay ?value?

Use inc to increment the delay with one tap-delay for all data bytes. Use dec to decrement all delays. A
value can be specified to calibrate each data byte separately. The value is written to the 16 LSB of the
DDR2 control register 3.

ddr2delay reset

Set the delay to the default value.
ddr2delay scan

The scan subcommand will run a calibration routine that searches over all tap delays and read delay values
to find working settings. Supports only Xilinx Virtex currently

The scan may overwrite beginning of memory.

RETURN VALUE

Command ddr2delay has no return value.

SEE ALSO

Section 6.14, “Memory controllers ”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 133

23. ddr2skew - syntax

ddr2skew - Change read skew

SYNOPSIS

ddr2skew ?subcommand? ?args...?

DESCRIPTION

ddr2skew inc ?steps?
ddr2skew dec ?steps?

Increment/decrement the delay with one step. Commands inc and dec can optionally be given the number
of steps to increment/decrement as an argument.

ddr2skew reset

Set the skew to the default value.

RETURN VALUE

Command ddr2skew has no return value.

SEE ALSO

Section 6.14, “Memory controllers ”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 134

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 135

24. detach - syntax

detach - Resume execution with GRMON detached from processor

SYNOPSIS

detach

DESCRIPTION

detach

This command will detach GRMON and resume execution on enabled CPUs.

RETURN VALUE

Command detach has no return value.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 136

25. disassemble - syntax

disassemble - Disassemble memory

SYNOPSIS

disassemble ?options? ?address? ?length? ?cpu#?

DESCRIPTION

disassemble ?options? ?address? ?length? ?cpu#?

Disassemble memory. If length is left out it defaults to 16 and the address defaults to current PC value.
Symbols may be used as address.

OPTIONS
-p

Interpret addresses as physical addresses.
-r start stop

Disassemble a range of instructions between address start and up to stop (excluding stop). The argu-
ments address and length will be ignored

RETURN VALUE

Command disassemble has no return value.

SEE ALSO

Section 3.4.7, “Displaying memory contents”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 137

26. dtb - syntax

NAME

dtb - Setup a DTB to be uploaded or print filenames of DTB files.

SYNOPSIS

dtb ?options...? filename ?cpu#...?
dtb subcommand ?arg?

DESCRIPTION

The dtb command may be used to setup a DTB file that will be upload to the system when GRMON resets the
system. It can also be used to list all DTBs that will be loaded.

dtb ?options...? filename ?cpu#...?

The dtb command may be used to setup a DTB file, specified by filename, that will be uploaded when
GRMON resets the system. The DTBs will be placed at the top of the stack or the address specified by the
-addr. GRMON will also write the address of the DTB to input registers of the CPU:s so the application
can find it. On RISC-V architectures the address will stored in register a1. One or more cpu# arguments
can be used to specify which CPUs it belongs to or all CPUs if omitted

dtb clear ?cpu#...?

This command will clear the information about the DTBs that will be loaded to the CPU:s. If one or more
cpu# arguments is specified, then only those CPUs will be listed.

dtb load ?cpu#...?

This command will load the DTBs and write the address to CPU:s register. It can be used to manually
initialize the system. If one or more cpu# arguments are specified, then only those CPUs will be initialized.

dtb show ?cpu#...?

This command will list which DTBs that will be loaded to the CPU:s. If one or more cpu# arguments are
specified, then only those CPUs will be listed.

dtb print ?cpu#...?

This command will decompile and print the current DTBs that will be loaded to the CPU:s. If one or more
cpu# arguments are specified, then only those CPUs will be listed.

dtb overlay ?options...? filename ?cpu#...?

Add an overlay to the DTB. Valid options are -dts. One or more cpu# arguments can be used to specify
which CPUs it belongs to or all CPUs if omitted

dtb delete path ?prop? ?cpu#...?

Delete a property or a node from the DTB. It the property is left out, then then it will delete the whole node.
dtb str path ?prop? ?values...? ?cpu#...?

Append string to the property on the node. It the property is left out, then then it will only try to create an
empty node. It the values is left out, then then it will only try to create an empty property.

dtb u64 path prop ?values...? ?cpu#...?

Append 64-bit unsigned integer to the property on the node. It the values is left out, then then it will only
try to create an empty property.

dtb u32 path prop ?values...? ?cpu#...?

Append 32-bit unsigned integer to the property on the node. It the values is left out, then then it will only
try to create an empty property.

dtb bytes path prop ?values...? ?cpu#...?

Append bytes to the property on the node. It the values is left out, then then it will only try to create an
empty property.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 138

OPTIONS
-bsize bytes

The -bsize option may be used to specify the size blocks of data in bytes that will be written. Sizes that
are not even words may require a JTAG based debug link to work properly. See Chapter 5, Debug link
more information.

-delay ms

The -delay option can be used to specify a delay between each word written. If the delay is non-zero
then the default block size will be 4 bytes, but can be changed using the -bsize option.

-wprot

If the -wprot option is given then write protection on the core will be disabled
-addr

Specify address where the DTB will be stored.
-rom

If the DTB is already present in the memory and only the input registers needs to be setup. and -addr
is required.

-dts

Filename specifies a DTS that will be compiled into a DTB.

RETURN VALUE

Command dtb show returns the a list. Each entry is a sublist on the format format:{filename address {cpu-
ids}}}. The filename will be be the keyword ROM if -rom was used. The address will be the keyword "Stack"
if it located on the stack.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 139

27. dump - syntax

NAME

dump - Dump memory to a file.

SYNOPSIS

dump ?options...? address length ?filename?

DESCRIPTION
dump ?options...? address length ?filename?

Dumps length bytes, starting at address, to a file in Motorola SREC format. The default name of the
file is "grmon-dump.srec"

OPTIONS
-binary

The -binary option can be used to store data to a binary file
-bsize

The -bsize option may be used to specify the size blocks of data in bytes that will be read. Sizes that
are not even words may require a JTAG based debug link to work properly. See Chapter 5, Debug link
more information.

-append

Set the -append option to append the dumped data to the end of the file. The default is to truncate the
file to zero length before storing the data into the file.

RETURN VALUE

Command dump has no return value.

EXAMPLE

Dump 32KiB of data from address 0x40000000
grmon3> dump 0x40000000 32768

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 140

28. edcl - syntax

NAME

edcl - Print or set the EDCL ip

SYNOPSIS

edcl ?ip? ?greth#?

DESCRIPTION
edcl ?ip? ?greth#?

If an ip-address is supplied then it will be set, otherwise the command will print the current EDCL ip. The
EDCL will be disabled if the ip-address is set to zero and enabled if set to a normal address. If more than
one device exists in the system, the dev# can be used to select device, default is dev0.

RETURN VALUE

Command edcl has no return value.

EXAMPLE

Set ip-address 192.168.0.123
grmon3> edcl 192.168.0.123

SEE ALSO

Section 6.4, “Ethernet controller”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 141

29. eeload - syntax

NAME

eeload - Load a file into an EEPROM

SYNOPSIS

eeload ?options...? filename ?cpu#?

DESCRIPTION

The eeload command may be used to upload a file to a EEPROM. It's an alias for 'load -delay 1 -bsize 4 -wprot'.
When a file is loaded, GRMON will reset the memory controllers registers first.

eeload ?options...? filename ?address? ?cpu#?

The load command may be used to upload the file specified by filename. It will also try to disable write
protection on the memory core. If the address argument is present, then binary files will be stored at this
address, if left out then they will be placed at the base address of the detected RAM. The cpu# argument
can be used to specify which CPU it belongs to. The options is specified below.

OPTIONS
-binary

The -binary option can be used to force GRMON to interpret the file as a binary file.
-bsize bytes

The -bsize option may be used to specify the size blocks of data in bytes that will be written. Valid
value are 1, 2 or 4. Sizes 1 and 2 may require a JTAG based debug link to work properly See Chapter 5,
Debug link more information.

RETURN VALUE

Command eeload returns the entry point.

EXAMPLE

Load and then verify a hello_world application

grmon3> eeload ../hello_world/hello_world
grmon3> verify ../hello_world/hello_world

SEE ALSO

Section 3.4.2, “Uploading application and data to target memory”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 142

30. ehci - syntax

NAME

ehci - Control the USB host's EHCI core

SYNOPSIS

ehci subcommand ?args...?

DESCRIPTION
ehci endian ?devname?

Displays the endian conversion setting
ehci capregs ?devname?

Displays contents of the capability registers
ehci opregs ?devname?

Displays contents of the operational registers
ehci reset ?devname?

Performs a Host Controller Reset

RETURN VALUE

Upon successful completion, ehci have no return value.

SEE ALSO

Section 6.6, “USB Host Controller”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 143

31. ei - syntax

NAME

ei - Inject errors in CPU cache and register files

SYNOPSIS

ei subcommand ?args...?

DESCRIPTION

Errors will be injected according to the CPU configuration. Injection of errors in ITAG, IDATA, DTAG, DDATA,
STAG, IU register file and FP register file is supported.

ei un ?nr t?

Enable error injection, uniform error distribution mode. nr errors are inserted during the time period of t
minutes. Errors are uniformly distributed over the time period.

ei av ?r?

Enable error injection, average error rate mode. Errors will be inserted during the whole program execution.
Average error rate is r errors per second.

ei disable

Disable error injection.
ei log ?filename?
ei log disable

Enable/disable error injection log. The error injection log is saved in file log_file.
ei stat
ei stat ?enable?
ei stat ?disable?

Show, enable or disable error injection statistics. When enabled, the SEU correction counters are modified.
This option should not be used with software which itself monitors SEU error counters.

ei prob
ei prob itag dtag idata ddata stag iurf fprf ?cpu#?

Show or set probability of each error injection target. Each injection target has an associated probability
value from 0.0 to 1.0. The value 0.0 means that no errors will be injected in the target. A value higher than
0.0 means that the error will be injected with the specified probability.

When no parameter is given to ei prob, then the currently configured values are listed. The second form
configures the probabilities from user supplied decimal numbers. Target CPU is selected with the cpu#
parameter. If no CPU parameter is given, then the current CPU is used.

RETURN VALUE

Command ei has no return value.

EXAMPLE

Configure ei to inject errors only in the data cache tags and instruction cache tags (DTAG and ITAG) of cpu0:

grmon3> ei prob 1.0 1.0 0.0 0.0 0.0 0.0 0.0 cpu0

grmon3> ei prob 0.0 0.0 0.0 0.0 0.0 0.0 0.0 cpu1

List the currently configured target probabilities:
grmon3> ei prob

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 144

SEE ALSO

Section 3.10.2, “LEON3-FT error injection”
icache
dcache

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 145

32. ep - syntax

NAME

ep - Set entry point

SYNOPSIS

ep ?cpu#?
ep ?--? value ?cpu#?
ep disable ?cpu#?

DESCRIPTION
ep ?cpu#?

Show current active CPUs entry point, or the CPU specified by cpu#.
ep ?--? value ?cpu#?

Set the current active CPUs entry point, or the CPU specified by cpu#. The only option available is '--' and
it marks the end of options. It should be used if a symbol name is in conflict with a subcommand (i.e. a
symbol called "disable").

ep disable ?cpu#?

Remove the entry point from the current active CPU or the the CPU specified by cpu#.

RETURN VALUE

Upon successful completion ep returns a list of entry points, one for each CPU. If cpu# is specified, then only the
entry point for that CPU will be returned.

EXAMPLE

Set current active CPUs entry point to 0x40000000
grmon3> ep 0x40000000

SEE ALSO

Section 3.4.13, “Multi-processor support”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 146

33. grmon::execsh - syntax

NAME

grmon::execsh - Run commands in the execution shell

SYNOPSIS

grmon::execsh
grmon::execsh subcommand ?arg?

DESCRIPTION

The grmon::execsh command is used to execute scripts in the execution shell. This command should be used to
manage execution hooks.

grmon::execsh eval ?options? arg ?arg ...?

Evaluate command arg in the execution shell. If a script is running, then the command will fail with the
error result set to EBUSY.

grmon::execsh interrupt name

Send an interrupt to the execution shell.

OPTIONS
-u

The -u option may be added to use the I/O forwarding settings of the calling shell.

RETURN VALUE

grmon::execsh eval will return the result from the script.

EXAMPLE

Install an execution hook

grmon::execsh eval {
 proc myhook1 {} {puts "Hello World"}
 lappend ::hooks::preexec ::myhook1
}

SEE ALSO

Section 3.5, “Tcl integration”
Appendix C, Tcl API

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 147

34. exit - syntax

NAME

exit - Shut down the GRMON application

SYNOPSIS

exit ?code?

DESCRIPTION

exit ?code?

Shut down the GRMON application. If an code is set the GRMON will set it as an exit code. Values between
0 and 255 are valid, other values will be saturated to 255. If no code is specified, then GRMON will set 0
as exit code if no internal error has occurred or a value greater or equal to 1 to indicate an internal error

RETURN VALUE

Command exit has no return value.

EXAMPLE

Shut down GRMON application with exit code 1.
grmon3> exit 1

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 148

35. flash - syntax

NAME

flash - Write, erase or show information about the flash

SYNOPSIS

flash
flash blank all
flash blank start ?stop?
flash burst ?boolean?
flash erase all
flash erase start ?stop?
flash load ?options...? filename ?address? ?cpu#?
flash verify ?options...? filename ?address?
flash lock all
flash lock start ?stop?
flash lockdown all
flash lockdown start ?stop?
flash query
flash scan ?addr?
flash status
flash unlock all
flash unlock start ?stop?
flash wbuf length
flash write address data

DESCRIPTION

GRMON supports programming of CFI compatible flash PROM attached to the external memory bus of LEON2
and LEON3 systems. Flash programming is only supported if the target system contains one of the following
memory controllers MCTRL, FTMCTRL, FTSRCTRL or SSRCTRL. The PROM bus width can be 8-, 16- or 32-
bit. It is imperative that the prom width in the MCFG1 register correctly reflects the width of the external prom. To
program 8-bit and 16-bit PROMs, the target system must also have at least one working SRAM or SDRAM bank.

When one of the flash commands are issued GRMON will probe for a CFI compatible memory at the beginning
of the PROM area. GRMON will only control one flash memory at the time. If there are multiple CFI compatible
flash memories connected to the PROM area, then it is possible to switch device using the command flash scan
addr. If the PROM width or bank size is changed in the memory controller registers are changed, then GRMON
will discard any probed CFI information, and a new flash scan command have to be issued.

There are many different suppliers of CFI devices, and some implements their own command set. The command
set is specified by the CFI query register 14 (MSB) and 13 (LSB). The value for these register can in most cases
be found in the datasheet of the CFI device. GRMON supports the command sets that are listed in Table 3.4,
“Supported CFI command set” in section Section 3.11.3, “CFI compatible Flash PROM”.

The sub commands erase, lock, lockdown and unlock works on memory blocks (the subcommand blank have
the same parameters, but operates on addresses). These commands operate on the block that the start address
belong. If the stop parameter is also given the commands will operate on all the blocks between and including
the blocks that the start and stop belongs to. I.a the keyword 'all' can be given instead of the start address,
then the command will operate on the whole memory.

flash

Print the flash memory configuration.
flash blank all
flash blank start ?stop?

Check that the flash memory is blank, i.e. can be re-programmed. See description above about the param-
eters.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 149

flash burst ?boolean?

Enable or disable flash burst write. Disabling the burst will decrease performance and requires either that
a CPU is available in the system or that a JTAG debug link is used. This feature is only has effect when a
8-bit or 16-bit Intel style flash memory that is connected to a memory controller that supports bursting.

flash erase all
flash erase start ?stop?

Erase a flash block. See description above about the parameters.
flash load ?options...? filename ?address? ?cpu#?

Program the flash memory with the contents file. The load command may be used to upload the file specified
by filename. If the address argument is present, then binary files will be stored at this address, if left
out then they will be placed at the base address of the detected ROM. The cpu# argument can be used
to specify which CPU it belongs to.

The -binary option can be used to force GRMON to interpret the file as a binary file.

The -erase option to automatically erase the flash before writing. It will only erase the blocks where
data will be written.

The -nolock option can be used to prevent GRMON from checking the protection bits to see if the block
is locked before trying to load data to the block.

flash verify ?options...? filename ?address?

Verify that the file filename has been uploaded correctly, if EDAC is enabled then the checkbits will
be verified as well. If the address argument is present, then binary files will be compared against data at
this address, if left out then they will be compared to data at the base address of the detected RAM.

The -binary option can be used to force GRMON to interpret the file as a binary file.

The -max option can be used to force GRMON to stop verifying when num errors have been found.
flash lock all
flash lock start ?stop?

Lock a flash block. See description above about the parameters.
flash lockdown all
flash lockdown start ?stop?

Lockdown a flash block. Work only on Intel-style devices which supports lock-down. See description above
about the parameters.

flash query

Print the flash query registers
flash scan ?addr?

Probe the address for a CFI flash. If the addr parameter is set, then GRMON will probe for a new memory
at the address. If the addr parameter is unset, GRMON will probe for a new memory at the beginning of
the PROM area. If the addr parameter is unset, and a memory has already been probed, then GRMON will
only return the address of the last probed memory.

flash status

Print the flash lock status register
flash unlock all
flash unlock start ?stop?

Unlock a flash block. See description above about the parameters.
flash wbuf length

Limit the CFI auto-detected write buffer length. Zero disables the write buffer command and will perform
single-word access only. -1 will reset to auto-detected value.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 150

flash write address data

Write a 32-bit data word to the flash at address addr.

RETURN VALUE

Command flash scan returns the base address of the CFI compatible memory.

The other flash commands has no return value.

EXAMPLE

A typical command sequence to erase and re-program a flash memory could be:

grmon3> flash unlock all
grmon3> flash erase all
grmon3> flash load file.prom
grmon3> flash lock all

SEE ALSO

Section 3.11.3, “CFI compatible Flash PROM”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 151

36. float - syntax

NAME

float - Display FPU registers

SYNOPSIS

float

DESCRIPTION
float

Display FPU registers

RETURN VALUE

Upon successful completion float returns 2 lists. The first list contains the values when the registers represents
floats, and the second list contain the double-values.

SEE ALSO

Section 3.4.5, “Displaying processor registers”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 152

37. forward - syntax

NAME

forward - Control I/O forwarding

SYNOPSIS

forward
forward list
forward enable devname ?channel?
forward disable devname
forward mode devname value
forward start

DESCRIPTION
forward
forward list

List all enabled devices is the current shell.
forward enable devname ?channel?

Enable I/O forwarding for a device. If a custom channel is not specified, then the default channel for the
shell will be enabled. The I/O forwarding configuration is stored per shell.

forward disable devname

Disable I/O forwarding for a device.
forward mode devname value

Set forwarding mode. Valid values are "loopback", "debug" or "none".
forward start

Start forwarding I/O in the current shell. When executing an application using GDB, this can be used
to redirect I/O to the command line shell instead of to GDB. Issue an interrupt (Ctrl-C) to return to the
GRMON prompt.

The forwarding can be started when the GRMON has detached from the system as well. It will poll the
UART regularly, use -poll us to set how often GRMON should poll.

RETURN VALUE

Upon successful completion forward has no return value.

EXAMPLE

Enable I/O forwarding
grmon3> forward enable uart0

Enable I/O forwarding to a file
grmon3> forward enable uart0 [open "grmon3.out" w]

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 153

38. fpgaload - syntax

NAME

fpgaload - Upload bitstream to GR740-MINI board FPGA.

SYNOPSIS

fpgaload ?options...? filename

DESCRIPTION

The fpgaload command may be used to upload a bitfile to the Lattice FPGA on the GR740-MINI board. See
GR740-MINI board documentation for additional information about usage and requirements.

fpgaload ?options...? filename

The fpgaload command may be used to upload the file specified by filename. The options are specified
below.

OPTIONS
-v

Produce verbose output
-f

Write bitstream in flash

RETURN VALUE

No return value

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 154

39. gdb - syntax

NAME

gdb - Control the built-in GDB remote server

SYNOPSIS

gdb ?port?
gdb eval arg ?arg ...?
gdb postload
gdb reset
gdb stop
gdb status

DESCRIPTION
gdb ?port?

Start the built-in GDB remote server, optionally listen to the specified port. Default port is 2222.
gdb eval arg ?arg ...?

Evaluate command arg in the GDB shell.
gdb postload

Called from the GDB prompt using a monitor command after a GDB load command has been issued to
do some CPU additional initialization.

gdb reset

Called from the GDB prompt using a monitor command to reset the system.
gdb stop

Stop the built-in GDB remote server.
gdb status

Print status

RETURN VALUE

Only the command 'gdb status' has a return value. Upon successful completion gdb status returns a tuple, where
the first value represents the status (0 stopped, 1 connected, 2 waiting for connection) and the second value is
the port number.

SEE ALSO

Section 3.7, “GDB interface”
Section 3.2, “Starting GRMON”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 155

40. go - syntax

go - Start execution without any initialization

SYNOPSIS

go ?options? ?address? ?count?

DESCRIPTION

go ?options? ?address? ?count?

This command will start the execution of instructions on the active CPU.

When omitting the address parameter this command will start execution at the entry point from the last
loaded application.

The command will clear the error mode of the CPUs, but not reset any drivers, unlike the run command.

If the count parameter is set then the CPU will run the specified number of instructions. Note that the
count parameter is only supported by the DSU4.

OPTIONS

-noret

Do not evaluate the return value. Then this options is set, no return value will be set.

RETURN VALUE

Upon successful completion go returns a list of signals, one per CPU. Possible signal values are SIGBUS, SIGFPE,
SIGILL, SIGINT, SIGSEGV, SIGTERM or SIGTRAP. If a CPU is disabled, then a empty string will be returned
instead of a signal value.

EXAMPLE

Execute instructions starting at 0x40000000.
grmon3> go 0x40000000

SEE ALSO

Section 3.4.3, “Running applications”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 156

41. gr1553b - syntax

gr1553b - MIL-STD-1553B Interface commands

SYNOPSIS

gr1553b ?subcommand? ?args...?

DESCRIPTION

The gr1553b command is an alias for the mil> command. See help of command mil> for more information.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 157

42. grcg - syntax

NAME

grcg - Control clock gating

SYNOPSIS

grcg subcommand ?args? ?grcg#?

DESCRIPTION

This command provides functions to control the GRCLKGATE core. If more than one core exists in the system,
then the name of the core to control should be specified as the last command option (after the subcommand). The
'info sys' command lists the controller names.

grcg clkinfo ?grcg#?

Show register values.
grcg enable number ?grcg#?
grcg disable number ?grcg#?

Enable or disable a clock gate. Argument number may be replaced by the keyword all.

RETURN VALUE

Upon successful completion grcg clkinfo returns three masks, where each bit of the masks represents a clock gate.
The first mask shows unlock-bits, the second enabled-bits and the third reset-bits.

The other sub commands has no return value.

EXAMPLE

Enable all clock gates
grmon3> grcg enable all

Clock enable function 7 on the GRCLKGATE core with index 1.
grmon3> grcg enable 7 grcg1

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 158

43. grpwm - syntax

NAME

grpwm - Control GRPWM core

SYNOPSIS

grpwm subcommand ?args...?

DESCRIPTION
grpwm info ?devname?

Displays information about the GRPWM core
grpwm wave ?devname?

Displays the waveform table

RETURN VALUE

Command grpwm wave returns a list of wave data.

The other grpwm commands have no return value.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 159

44. grtmtx - syntax

grtmtx - Control GRTM devices

SYNOPSIS

grtmtx ?subcommand? ?args...?

DESCRIPTION

grtmtx

Display status
grtmtx reset

Reset DMA and TM encoder
grtmtx release

Release TM encoder
grtmtx rate rate

Set rate register
grtmtx len nbytes

Set frame length (actual number of bytes)
grtmtx limit nbytes

Set limit length (actual number of bytes)
grtmtx on
grtmtx off

Enable/disable the TM encoder
grtmtx reg

List register contents
grtmtx conf

List design options

RETURN VALUE

Command grtmtx has no return value.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 160

45. gui - syntax

NAME

gui - Control the graphical user interface

SYNOPSIS

gui
gui status

DESCRIPTION
gui

When GRMON has been started in CLI mode this command can be used to start the graphical user interface.
This command has not effect if the GUI has already been started.

gui status

Print status for the GUI connection.

RETURN VALUE

Only the command 'gui status' has a return value. Upon successful completion gui status returns a tuple, where
the first value represents the status (0 stopped, 1 started) and the second value is a reserved number.

SEE ALSO

Chapter 4, Graphical user interface
Section 4.2, “Starting GRMON GUI”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 161

46. help - syntax

NAME

help - Print all GRMON commands or detailed help for a specific command

SYNOPSIS

help ?command?

DESCRIPTION
help ?command?

When omitting the command parameter this command will list commands. If the command parameter is
specified, it will print a long detailed description of the command.

RETURN VALUE

Command help has no return value.

EXAMPLE

List all commands:
grmon3> help

Show detailed help of command 'mem':
grmon3> help mem

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 162

47. hist - syntax

NAME

hist - Print AHB transfers or instruction entries in the trace buffer

SYNOPSIS

hist ?length? ?cpu#?

DESCRIPTION
hist ?length?

Print the hist trace buffer. The ?length? entries will be printed, default is 10. Use cpu# to select CPU.

RETURN VALUE

Upon successful completion, hist returns a list of mixed AHB and instruction trace buffer entries, sorted after
time. The first value in each entry is either the literal string AHB or INST indicating the type of entry. For more
information about the entry values, see return values described for commands ahb and inst.

EXAMPLE

Print 10 rows

grmon3> hist
 TIME ADDRESS INSTRUCTIONS/AHB SIGNALS RESULT/DATA
 266951 000021D4 restore %o0, %o0 [0000000D]
 266954 000019E4 mov 0, %g1 [00000000]
 266955 000019E8 mov %g1, %i0 [00000000]
 266956 000019EC ret [000019EC]
 266957 000019F0 restore [00000000]
 266960 0000106C call 0x00009904 [0000106C]
 266961 00001070 nop [00000000]
 266962 00009904 mov 1, %g1 [00000001]
 266963 00009908 ta 0x0 [TRAP]
 266986 00000800 AHB read mst=0 size=4 [91D02000 01000000 01000000 0100]

TCL returns:
{INST 266951 0x000021D4 0x91E80008 0x0000000D 0 0 0} {INST 266954 0x000019E4
0x82102000 0x00000000 0 0 0} {INST 266955 0x000019E8 0xB0100001 0x00000000
0 0 0} {INST 266956 0x000019EC ...

Print 2 rows

grmon3> hist 2
 TIME ADDRESS INSTRUCTIONS/AHB SIGNALS RESULT/DATA
 266963 00009908 ta 0x0 [TRAP]
 266986 00000800 AHB read mst=0 size=4 [91D02000 01000000 01000000 0100]

TCL returns:
{INST 266963 0x00009908 0x91D02000 0x00000000 0 1 0} {AHB 266986 0x00000800
{0x91D02000 0x01000000 0x01000000 0x01000000} R 0 2 4 1 0 0 0}

SEE ALSO

Section 3.4.9, “Using the trace buffer”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 163

48. i2c - syntax

NAME

i2c - Commands for the I2C masters

SYNOPSIS

i2c subcommand ?args...?
i2c index subcommand ?args...?

DESCRIPTION

This command provides functions to control the SPICTRL core. If more than one core exists in the system, then
the index of the core to control should be specified after the i2c command (before the subcommand). The 'info
sys' command lists the device indexes.

i2c bitrate rate

Initializes the prescaler register. Valid keywords for the parameter rate are normal, fast or hispeed.
i2c disable
i2c enable

Enable/Disable the core
i2c read ?options? i2caddr ?addr? ?cnt?

Performs cnt sequential reads starting at memory location addr from slave with i2caddr. Default value
of cnt is 1. If only i2caddr is specified, then a simple read will be performed.

Available options are -d8, -d16 and -d32 to control how many bits there are in each data word that is
read. Default is 8 bits.

i2c scan

Scans the bus for devices.
i2c status

Displays some status information about the core and the bus.
i2c write ?options? i2caddr ?addr? data

Writes data to memory location addr on slave with address i2caddr. If only i2caddr and data is
specified, then a simple write will be performed.

Available options are -d8, -d16 and -d32 to control how many bits there are in each data word that is
written. Default is 8 bits.

Commands to interact with DVI transmitters:

i2c dvi devices

List supported devices.
i2c dvi delay direction

Change delay applied to clock before latching data. Valid keywords for direction are inc or dec.
i2c dvi init_l4itx_dvi ?idf?
i2c dvi init_l4itx_vga ?idf?

Initializes Chrontel CH7301C DVI transmitter with values that are appropriate for the GR-LEON4-ITX
board with DVI/VGA output. The optional idf value selects the multiplexed data input format, default
is IDF 2.

i2c dvi init_ml50x_dvi ?idf?
i2c dvi init_ml50x_vga ?idf?

Initializes Chrontel CH7301C DVI transmitter with values that are appropriate for a ML50x board with a"
standard LEON/GRLIB template design for DVI/VGA output. The optional idf value selects the multi-
plexed data input format, default is IDF 2.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 164

i2c dvi setdev devnr

Set DVI transmitter type. See command i2c dvi devices to list valid values of the parameter devnr.
i2c dvi showreg

Show DVI transmitter registers

RETURN VALUE

Upon successful completion i2c read returns a list of values read. The i2c dvi showreg return a list of tuples,
where the first element is the register address and the second element is the value.

The other sub commands has no return value.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 165

49. icache - syntax

NAME

icache - Show, enable or disable instruction cache

SYNOPSIS

icache ?boolean? ?cpu#?
icache diag ?windex? ?lindex? ?cpu#?
icache flush ?cpu#?
icache way windex ?lindex? ?word value? ?cpu#?
icache tag windex lindex ?value? ?tbmask? ?cpu#?

DESCRIPTION

In all forms of the icache command, the optional parameter ?cpu#? specifies which CPU to operate on. The active
CPU will be used if parameter is omitted.

icache ?boolean? ?cpu#?

If ?boolean? is not given then show the content of all ways. If ?boolean? is present, then enable or
disable the instruction cache.

icache diag ?windex? ?lindex? ?cpu#?

Check if the instruction cache is consistent with the memory. Optionally a specific way or line can be
checked.

icache flush ?cpu#?

Flushes the instruction cache
icache way windex ?lindex? ?word value? ?cpu#?

Show the contents of specified way windex or optionally a specific line ?lindex?. If word and value
is set then it will write a single 32-bit word into position specified by word.

icache tag windex lindex ?value? ?tbmask? ?cpu#?

Read or write a raw instruction cache tag value. Way and line is selected with windex and lindex. The
parameter value, if given, is written to the tag. The optional parameter tbmask is xor-ed with the test
check bits generated by the cache controller during the write.

RETURN VALUE

Command icache diag returns a list of all inconsistent entries. Each element of the list contains CPU id, way id,
line id, word id, physical address, cached data and the data from the memory.

Command icache tag returns the tag value on read.

The other icache commands have no return value.

SEE ALSO

Section 3.4.16, “CPU cache support”
dcache

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 166

50. iccfg - syntax

NAME

iccfg - Display or set instruction cache configuration register

SYNOPSIS

iccfg ?value? ?cpu#?

DESCRIPTION
iccfg ?value? ?cpu#?

Display or set instruction cache configuration register for the active CPU. GRMON will not keep track of
this register value and will not reinitialize the register when starting or resuming software execution.

RETURN VALUE

Upon successful completion iccfg will return the value of the instruction cache configuration register.

SEE ALSO

-nic and -ndc switches described in Section 6.3.1, “Switches”

SEE ALSO

Section 3.4.16, “CPU cache support”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 167

51. info - syntax

NAME

info - GRMON extends the TCL command info with some subcommands to show information about the system.

SYNOPSIS

info subcommand ?args...?

DESCRIPTION
info drivers

List all available device-drivers
info mkprom2

List the most basic mkprom2 commandline switches. GRMON will print flags to use the first GPTIMER
and IRQMP controller and it will use the same UART for output as GRMON (see Section 3.9, “Forwarding
application console I/O”). I.a. it will produce switches for all memory controllers found. In case that there
exist more the one controller it's up to the user make sure that only switches belonging to one controller
are used.

info reg ?options? ?dev?

Show system registers. If a device name is passed to the command, then only the registers belonging to
that device is printed. The device name can be suffixed with colon and a register name to only print the
specified register.

If option -v is specified, then GRMON will print the field names and values of each registers. If a debug
driver doesn't support this feature, then the register value is printed instead.

Setting -l will print the name of the registers, that can be used to access the registers via TCL variables.
It also returns a list of all the register names. No registers values will be read.

Setting -a will also return the address in the list of all the register names. Will only have an effect if -
l is also set.

Setting -d will also return the description in the list of all the register names. Will only have an effect if
-l is also set.

Setting -x will interpret a constant value, instead of reading the register value from the system. It re-
quires that every dev argument is followed by a value to be interpreted, i.e dev0::reg0 value0
dev1::reg1 value1 ...

Enabling -all will print all registers. Normally only a subset is printed. This option may print a lot of
registers. I could also cause read accesses to FIFOs.

info sys ?options? ?dev ...?

Show system configuration. If one or more device names are passed to the command, then only the infor-
mation about those devices are printed.

If option -v is specified, then GRMON will print verbose information about the devices.

The option -xml <file> can be used to print a xml description of the system to a file instead of printing
information on the screen.

RETURN VALUE

info drivers has no return value.

info mkprom2 returns a list of switches.

The command info reg returns a list of all registers if the -l is specified. If both options -l and -v have been
entered it returns a list where each element is a list of the register name and the name of the registers fields.
Otherwise it has no return value.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 168

Upon successful completion info sys returns a list of all device names.

For other info subcommands, see TCL documentation.

EXAMPLE

Show all devices in the system

grmon3> info sys
 ahbjtag0 Frontgrade Gaisler JTAG Debug Link
 AHB Master 0
 adev1 Frontgrade Gaisler EDCL master interface
 AHB Master 2
 ...

Show only the DSU

grmon3> info sys dsu0
 dsu0 Frontgrade Gaisler LEON4 Debug Support Unit
 AHB: E0000000 - E4000000
 AHB trace: 256 lines, 128-bit bus
 CPU0: win 8, hwbp 2, itrace 256, V8 mul/div, srmmu, lddel 1, GRFPU
 stack pointer 0x07fffff0
 icache 4 * 4 kB, 32 B/line lru
 dcache 4 * 4 kB, 32 B/line lru
 CPU1: win 8, hwbp 2, itrace 256, V8 mul/div, srmmu, lddel 1, GRFPU
 stack pointer 0x07fffff0
 icache 4 * 4 kB, 32 B/line lru
 dcache 4 * 4 kB, 32 B/line lru

Show detailed information on status register of uart0.

grmon3> info reg -v uart0::status
 Generic UART
 0xff900004 UART Status register 0x00000086
 31:26 rcnt 0x0 Rx FIFO count
 25:20 tcnt 0x0 Tx FIFO count
 10 rf 0x0 Rx FIFO full
 ...

SEE ALSO

Section 3.4.1, “Examining the hardware configuration”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 169

52. inst - syntax

NAME

inst - Print AHB transfer or instruction entries in the trace buffer

SYNOPSIS

inst ?length?
inst subcommand ?args...?

DESCRIPTION
inst ?length? ?cpu#?

Print the inst trace buffer. The ?length? entries will be printed, default is 10. Use cpu# to select single
CPU.

inst filter ?cpu#?

Print the instruction trace buffer filter.
inst filter ?flt? ?cpu#?

Set the instruction trace buffer filter. See DSU manual for values of flt. (Only available in some DSU4
implementations). Use cpu# to set filter select a single CPU.

inst filter asildigit ?val...? ?cpu#?

Set which last digits that should be filtered. Only valid if filter is set to 0xE. (Only available in some DSU
implementations)

inst filter range ?index? ?addr? ?mask? ?excl? ?cpu#?

Setup a trace filter to include or exclude instructions that is within the range. Up to four range filters is
supported. (Only available in some DSU implementations)

RETURN VALUE

Upon successful completion, inst returns a list of trace buffer entries. Each entry is a sublist on the format format:
{INST time addr inst result trap em mc}. Detailed description about the different fields can be found in
the DSU core documentation in document grip.pdf [http://download.gaisler.com/products/GRLIB/doc/grip.pdf]

The other subcommands have no return value.

EXAMPLE

Print 10 rows

grmon3> inst
 TIME ADDRESS INSTRUCTION RESULT
 266951 000021D4 restore %o0, %o0 [0000000D]
 266954 000019E4 mov 0, %g1 [00000000]
 266955 000019E8 mov %g1, %i0 [00000000]
 266956 000019EC ret [000019EC]
 266957 000019F0 restore [00000000]
 266960 0000106C call 0x00009904 [0000106C]
 266961 00001070 nop [00000000]
 266962 00009904 mov 1, %g1 [00000001]
 266963 00009908 ta 0x0 [TRAP]
 267009 00000800 ta 0x0 [TRAP]

TCL returns:
{INST 266951 0x000021D4 0x91E80008 0x0000000D 0 0 0} {INST 266954 0x000019E4
0x82102000 0x00000000 0 0 0} {INST 266955 0x000019E8 0xB0100001 0x00000000
0 0 0} {INST 266956 0x000019EC ...

Print 2 rows

grmon3> inst 2
 TIME ADDRESS INSTRUCTION RESULT

frontgrade.com/gaisler
http://download.gaisler.com/products/GRLIB/doc/grip.pdf
http://download.gaisler.com/products/GRLIB/doc/grip.pdf

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 170

 266951 000021D4 restore %o0, %o0 [0000000D]
 266954 000019E4 mov 0, %g1 [00000000]

TCL returns:
{INST 266951 0x000021D4 0x91E80008 0x0000000D 0 0 0} {INST 266954 0x000019E4
0x82102000 0x00000000 0 0 0}

SEE ALSO

Section 3.4.9, “Using the trace buffer”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 171

53. iommu - syntax

NAME

iommu - Control IO memory management unit

SYNOPSIS

iommu subcommand ?args? ?iommu#?

DESCRIPTION

This command provides functions to control the GRIOMMU core. If more than one core exists in the system, then
the index of the core to control should be specified after the iommu command (before the subcommand). The
'info sys' command lists the controller indexes.

iommu apv allow base start stop ?iommu#?

Modify existing APV at base allowing access to the address range start - stop
iommu apv build base prot ?iommu#?

Create APV starting at base with default bit value prot
iommu apv decode base ?iommu#?

Decode APV starting at base
iommu apv deny base start stop ?iommu#?

Modify existing APV at base denying access to the address range start - stop
iommu cache addr addr grp ?iommu#?

Displays cached information for I/O address addr in group grp
iommu cache errinj addr dt ?byte? ?iommu#?

Inject data/tag parity error at set address addr, data byte byte. The parameter dt should be either 'tag'
or 'data'

iommu cache flush ?iommu#?

Invalidate all entries in cache
iommu cache show line ?count? ?iommu#?

Shows information about count line starting at line
iommu cache write addr data0 ... dataN tag

Write full cache line including tag at set address addr, i.e. the number of data words depends on the size
of the cache line. See example below.

iommu disable ?iommu#?
iommu enable ?iommu#?

Disables/enable the core
iommu group ?grp? ?base passthrough active? ?iommu#?

Show/set information about group(s). When no parameters are given, information about all groups will be
shown. If the index grp is given then only that group will be shown. When all parameters are set, the fields
will be assigned to the group.

iommu info ?iommu#?

Displays information about IOMMU configuration
iommu mstbmap ?mst? ?grp? ?iommu#?

Show/set information about master->group assignments. When no parameters are given, information about
all masters will be shown. If the index mst is given then only that master will be shown. When all param-
eters are set, master mst will be assigned to group grp

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 172

iommu mstbmap ?mst? ?ahb? ?iommu#?

Show/set information about master->AHB interface assignments. When no parameters are given, informa-
tion about all masters will be shown. If the index mst is given then only that master will be shown. When
all parameters are set, master mst will be assigned to AHB interface ahb

iommu pagetable build base writeable valid ?iommu#?

Create page table starting at base with all writable fields set to writeable and all valid fields set to
valid. 1:1 map starting at physical address 0.

iommu pagetable lookup base ioaddr ?iommu#?

Lookup specified IO address in page table starting at base.
iommu pagetable modify base ioaddr phyaddr writeable valid ?iommu#?

Modify existing PT at base, translate ioaddr to phyaddr, writeable, valid
iommu status ?iommu#?

Displays core status information

RETURN VALUE

Upon successful completion iommu apv docode returns a list of triples, where each triple contains start, stop
and protection bit.

Command iommu cache addr returns a tuple, containing valid and protection bits.

Command iommu cache show returns a list of entries. Each entry contains line address, tag and the cached data
words.

The other subcommands have no return value.

EXAMPLE

Show info on a system with one core
grmon3> iommu info

Show info of the second core in a system with multiple cores
grmon3> iommu info iommu1

Writes set address 0x23 with the 128-bit cache line 0x000000008F000000FFFFFFFF00000000 and tag 0x1 (valid
line)
grmon3> iommu cache write 0x23 0x0 0x8F000000 0xFFFFFFFF 0x0 0x1

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 173

54. irq - syntax

NAME

irq - Force interrupts or read IRQ(A)MP status information

SYNOPSIS

irq subcommand args...

DESCRIPTION

This command provides functions to force interrupts and reading IRQMP status information. The command also
support the ASMP extension provided in the IRQ(A)MP core. For IRQAMP with several internal controllers, the
index of the internal controller to operate on can be added to the device name on the format dev::index at
the end of the command.

irq boot ?options? ?mask? ?dev?

Start the CPUs that are connected to core from the entry point. Add option -addr address to set address
to start from. A mask can optionally be added to select which of the connected CPUs to start.

irq force irq ?dev?

Force interrupt irq
irq reg ?dev?

Display some of the core registers
irq routing ?dev?

Decode controller routing (for IRQ(A)MP)
irq tstamp ?dev?

Show time stamp registers (for IRQ(A)MP)
irq wdog ?dev?

Decode Watchdog control register (for IRQ(A)MP)

RETURN VALUE

Command irq has no return value.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 174

55. l2cache - syntax

NAME

l2cache - L2 cache control

SYNOPSIS

l2cache subcommand ?args?

DESCRIPTION
l2cache lookup addr

Prints the data and status of a cache line if addr generates a cache hit.
l2cache show data ?way? ?count? ?start?

Prints the data of count cache line starting at cache line start.
l2cache show tag ?count? ?start?

Prints the tag of count cache line starting at cache line start.
l2cache enable

Enable the cache.
l2cache disable
l2cache disable flushinvalidate

Disable the cache. If flushinvalidate is given, all dirty cache lines are invalidated and written back
to memory as an atomic operation.

l2cache ft ?boolean?

Enable or disable the EDAC. If boolean is not set, then the command will show if the EDAC is enabled
or disabled.

l2cache flush
l2cache flush all ?mode?

Perform a cache flush to all cache lines using a flush mode.
l2cache flush mem address ?mode?

Perform a cache flush to the cache lines with a cache hit for address using a flush mode.
l2cache flush direct address ?mode?

Perform a cache flush to the cache lines addressed with address using a flush mode.
l2cache invalidate

Invalidate all cache lines
l2cache flushinvalidate

Flush and invalidate all cache lines (copy-back)
l2cache hit

Prints the hit rate statistics.
l2cache wt ?boolean?

Enable or disable the write-through. If boolean is not set, then the command will show if write-through
is enabled or disabled.

l2cache hprot ?boolean?

Enable or disable the HPROT. If boolean is not set, then the command will show if HPROT is enabled
or disabled.

l2cache smode ?mode?

Set the statistics mode. If the mode is not set, then the command will show the current statistics mode.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 175

l2cache error
l2cache error inject
l2cache error reset
l2cache error dcb ?value?
l2cache error tcb ?value?

The l2cache error used to show information about an error in the L2-cache and the information is cleared
with l2cache error reset. I.a. the l2cache error inject can be used to create an error. The l2cache error
dcb and l2cache error tcb can be used to read or write the data/tag check bits.

l2cache mtrr ?index? ?value?

Show all or a specific memory type range register. If value is present, then the specified register will be set.
l2cache split boolean

Enable or disable AHB SPLIT response support for the L2 cache controller.

RETURN VALUE

Upon successful completion l2cache lookup returns a list of addr, way, tag, index, offset, valid bit, dirty bit and
LRU bit.

Commands l2cache show data and l2cache show tags returns a list of entries. For data each entry contains an
address and 8 data words. The entry for tag contains index, address, LRU and list of valid bit, dirty bit and tag
for each way.

Upon successful completion l2cache ft, l2cache hprot, l2cache smode and l2cache wt returns a boolean.

Command l2cache hit returns hit-rate and front bus usage-rate.

Command l2cache status returns control and status register values.

Upon successful completion l2cache dcb and l2cache tcb return check bits for data or tags.

Command l2cache mtrr returns a list of values.

SEE ALSO

Section 3.4.16, “CPU cache support”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 176

56. l3stat - syntax

NAME

l3stat - Control Leon3 statistics unit

SYNOPSIS

l3stat subcommand ?args...? ?l3stat#?

DESCRIPTION

This command provides functions to control the L3STAT core. If more than one core exists in the system, then the
index of the core to control should be specified after the l3stat command (before the subcommand). The 'info
sys' command lists the device indexes.

l3stat events ?l3stat#?

Show all events that can be selected/counted
l3stat status ?l3stat#?

Display status of all available counters.
l3stat clear cnt ?l3stat#?

Clear the counter cnt.
l3stat set cnt cpu event ?enable? ?clearonread? ?l3stat#?

Count the event using counter cnt on processor cpu. The optional enable parameter defaults to 1 if
left out. The optional clearonread parameter defaults to 0 if left out.

l3stat duration cnt enable ?lvl? ?l3stat#?

Enable the counter cnt to save maximum time the selected event has been at lvl. When enabling the lvl
parameter must be present, but when disabling it be left out.

l3stat poll start stop interval hold ?l3stat#?

Continuously poll counters between start and stop. The interval parameter sets how many seconds
between each iteration. If hold is set to 1, then it will block until the first counter is enabled by other means
(i.e. software). The polling stops when the first counter is disabled or a SIGINT signal (Ctrl-C) is sent to
GRMON.

l3stat runpoll start stop interval ?l3stat#?

Setup counters between start and stop to be polled while running an application (i.e. 'run, 'go' or 'cont'
commands). The interval argument in this case does not specify the poll interval seconds but rather in
terms of iterations when GRMON polls the Debug Support Unit to monitor execution. A suitable value for
the int argument in this case depends on the speed of the host computer, debug link and target system.

EXAMPLE

Enable maximum time count, on counter 1, when no instruction cache misses has occurred.

grmon3> l3stat set 1 0 icmiss
grmon3> l3stat duration 1 1 0

Disable maximum time count on counter 1.
grmon3> l3stat duration 1 0

Poll for cache misses when running.

grmon3> l3stat set 0 0 dcmiss
grmon3> l3stat set 1 0 icmiss
grmon3> l3stat runpoll 0 1 5000
grmon3> run

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 177

57. l4stat - syntax

NAME

l4stat - Control Leon4 statistics unit

SYNOPSIS

l4stat subcommand ?args...? ?l4stat#?

DESCRIPTION

This command provides functions to control the L4STAT core. If more than one core exists in the system, then the
index of the core to control should be specified after the l4stat command (before the subcommand). The 'info
sys' command lists the device indexes.

l4stat events ?l4stat#?

Show all events that can be selected/counted
l4stat status ?l4stat#?

Display status of all available counters.
l4stat clear cnt ?l4stat#?

Clear the counter cnt.
l4stat set cnt cpu event ?enable? ?clearonread? ?l4stat#?

Count the event using counter cnt on processor cpu. The optional enable parameter defaults to 1 if
left out. The optional clearonread parameter defaults to 0 if left out.

l4stat duration cnt enable ?lvl? ?l4stat#?

Enable the counter cnt to save maximum time the selected event has been at lvl. When enabling the lvl
parameter must be present, but when disabling it be left out.

l4stat poll start stop interval hold ?l4stat#?

Continuously poll counters between start and stop. The interval parameter sets how many seconds
between each iteration. If hold is set to 1, then it will block until the first counter is enabled by other means
(i.e. software). The polling stops when the first counter is disabled or a SIGINT signal (Ctrl-C) is sent to
GRMON.

l4stat runpoll start stop interval ?l4stat#?

Setup counters between start and stop to be polled while running an application (i.e. 'run, 'go' or 'cont'
commands). The interval argument in this case does not specify the poll interval seconds but rather in
terms of iterations when GRMON polls the Debug Support Unit to monitor execution. A suitable value for
the int argument in this case depends on the speed of the host computer, debug link and target system.

EXAMPLE

Enable maximum time count, on counter 1, when no instruction cache misses has occurred.

grmon3> l4stat set 1 0 icmiss
grmon3> l4stat duration 1 1 0

Disable maximum time count on counter 1.
grmon3> l4stat duration 1 0

Poll for cache misses when running.

grmon3> l4stat set 0 0 dcmiss
grmon3> l4stat set 1 0 icmiss
grmon3> l4stat runpoll 0 1 5000
grmon3> run

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 178

58. la - syntax

NAME

la - Control the LOGAN core

SYNOPSIS

la
la subcommand ?args...?

DESCRIPTION

The LOGAN debug driver contains commands to control the LOGAN on-chip logic analyzer core. It allows to
set various triggering conditions, and to generate VCD waveform files from trace buffer data. All logic analyzer
commands are prefixed with la.

If more than one device exists in the system, the logan# can be used to select device, default is logan0.

la
la status ?logan#?

Reports status of LOGAN.
la arm ?logan#?

Arms the LOGAN. Begins the operation of the analyzer and sampling starts.
la config filename ?logan#?
la config ?name bits...? ?logan#?

Set the configuration of the LOGAN device. Either a filename or an array of name and bits pairs.
la count ?value? ?logan#?

Set/displays the trigger counter. The value should be between zero and depth-1 and specifies how many
samples that should be taken after the triggering event.

la div ?value? ?logan#?

Sets/displays the sample frequency divider register. If you specify e.g. “la div 5” the logic analyzer will
only sample a value every 5th clock cycle.

la dump ?filename? ?logan#?

This dumps the trace buffer in VCD format to the file specified (default is logan.vcd).
la mask trigl bit ?value? ?logan#?

Sets/displays the specified bit in the mask of the specified trig level to 0/1.
la page ?value? ?logan#?

Sets/prints the page register of the LOGAN. Normally the user doesn’t have to be concerned with this
because dump and view sets the page automatically. Only useful if accessing the trace buffer manually via
the GRMON mem command.

la pat trigl bit ?value? ?logan#?

Sets/displays the specified bit in the pattern of the specified trig level to 0/1.
la pm ?trigl? ?pattern mask? ?logan#?

Sets/displays the complete pattern and mask of the specified trig level. If not fully specified the input is
zero-padded from the left. Decimal notation only possible for widths less than or equal to 64 bits.

la qual ?bit value? ?logan#?

Sets/displays which bit in the sampled pattern that will be used as qualifier and what value it shall have
for a sample to be stored.

la reset ?logan#?

Stop the operation of the LOGAN. Logic Analyzer returns to idle state.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 179

la trigctrl ?trigl? ?count cond? ?logan#?

Sets/displays the match counter and the trigger condition (1 = trig on equal, 0 = trig on not equal) for the
specified trig level.

la view start stop ?filename? ?logan#?

Prints the specified range of the trace buffer in list format. If no filename is specified the commands prints
to the screen.

SEE ALSO

Section 6.13, “On-chip logic analyzer driver”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 180

59. leon - syntax

NAME

leon - Print leon specific registers

SYNOPSIS

leon

DESCRIPTION
leon

Print leon specific registers

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 181

60. load - syntax

NAME

load - Load a file or print filenames of uploaded files.

SYNOPSIS

load ?options...? filename ?address? ?cpu#?
load subcommand ?arg?

DESCRIPTION

The load command may be used to upload a file to the system. It can also be used to list all files that have been
loaded. When a file is loaded, GRMON will reset the memory controllers registers first.

To avoid overwriting the image file loaded, one must must make sure that DMA is not active to the address range(s)
of the image. Drivers can be reset using the reset command prior to loading.

load ?options...? filename ?address? ?cpu#?

The load command may be used to upload the file specified by filename. If the address argument
is present, then binary files will be stored at this address, if left out then they will be placed at the base
address of the detected RAM. The cpu# argument can be used to specify which CPU it belongs to. The
options is specified below.

load clear ?cpu#?

This command will clear the information about the files that have been loaded to the CPU:s. If the cpu#
argument is specified, then only that CPU will be listed.

load show ?cpu#?

This command will list which files that have been loaded to the CPU:s. If the cpu# argument is specified,
then only that CPU will be listed.

OPTIONS
-binary

The -binary option can be used to force GRMON to interpret the file as a binary file.
-bsize bytes

The -bsize option may be used to specify the size blocks of data in bytes that will be written. Sizes that
are not even words may require a JTAG based debug link to work properly. See Chapter 5, Debug link
more information.

-data

Only load sections containing data, i.e. skip instructions.
-delay ms

The -delay option can be used to specify a delay between each word written. If the delay is non-zero
then the default block size will be 4 bytes, but can be changed using the -bsize option.

-nmcr

If the -nmcr (No Memory Controller Reinitialize) option is given then the memory controller(s) are not
reinitialized. Without the option set all memory controllers that data is loaded to are reinitialized.

-wprot

If the -wprot option is given then write protection on the core will be disabled

RETURN VALUE

Command load returns the entry point.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 182

EXAMPLE

Load and then verify a hello_world application

grmon3> load ../hello_world/hello_world
grmon3> verify ../hello_world/hello_world

SEE ALSO

Section 3.4.2, “Uploading application and data to target memory”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 183

61. mcfg1 - syntax

mcfg1 - Show or set reset value of the memory controller register 1

SYNOPSIS

mcfg1 ?value?

DESCRIPTION

mcfg1 ?value?

Set the reset value of the memory register. If value is left out, then the reset value will be printed.

SEE ALSO

Section 6.14, “Memory controllers ”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 184

62. mcfg2 - syntax

mcfg2 - Show or set reset value of the memory controller register 2

SYNOPSIS

mcfg2 ?value?

DESCRIPTION

mcfg2 ?value?

Set the reset value of the memory register. If value is left out, then the reset value will be printed.

SEE ALSO

Section 6.14, “Memory controllers ”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 185

63. mcfg3 - syntax

mcfg3 - Show or set reset value of the memory controller register 3

SYNOPSIS

mcfg3 ?value?

DESCRIPTION

mcfg3 ?value?

Set the reset value of the memory register. If value is left out, then the reset value will be printed.

SEE ALSO

Section 6.14, “Memory controllers ”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 186

64. mdio - syntax

NAME

mdio - Show PHY registers

SYNOPSIS

mdio paddr raddr ?greth#?
mdio info ?greth#? ?paddr?
mdio reg ?greth#? ?paddr?

DESCRIPTION
mdio paddr raddr ?greth#?

Show value of PHY address paddr and register raddr. If more than one device exists in the system,
the greth# can be used to select device, default is dev0. The command tries to disable the EDCL duplex
detection if enabled.

mdio info ?greth#? ?paddr?

Show PHY model and link state for each PHY accessible from each GRETH device. Use greth# and/or
paddr to only show link state for a specific GRETH device or PHY.

mdio reg ?greth#? ?paddr?

Show all registers for each PHY accessible from each GRETH device. Use greth# and/or paddr to only
show registers for a specific GRETH device or PHY.

SEE ALSO

Section 6.4, “Ethernet controller”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 187

65. memb - syntax

NAME

memb - AMBA bus 8-bit memory read access, list a range of addresses

SYNOPSIS

memb ?options? address ?length?

DESCRIPTION
memb ?options? address ?length?

Do an AMBA bus 8-bit read access at address and print the the data. The optional length parameter
should specified in bytes and the default size is 64 bytes.

Only JTAG debug links supports byte accesses. Other debug links will do a 32-bit read and then parse out
the unaligned data.

OPTIONS
-bsize bytes

The -bsize option can be used to specify the size blocks of data in bytes that will be read between each
print to the screen. Setting a high value may increase performance but cause a less smooth printout when
using a slow debug link.

-delay ms

The -delay option can be used to specify a delay between each word written. If the delay is non-zero
then the default block size will be 1 bytes, but can be changed using the -bsize option.

-ascii

If the -ascii flag has been given, then a single ASCII string is returned instead of a list of values.
-cstr

If the -cstr flag has been given, then a single ASCII string, up to the first null character, is returned
instead of a list of values.

-dec

Give the -dec flag to make the Tcl return signed decimal values instead of hexadecimal strings.
-asi asi

Read from SPARC alternate space.

RETURN VALUE

Upon successful completion memb returns a list of the requested 8-bit words. Some options changes the result
value, see options for more information.

EXAMPLE

Read 4 bytes from address 0x40000000:
grmon3> memb 0x40000000 4

TCL returns:
64 0 0 0

SEE ALSO

Section 3.4.7, “Displaying memory contents”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 188

66. memd - syntax

NAME

memd - AMBA bus 64-bit memory read access, list a range of addresses

SYNOPSIS

memd ?options? address ?length?

DESCRIPTION
memd ?options? address ?length?

Do an AMBA bus read access at address and print the data as 64-bit words. The optional length parameter
should be specified in bytes and the default size is 64 bytes (8 64-bit words).

OPTIONS
-bsize bytes

The -bsize option can be used to specify the size blocks of data in bytes that will be read between each
print to the screen. Setting a high value may increase performance but cause a less smooth printout when
using a slow debug link.

-delay ms

The -delay option can be used to specify a delay between each word written. If the delay is non-zero
then the default block size will be 8 bytes, but can be changed using the -bsize option.

-ascii

If the -ascii flag has been given, then a single ASCII string is returned instead of a list of values.
-cstr

If the -cstr flag has been given, then a single ASCII string, up to the first null character, is returned
instead of a list of values.

-dec

Give the -dec flag to make the Tcl return signed decimal values instead of hexadecimal strings.
-asi asi

Read from SPARC alternate space.

RETURN VALUE

Upon successful completion memd returns a list of the requested 64-bit words. Some options changes the result
value, see options for more information.

EXAMPLE

Read 2 64-bit words (16 bytes) from address 0x40000000:
grmon3> memd 0x40000000 16

TCL returns:
0xffff1244901022 0x543348

SEE ALSO

Section 3.4.7, “Displaying memory contents”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 189

67. memh - syntax

NAME

memh - AMBA bus 16-bit memory read access, list a range of addresses

SYNOPSIS

memh ?options? address ?length?

DESCRIPTION
memh ?options? address ?length?

Do an AMBA bus 16-bit read access at address and print the the data. The optional length parameter
should specified in bytes and the default size is 64bytes (32 words).

Only JTAG debug links supports byte accesses. Other debug links will do a 32-bit read and then parse out
the unaligned data.

OPTIONS
-bsize bytes

The -bsize option can be used to specify the size blocks of data in bytes that will be read between each
print to the screen. Setting a high value may increase performance but cause a less smooth printout when
using a slow debug link.

-delay ms

The -delay option can be used to specify a delay between each word written. If the delay is non-zero
then the default block size will be 2 bytes, but can be changed using the -bsize option.

-ascii

If the -ascii flag has been given, then a single ASCII string is returned instead of a list of values.
-cstr

If the -cstr flag has been given, then a single ASCII string, up to the first null character, is returned
instead of a list of values.

-dec

Give the -dec flag to make the Tcl return signed decimal values instead of hexadecimal strings.
-asi asi

Read from SPARC alternate space.

RETURN VALUE

Upon successful completion memh returns a list of the requested 16-bit words. Some options changes the result
value, see options for more information.

EXAMPLE

Read 4 words (8 bytes) from address 0x40000000:
grmon3> memh 0x40000000 8

TCL returns:
16384 0 0 0

SEE ALSO

Section 3.4.7, “Displaying memory contents”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 190

68. mem - syntax

NAME

mem - AMBA bus 32-bit memory read access, list a range of addresses

SYNOPSIS

mem ?-options? address ?length?

DESCRIPTION
mem ?-options? address ?length?

Do an AMBA bus 32-bit read access at address and print the the data. The optional length parameter
should specified in bytes and the default size is 64 bytes (16 words).

OPTIONS
-bsize bytes

The -bsize option can be used to specify the size blocks of data in bytes that will be read between each
print to the screen. Setting a high value may increase performance but cause a less smooth printout when
using a slow debug link.

-delay ms

The -delay option can be used to specify a delay between each word written. If the delay is non-zero
then the default block size will be 4 bytes, but can be changed using the -bsize option.

-ascii

If the -ascii flag has been given, then a single ASCII string is returned instead of a list of values.
-cstr

If the -cstr flag has been given, then a single ASCII string, up to the first null character, is returned
instead of a list of values.

-dec

Give the -dec flag to make the Tcl return signed decimal values instead of hexadecimal strings.
-asi asi

Read from SPARC alternate space.

RETURN VALUE

Upon successful completion mem returns a list of the requested 32-bit words. Some options changes the result
value, see options for more information.

EXAMPLE

Read 4 words from address 0x40000000:
grmon3> mem 0x40000000 16

TCL returns:
1073741824 0 0 0

SEE ALSO

Section 3.4.7, “Displaying memory contents”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 191

69. mil - syntax

mil - MIL-STD-1553B Interface commands

SYNOPSIS

mil ?subcommand? ?args...?

DESCRIPTION

mil active bus device

Select which device to control and which bus to use for mil put and mil get.
mil status

Display core status
mil bcx addr ?count?

Print BC descriptor contents and result values
mil bmx addr ?count?

Print BM log entries from the given memory address
mil bmlog ?count? ?logaddr?

Print the latest entries from the currently running BM log
mil buf ?bufaddr? ?coreaddr?

Set address of temporary buffer for transfer commands
mil bufmode ?mode?

Select if the temporary buffer should be kept or restored. Valid mode-values are 'keep' or 'restore'
mil get rtaddr subaddr count

Perform an RT-to-BC transfer and display the result
mil getm rtaddr subaddr count memaddr

Perform an RT-to-BC transfer and store resulting data at memaddr
mil put rtaddr subaddr count word0 ?... word31?

Perform an BC-to-RT transfer
mil putm rtaddr subaddr count memaddr

Perform an BC-to-RT transfer of data located at memaddr
mil halt

Stop the core and store the state for resuming later.
mil resume

Resume operation with state stored earlier by the mil halt command.
mil lbtest rt
mil lbtest bc

Runs RT- or BC-part of loopback test

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 192

70. mmu - syntax

NAME

mmu - Translate virtual adresses

SYNOPSIS

mmu ?cpu#?
mmu subcommand ?options...? ?args...? ?cpu#?

DESCRIPTION
mmu ?cpu#?

Print the MMU registers
mmu mctrl ?value? ?cpu#?

Set the MMU control register (LEON only)
mmu ctxptr ?value? ?cpu#?

Set the context pointer register (LEON only)
mmu ctx ?value? ?cpu#?

Set the context register (LEON only)
mmu va options...? ?ctx? ?cpu#?

Translate a virtual address. The command will use the MMU from the current active CPU and the cpu#
can be used to select a different CPU.

mmu walk ?options...? ?ctx? ?cpu#?

Translate a virtual address and print translation. The command will use the MMU from the current active
CPU and the cpu# can be used to select a different CPU.

mmu table ?options...? ?ctx? ?cpu#?

Print table, optionally specify context. The command will use the MMU from the current active CPU and
the cpu# can be used to select a different CPU.

OPTIONS
-v

The -v will cause the subcommand walk to show the intermediate steps when doing a hypervisor two-
stage translation. When issuing the va subcommand it will show a walk output.

-s

The subcommands walk,va and table will operate using the supervisor MMU table.
-h

The subcommands walk,va and table will operate using the hypervisor two-stage MMU tables.
-hg

The subcommands walk,va and table will operate using the hypervisor guest MMU table.
-vs

The subcommands walk and va will return the first stage address. First stage PTEs will still be translated
using the second stage. The subcommand table will show the virtual supervisor MMU table.

RETURN VALUE

The commands mmu returns a list of the MMU registers.

The commands mmu va and mmu walk returns the translated address.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 193

The command mmu table returns a list of ranges, where each range has the following format: {vaddr_start
vaddr_end paddr_start paddr_end access pages

EXAMPLE

Print MMU registers

grmon3> mmu
 mctrl: 00904001 ctx: 00000001 ctxptr: 00622000 fsr: 000002DC far: 9CFB9000

TCL returns:
9453569 1 401920 732 -1661235200

Print MMU table

grmon3> puts [mmu table]
 MMU Table for CTX1 for CPU0
 0x00000000-0x00000fff -> 0x00000000-0x00000fff crwxrwx [1 page]
 0x00001000-0x0061ffff -> 0x00001000-0x0061ffff crwx--- [1567 pages]
 0x00620000-0x00620fff -> 0x00620000-0x00620fff -r-xr-x [1 page]
 0x00621000-0x00621fff -> 0x00621000-0x00621fff crwx--- [1 page]
 ...

TCL returns:
{0x00000000 0x00000fff 0x00000000 0x00000fff crwxrwx 1} {0x00001000
0x0061ffff 0x00001000 0x0061ffff crwx--- 1567} {0x00620000 0x00620fff
0x00620000 0x00620fff -r-xr-x 1} {0x00621000 0x00621fff 0x00621000 0x00621fff
crwx--- 1} ...

SEE ALSO

Section 3.4.15, “Memory Management Unit (MMU) support”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 194

71. nolog - syntax

NAME

nolog - Suppress logging of stdout of a command

SYNOPSIS

nolog command ?args...?

DESCRIPTION
nolog command ?args...?

The nolog command be put in front of other GRMON commands to suppress the logging of the output.
This can be useful to remove unnecessary output when scripting.

EXAMPLE

Suppress the memory print.
grmon3>nolog mem 0x40000000

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 195

72. pci - syntax

NAME

pci - Control the PCI bus master

SYNOPSIS

pci subcommand ?args...?

DESCRIPTION

The PCI debug drivers are mainly useful for PCI host systems. The pci init command initializes the host's target
BAR1 to point to RAM (PCI address 0x40000000 -> AHB address 0x4000000) and enables PCI memory space and
bus mastering. Commands are provided for initializing the bus, scanning the bus, configuring the found resources,
disabling byte twisting and displaying information. Note that on non-host systems only the info command has
any effect.

The pci scan command can be used to print the current configuration of the PCI bus. If a OS has initialized the
PCI core and the PCI bus (at least enumerated all PCI buses) the scan utility can be used to see how the OS has
configured the PCI address space. Note that scanning a multi-bus system that has not been enumerated will fail.

The pci conf command can fail to configure all found devices if the PCI address space addressable by the host
controller is smaller than the amount of memory needed by the devices.

A configured PCI system can be registered into the GRMON device handling system similar to the on-chip AMBA
bus devices, controlled using the pci bus commands. GRMON will hold a copy of the PCI configuration in memory
until a new pci conf, pci bus unreg or pci scan is issued. The user is responsible for updating GRMON's PCI
configuration if the configuration is updated in hardware. The devices can be inspected from info sys and Tcl
variables making read and writing PCI devices configuration space easier. The Tcl variables are named in a similar
fashion to AMBA devices, for example puts $pdev0::status prints the STATUS register of PCI device0. See pci
bus reference description below and the Tcl API description in the manual.

pci bt ?boolean?

Enable/Disable the byte twisting (if supported by host controller)
pci bus reg

Register a previously configured PCI bus into the GRMON device handling system. If the PCI bus has not
been configured previously the pci conf is automatically called first (similar to pci conf -reg).

pci bus unreg

Unregister (remove) a previously registered PCI bus from the GRMON device handling system.
pci cfg8 deviceid offset
pci cfg16 deviceid offset
pci cfg32 deviceid offset

Read a 8-, 16- or 32-bit value from configuration space. The device ID selects which PCI device/function
is address during the configuration access. The offset must must be located with the device's space and
be aligned to access type. Three formats are allowed to specify the deviceid: 1. bus:slot:func,
2. device name (pdev#), 3. host. It's allowed to skip the bus index, i.e. only specifying slot:func, it
will then default to bus index 0. The ID numbers are specified in hex. If "host" is given the Host Bridge
Controller itself will be queried (if supported by Host Bridge). A device name (for example "pdev0") may
also be used to identify a device found from the info sys command output.

pci conf ?-reg?

Enumerate all PCI buses, configures the BARs of all devices and enables PCI-PCI bridges where needed.
If -reg is given the configured PCI bus is registered into GRMON device handling system similar to pci
bus reg, see above.

pci init

Initializes the host controller as described above

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 196

pci info

Displays information about the host controller
pci io8 addr value
pci io16 addr value
pci io32 addr value

Write a 8-, 16- or 32-bit value to I/O space.
pci scan ?-reg?

Scans all PCI slots for available devices and their current configuration are printed on the terminal. The scan
does not alter the values, however during probing some registers modified by rewritten with the original
value. This command is typically used to look at the reset values (after pci init is called) or for inspecting
how the Operating System has set PCI up (pci init not needed). Note that PCI buses are not enumerated
during scanning, in multi-bus systems secondary buses may therefore not be accessible. If -reg is given the
configured PCI bus is registered into GRMON device handling system similar to pci bus reg, see above.

pci wcfg8 deviceid offset value
pci wcfg16 deviceid offset value
pci wcfg32 deviceid offset value

Write a 8-, 16- or 32-bit value to configuration space. The device ID selects which PCI device/function
is address during the configuration access. The offset must must be located with the device's space and
be aligned to access type. Three formats are allowed to specify the deviceid: 1. bus:slot:func,
2. device name (pdev#), 3. host. It's allowed to skip the bus index, i.e. only specifying slot:func, it
will then default to bus index 0. The ID numbers are specified in hex. If "host" is given the Host Bridge
Controller itself will be queried (if supported by Host Bridge). A device name (for example "pdev0") may
also be used to identify a device found from the info sys command output.

pci wio8 addr value
pci wio16 addr value
pci wio32 addr value

Write a 8-, 16- or 32-bit value to I/O space.

PCI Trace commands:

pci trace

Reports current trace buffer settings and status
pci trace address pattern

Get/set the address pattern register.
pci trace amask pattern

Get/set the address mask register.
pci trace arm

Arms the trace buffer and starts sampling.
pci trace log ?length? ?offset?

Prints the trace buffer data. Offset is relative the trigger point.
pci trace sig pattern

Get/set the signal pattern register.
pci trace smask pattern

Get/set the signal mask register.
pci trace start

Arms the trace buffer and starts sampling.
pci trace state

Prints the state of the PCI bus.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 197

pci trace stop

Stops the trace buffer sampling.
pci trace tcount value

Get/set the number of matching trigger patterns before disarm
pci trace tdelay value

Get/set number of extra cycles to sample after disarm.

RETURN VALUE

Upon successful completion most pci commands have no return value.

The read commands return the read value. The write commands have no return value.

When the commands pci trace address, pci trace amask, pci trace sig, pci trace smask, pci trace tcount and
pci trace tdelay are used to read values, they return their values.

The pci trace log command returns a list of triples, where the triple contains the address, a list of signals and
buffer index.

Command pci trace state returns a tuple of the address and a list of signals.

EXAMPLE

Initialize host controller and configure the PCI bus

grmon3> pci init
grmon3> pci conf

Inspect a PCI bus that has already been setup
grmon3> pci scan

SEE ALSO

Section 6.17, “PCI”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 198

73. perf - syntax

perf - Measure performance

SYNOPSIS

perf
perf ?subcommand? ?args...?

DESCRIPTION

The performance command is only available when a DSU4 exists in the system.

perf

Display result
perf ?disable?
perf ?enable?

Enable or disable the performance measure.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 199

74. phyaddr - syntax

NAME

phyaddr - Set the default PHY address

SYNOPSIS

phyaddr address ?greth#?

DESCRIPTION
phyaddr address ?greth#?

Set the default PHY address to address. If more than one device exists in the system, the greth# can
be used to select device, default is greth0.

EXAMPLE

Set PHY address to 1
grmon3> phyaddr 1

SEE ALSO

Section 6.4, “Ethernet controller”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 200

75. profile - syntax

NAME

profile - Enable, disable or show simple profiling

SYNOPSIS

profile ?nlines? ?cpu#?
profile clear ?cpu#?
profile enable ?cpu#?
profile disable ?cpu#?

DESCRIPTION

If profiling is enabled then GRMON will profile the application being executed on the system.

profile ?nlines?

Show profiling information for all CPUs or specified CPU. When printing the information for all the CPUs,
only a single table with the sum of all CPUs will be printed. Optionally you can limit the number of printed
lines with the a nlines argument.

profile clear

Clear collected information on all CPUs or specified CPU.
profile enable

Turn on profiling all CPUs or a single CPU.
profile disable

Turn off profiling for all CPUs or a single CPU.

SEE ALSO

Section 3.4.10, “Profiling”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 201

76. quit - syntax

NAME

quit - Shut down the GRMON application

SYNOPSIS

quit

DESCRIPTION

quit

Shut down the GRMON application. GRMON will set 0 as exit code if no internal error has occurred or a
value greater or equal to 1 to indicate an internal error. This command is the same as 'exit'.

RETURN VALUE

Command quit has no return value.

EXAMPLE

Shut down the GRMON application.
grmon3> quit

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 202

77. reg - syntax

reg - Show or set integer registers

SYNOPSIS

reg ?name ...? ?name value ...?

DESCRIPTION

reg ?name ...? ?name value ...? ?cpu#?

Show or set integer registers of the current CPU, or the CPU specified by cpu#. If no register arguments
are given then the command will print the current window and the special purpose registers. The register
arguments can to both set and show each individual register. If a register name is followed by a value, it
will be set else it will only be shown.

Floating-point registers should be set with a decimal point value. A decimal-point value can be suffixed with
an f character to force the input value to be interpreted as a single precision value. If an integer is written to
a floating-point register, the value will be interpreted as a binary representation of a floating-point value.

On NOEL-V systems a .f suffix can optionally be added to the floating point register name to interperet
the value as a single precision value, or a .d suffix for a double precision interpretation. It is also possible
to use the optional .d and .f suffix when writing a register, then the input value will be converted to the
selected precision.

Valid LEON window register names are:
Registers

r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24,
r25, r26, r27, r28, r29, r30, r31

Global registers
g0, g1, g2, g3, g4, g5, g6, g7

Current window in registers
i0, i1, i2, i3, i4, i5, i6, i7

Current window local registers
l0, l1, l2, l3, l4, l5, l6, l7

Current window out registers
o0, o1, o2, o3, o4, o5, o6, o7

Special purpose registers
sp, fp

Windows (N is the number of implemented windows)
w0, w1 ... wN

Single register from a window
w1l3 w1o3 w2i5 etc.

In addition the following non-window related LEON registers are also valid:
Floating point registers (single precision)

f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15, f16, f17, f18, f19, f20, f21, f22, f23, f24,
f25, f26, f27, f28, f29, f30, f31

Virtual floating point registers (double precision)
d0, d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, d13, d14, d15

Special purpose registers
psr, tbr, wim, y, pc, npc, fsr

Application specific registers
asr16, asr17, asr18

Valid NOEL-V register names are:
Registers

x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20, x21, x22,
x23, x24, x25, x26, x27, x28, x29, x30, x31

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 203

Virtual registers
zero, ra, sp, gp, tp, a0, a1, a2, a3, a4, a5, a6, a7, t0, t1, t2, t3, t4, t5, t6, s0, s1, s2, s3, s4, s5, s6, s7,
s8, s9, s10, s11

CSR registers
csr###, where ### is the hexadecimal register number, or the name of the CSR register

Virtual debug registers
prv

Floating point registers (native precision)
f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15, f16, f17, f18, f19, f20, f21, f22, f23, f24,
f25, f26, f27, f28, f29, f30, f31

Virtual floating point registers (native precision)
fa0, fa1, fa2, fa3, fa4, fa5, fa6, fa7, ft0, ft1, ft2, ft3, ft4, ft5, ft6, ft7, ft8, ft9, ft10, ft11, fs0, fs1, fs2,
fs3, fs4, fs5, fs6, fs7, fs8, fs9, fs10, fs11

RETURN VALUE

Upon successful completion, command reg returns a list of the requested register values. When register windows
are requested, then nested list of all registers will be returned. If a float/double is requested, then a tuple of the
decimal and the binary value is returned.

EXAMPLE

Display the current window and special purpose registers
grmon3> reg

TCL returns:
{0 0} -213905184
2 1073741824 0 1073741824 1073741828

Display the g0, l3 in window 2, f1, pc and w1.
grmon3> reg g0 w2l3 f1 pc w1

TCL returns:
0 0 {0.0 0} 1073741824 {0 0
0 0 0 0 0 0 0 0 0 0}

Set register g1 to the value 2 and display register g2
grmon3> reg g1 2 g2

TCL returns:
2 0

Set floating point registers
grmon3> reg f0 3.141593 f1 3.141593f d1 3.141593 d2 3.141593f

TCL returns:
{3.1415929794311523 0x40490fdc} {3.1415929794311523 0x40490fdc} {3.141593
0x400921fb82c2bd7f} {3.1415929794311523 0x400921fb80000000}

SEE ALSO

Section 3.4.5, “Displaying processor registers”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 204

78. reset - syntax

NAME

reset - Reset drivers

SYNOPSIS

reset

DESCRIPTION

The reset will give all core drivers an opportunity to reset themselves into a known state. For example will the
memory controllers reset it's registers to their default value and some drivers will turn off DMA. It is in many
cases crucial to disable DMA before loading a new binary image since DMA can overwrite the loaded image and
destroy the loaded Operating System.

EXAMPLE

Reset drivers
grmon3> reset

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 205

79. rtg4fddr - syntax

NAME

rtg4fddr - Print initialization sequence

SYNOPSIS

rtg4fddr show ?fddr#?

DESCRIPTION
rtg4fddr show ?fddr#?

Print initialization sequence

The RTG4 FDDR initcode is loaded into a procedure in the system shell. The procedure is executed in init
level 6, therefore it is possible to override the script in level 5 by redefining the the ::fdir#::init procedure
using the init# hook.

EXAMPLE

Override the default initialization

proc MyInit5 {} {
 proc ::fddr0::init {} {
 # Add custom initialization code here
 }
 proc ::fddr1::init {} {
 # Add custom initialization code here
 }
}
lappend ::hooks::init5 MyInit5

SEE ALSO

Section 3, “User defined hooks”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 206

80. rtg4serdes - syntax

NAME

rtg4serdes - Print initialization sequence

SYNOPSIS

rtg4serdes show ?serdes#?

DESCRIPTION
rtg4serdes show ?serdes#?

Print initialization sequence

The RTG4 SERDES initcode is loaded into a procedure in the system shell. The procedure is executed
in init level 6, therefore it is possible to override the script in level 5 by redefining the the ::serdes#::init
procedure using the init# hook.

EXAMPLE

Override the default initialization

proc MyInit5 {} {
 proc ::serdes0::init {} {
 # Add custom initialization code here
 }
}
lappend ::hooks::init5 MyInit5

SEE ALSO

Section 3, “User defined hooks”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 207

81. run - syntax

run - Reset and start execution

SYNOPSIS

run ?options? ?address? ?count?

DESCRIPTION

run ?options? ?address? ?count?

This command will start the execution of instructions on the active CPU.

When omitting the address parameter this command will start execution at the entry point of the last loaded
application.

This command will reset all drivers, unlike the go command. (see reset for more information)

If the count parameter is set then the CPU will run the specified number of instructions. Note that the
count parameter is only supported by the DSU4.

OPTIONS

-noret

Do not evaluate the return value. When this options is set, no return value will be set.

RETURN VALUE

Upon successful completion run returns a list of signals, one per CPU. Possible signal values are SIGBUS, SIGF-
PE, SIGILL, SIGINT, SIGSEGV, SIGTERM or SIGTRAP. If a CPU is disabled, then an empty string will be
returned instead of a signal value.

EXAMPLE

Execute instructions starting at the entry point of the last loaded file.
grmon3> run

SEE ALSO

Section 3.4.3, “Running applications”
reset

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 208

82. rviommu - syntax

NAME

rviommu - Control RISC-V IOMMU

SYNOPSIS

rviommu subcommand ?args?
rviommu index subcommand ?args?

DESCRIPTION

This command provides functions to control the RISC-V IOMMU. If more than one core exists in the system,
then the index of the core to control should be specified after the rviommu command (before the subcommand).
The 'info sys' command lists the controller indexes.

rviommu tr ?options...? device_id iova

Translate a virtual address using the rviommu translation-request interface. Translations are done by the
IOMMU as if it was requested by the device_id and the given access options.

Available options are -priv, -exe and -nw to set request attributes. The -pid option takes a
process_id argument.

rviommu ddt show ?-base addr? ?-stage1? ?device_id?

Show information about device contexts. Device directory table is normally read from the rviommu. If -
base is given, then a DDT at addr in 1LVL format is used instead.

When device_id is given, detailed information about that device context is displayed. The -stage1
option will print the page tables for device_id.

rviommu ddt walk ?-base addr? device_id iova

Translate a virtual address and print translation.

If -base is given, then a DDT at addr in 1LVL format is used.
rviommu ddt build base

Create a one-level Device-Directory-Table starting at address base with all device contexts set to valid
and Bare mode for the first-stage and second-stage page table.

rviommu ddt modify base device_id mode1 root1 mode2 root2 ?-pdtv val?

Set mode and root address of first-stage and second-stage page tables. If any of the fields mode1, root1,
mode2 and root2 are -1, then the corresponding field in the device directory table will be kept.

The -pdtv option can be used to set the tc.pdtv device context field to 0 or 1.

RETURN VALUE

rviommu ddt walk returns the translated address.

rviommu tr returns the translated address.

The other subcommands have no return value.

EXAMPLE

Show info about device contexts using a DDT in memory on address 0x40000000.

grmon3> rviommu ddt show -base 0x40000000
 Device context for all device_id
 STAGE1 (IOVA/GVA -> GPA) STAGE2 (GPA -> SPA)
 device_id PDTV MODE PDT / PAGE TABLE GPA MODE PAGE TABLE MSI
 000000 0 Bare - - Bare - -
 000001 0 Sv39 0000000040001000 N Bare - -

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 209

 000002 1 PD8 0000000040005000 N Bare - -
 000003 0 Bare - - Bare - -
 ...

Show detailed info about device context 1 and its first-stage page table

grmon3> rviommu ddt show -base 0x40000000 1 -stage1
 Device context for device_id 0x000001
 TC: 0x0000000000000001 V=1 EN_ATS=0 PDTV=0 DPE=0 SBE=0 SXL=0
 IOHGATP: 0x0000000000000000 PADDR=0x0000000000000000 GSCID=0x0000 MODE=Bare
 TA: 0x0000000000000000 PSCID=0x00000
 FSC: 0x8000000000040001 PADDR=0x0000000040001000 (iosatp) MODE=Sv39
 First-stage page table for device_id 0x000001
 0x0000000000-0x02ffffffff -> 0x00000000-0x2ffffffff -rw---- [3145728 pages]
 0x0300000000-0x03001fffff -> 0x4000c000-0x4020bfff -r----- [512 pages]
 0x0300200000-0x03003fffff -> 0x4000c000-0x4020bfff -r----- [512 pages]
 0x0300400000-0x03005fffff -> 0x4000c000-0x4020bfff -r----- [512 pages]
 0x0300600000-0x03007fffff -> 0x4000c000-0x4020bfff -r----- [512 pages]
 0x0300818000-0x0300818fff -> 0x40004000-0x40004fff -rw---- [1 page]
 0x0340000000-0x7fffffffff -> 0x340000000-0x7fffffffff -rwx--- [130809856 pages]

Create an initial device directory table in memory
grmon3> rviommu ddt build 0x40000000

Modify the device context for device_id 1 to use Sv39 for the first stage and no second stage table. The DDT is
located at 0x40000000.
grmon3> rviommu ddt modify 0x40000000 1 8 0x40001000 0 0

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 210

83. scrub - syntax

scrub - Control memory scrubber

SYNOPSIS

scrub ?subcommand? ?args...?

DESCRIPTION

scrub
scrub status

Display status and configuration
scrub ack

Clear error and done status and display status
scrub clear start stop ?value?

Set scrubber to clear memory area from address start up to stop. The parameter value defaults to 0.
scrub patttern word1 ?word2 ...?

Write pattern words into the scrubbers initialization register. If the number of words specified are larger
then the size if the burst length, then the remaining words be ignored. If the number of words are less then
the burst length, the pattern will be repeated up to a complete burst.

scrub init start stop

Initialize the memory area from address start up to stop.
scrub rst

Clear status and reset configuration.

EXAMPLE

Write pattern 0 1 to the memory 0x0000000 to 0x0000003F

grmon3> scrub pattern 0 1
grmon3> scrub init 0 63

Clear a memory area
grmon3> scrub clear 0 63

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 211

84. sdcfg1 - syntax

sdcfg1 - Show or set reset value of SDRAM controller register 1

SYNOPSIS

sdcfg1 ?value?

DESCRIPTION

sdcfg1 ?value?

Set the reset value of the memory register. If value is left out, then the reset value will be printed.

SEE ALSO

Section 6.14, “Memory controllers ”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 212

85. sddel - syntax

sddel - Show or set the SDCLK delay

SYNOPSIS

sddel ?value?

DESCRIPTION

sddel ?value?

Set the SDCLK delay value.

SEE ALSO

Section 6.14, “Memory controllers ”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 213

86. sf2mddr - syntax

NAME

sf2mddr - Print initialization sequence

SYNOPSIS

sf2mddr show ?mddr#?

DESCRIPTION
sf2mddr show ?mddr#?

Print initialization sequence

The IGLOO2/SmartFusion2 DDR initcode is loaded into a procedure in the system shell. The proce-
dure is executed in init level 6, therefore it is possible to override the script in level 5 by redefining the
the ::mddr#::init procedure using the init# hook.

EXAMPLE

Override the default initialization

proc MyInit5 {} {
 proc ::mddr0::init {} {
 # Add custom initialization code here
 }
}
lappend ::hooks::init5 MyInit5

SEE ALSO

Section 3, “User defined hooks”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 214

87. sf2serdes - syntax

NAME

sf2serdes - Print initialization sequence

SYNOPSIS

sf2serdes show ?serdes#?

DESCRIPTION
sf2serdes show ?serdes#?

Print initialization sequence

The IGLOO2/SmartFusion2 SERDES initcode is loaded into a procedure in the system shell. The proce-
dure is executed in init level 6, therefore it is possible to override the script in level 5 by redefining the
the ::serdes#::init procedure using the init# hook.

EXAMPLE

Override the default initialization

proc MyInit5 {} {
 proc ::serdes0::init {} {
 # Add custom initialization code here
 }
}
lappend ::hooks::init5 MyInit5

SEE ALSO

Section 3, “User defined hooks”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 215

88. shell - syntax

NAME

shell - Execute a shell command

SYNOPSIS

shell

DESCRIPTION
shell

Execute a command in the host system shell. The grmon shell command is just an alias for the TCL com-
mand exec, wrapped with puts, i.e. its equivalent to puts [exec ...]. For more information see doc-
umentation about the exec command (http://www.tcl.tk/man/tcl8.6/TclCmd/exec.htm).

EXAMPLE

List all files in the current working directory (Linux)
grmon3> shell ls

List all files in the current working directory (Windows)
grmon3> shell dir

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 216

89. silent - syntax

NAME

silent - Suppress stdout of a command

SYNOPSIS

silent command ?args...?

DESCRIPTION
silent command ?args...?

The silent command be put in front of other GRMON commands to suppress their output and it will not
be logged. The TCL command puts will still be able to print to stdout and be logged. This can be useful
to remove unnecessary output when scripting.

EXAMPLE

Suppress the memory print and print the TCL result instead.
grmon3> puts [silent mem 0x40000000]

SEE ALSO

Section 2, “Variables”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 217

90. spim - syntax

NAME

spim - Commands for the SPI memory controller

SYNOPSIS

spim subcommand ?args...? ?spim#?

DESCRIPTION

This command provides functions to control the SPICTRL core. If more than one core exists in the system, then
the index of the core to control should be specified after the spim command (before the subcommand). The 'info
sys' command lists the device indexes.

spim altscaler ?spim#?

Toggle the usage of alternate scaler to enable or disable.
spim reset ?spim#?

Core reset
spim status ?spim#?

Displays core status information
spim tx data ?[rx|tx|data] ...? ?spim#?

Shift a byte to the memory device The tx or rx keywords can be used to switch between sending and
receiving data without toggle user mode. This is useful if the device is in DSPI or QSPI mode.

spim rx data ?[rx|tx|data] ...? ?spim#?

Shift a byte from the memory device. You must specify one byte for each byte you want to read, however
the values will be ignored. The tx or rx keywords can be used to switch between sending and receiving
data without toggle user mode. This is useful if the device is in DSPI or QSPI mode.

SD Card specific commands:

spim sd csd ?spim#?

Displays and decodes CSD register
spim sd reinit ?spim#?

Reinitialize card

SPI Flash commands:

spim flash ?spim#?

Prints a list of available commands
spim flash detect ?spim#?

Try to detect type of memory device
spim flash dump ?options...? address length ?filename? ?spim#?

Dumps length bytes, starting at address of the SPI-device (i.e. not AMBA address), to a file. The
default name of the file is "grmon-spiflash-dump.srec"

The -binary option can be used to store data to a binary file

Set the -append option to append the dumped data to the end of the file. The default is to truncate the
file to zero length before storing the data into the file.

spim flash erase ?spim#?
spim flash erase start ?stop? ?spim#?

Erase performs a bulk erase clearing the whole device or the blocks from address start to address stop.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 218

spim flash fast ?spim#?

Enables or disables FAST READ command (memory device may not support this).
spim flash load ?options...? filename ?address? ?cpu#?

Loads the contents in the file filename to the memory device. If the address is present, then binary files
will be stored at the address of the SPI-device (i.e. not AMBA address), otherwise binary files will be
written to the beginning of the device. The cpu# argument can be used to specify which CPU it belongs to.

The only available option is '-binary', which forces GRMON to interpret the file as binary file.
spim flash select ?index? ?spim#?

Select memory device. If index is not specified, a list of the supported devices is displayed.
spim flash set ?options...? ?attribute value(s)...? ?spim#?

Sets a custom memory device configuration or modify the current configuration. If the option -new is
set, or no current confifuration has been set, then it will create a new custom confifuration. Otherwise if
it modify the current configuration.

The following attributes and values are available

pagesize size Page size

adrbytes value Number of bytes in address

wren value Write enable command

wrdi value Write disable command

rdsr value Read status register command

wrsr value Write status register command

read value Read data bytes command

fast_read value Fast read data bytes command

pp value Page programming command

se value Sector erase command

be value bytes Bulk/Die erase command and number of bytes

sectors {count bytes ?se
cmd0? ...}

A list of number of sectors and number of bytes per sector. Up to 4
sector groups can be added. They are used with the se command to
erase a single sector. Optionally you can also override the sector erase
command for a group of sectors, if different sector erase commands
are needed. If sector erase is not supported, then add one pair with
count = 1 and bytes = size of memory.

dummy boolean Use dummy byte

name string Name of device

banks value Set the number number of banks, up to four is supported. This will be
set automatically when the dsconf filed of the control register 2 is set

banksize value Set size of each bank. This will be set automatically when the dsconf
filed of the control register 2 is set

Issue spim flash show to see current attribute values.

Status register of the memory must have the following bits defined for the custom device to be supported.
Bit 1 WEL (write enable latch)
Bit 0 WIP (write in progress)

spim flash show ?spim#?

Shows current memory device configuration
spim flash status ?spim#?

Displays device specific information

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 219

spim flash strict ?boolean? ?spim#?

Enable/Disable strict communication mode. Enable if programming fails. Strict communication mode may
be necessary when using very fast debug links or for SPI implementations with a slow SPI clock

spim flash verify ?options...? filename ?address? ?spim#?

Verifies that data in the file filename matches data in memory device. If the address is present, then
binary files will be compared with data at the address of the SPI-device (i.e. not AMBA address), oth-
erwise binary files will be compared against data at the beginning of the device.

The -binary options forces GRMON to interpret the file as binary file.

The -erase option to automatically erase the flash before writing. It will only erase the sectors where
data will be written.

The -max option can be used to force GRMON to stop verifying when num errors have been found.

When the -errors option is specified, the verify returns a list of all errors instead of number of errors.
Each element of the list is a sublist whose format depends on the first item if the sublist. Possible errors
can be detected are memory verify error (MEM), read error (READ) or an unknown error (UNKNOWN).
The formats of the sublists are: MEM address read-value expected-value , READ address
num-failed-addresses , UNKNOWN address

Upon successful completion spim flash verify returns the number of error detected. If the -errors has
been given, it returns a list of errors instead.

spim flash wrdi ?spim#?
spim flash wren ?spim#?

Issue write disable/enable instruction to the device.

SEE ALSO

Section 3.11.4, “SPI memory device”
Section 6.14, “Memory controllers ”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 220

91. spi - syntax

NAME

spi - Commands for the SPI controller

SYNOPSIS

spi subcommand ?args...? ?spi#?

DESCRIPTION

This command provides functions to control the SPICTRL core. If more than one core exists in the system, then
the index of the core to control should be specified after the spi command (before the subcommand). The 'info
sys' command lists the device indexes.

spi aslvsel value ?spi#?

Set automatic slave select register
spi disable ?spi#?
spi enable ?spi#?

Enable/Disable core
spi rx ?spi#?

Read receive register
spi selftest ?spi#?

Test core in loop mode
spi set ?field ...? ?spi#?

Sets specified field(s) in Mode register.

Available fields: cpol, cpha, div16, len value, amen, loop, ms, pm value, tw, asel, fact, od, tac, rev,
aseldel value, tto, igsel, cite

spi slvsel value ?spi#?

Set slave select register
spi status ?spi#?

Displays core status information
spi tx data ?spi#?

Writes data to transmit register. GRMON automatically aligns the data
spi unset ?field ...? ?spi#?

Sets specified field(s) in Mode register.

Available fields: cpol, cpha, div16, amen, loop, ms, tw, asel, fact, od, tac, rev, tto, igsel, cite

Commands for automated transfers:

spi am cfg ?option ...? ?spi#?

Set AM configuration register.

Available fields: seq, strict, ovtb, ovdb
spi am per value ?spi#?

Set AM period register to value.
spi am act ?spi#?
spi am deact ?spi#?

Start/stop automated transfers.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 221

spi am extact ?spi#?

Enable external activation of AM transfers
spi am poll count ?spi#?

Poll for count transfers

SPI Flash commands:

spi flash ?spi#?

Prints a list of available commands
spi flash detect ?spi#?

Try to detect type of memory device
spi flash dump ?options...? address length ?filename? ?spi#?

Dumps length bytes, starting at address of the SPI-device (i.e. not AMBA address), to a file. The
default name of the file is "grmon-spiflash-dump.srec"

The -binary option can be used to store data to a binary file

Set the -append option to append the dumped data to the end of the file. The default is to truncate the
file to zero length before storing the data into the file.

spi flash erase ?spi#?
spi flash erase start ?stop? ?spi#?

Erase performs a bulk erase clearing the whole device or the blocks from address start to address stop.
spi flash fast ?spi#?

Enables or disables FAST READ command (memory device may not support this).
spi flash load ?options...? filename ?address? ?cpu#? ?spi#?

Loads the contents in the file filename to the memory device. If the address is present, then binary files
will be stored at the address of the SPI-device (i.e. not AMBA address), otherwise binary files will be
written to the beginning of the device. The cpu# argument can be used to specify which CPU it belongs to.

The option -binary forces GRMON to interpret the file as binary file.

Use the -erase option to automatically erase the flash before writing. It will only erase the sectors where
data will be written.

spi flash select ?index? ?spi#?

Select memory device. If index is not specified, a list of the supported devices is displayed.
spi flash set ?options...? ?attribute value(s)...? ?spi#?

Sets a custom memory device configuration or modify the current configuration. If the option -new is
set, or no current confifuration has been set, then it will create a new custom confifuration. Otherwise if
it modify the current configuration.

The following attributes and values are available

pagesize size Page size

adrbytes value Number of bytes in address

wren value Write enable command

wrdi value Write disable command

rdsr value Read status register command

wrsr value Write status register command

read value Read data bytes command

fast_read value Fast read data bytes command

pp value Page programming command

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 222

se value Sector erase command

be value bytes Bulk/Die erase command and number of bytes

sectors {count bytes ?se
cmd0? ...}

A list of number of sectors and number of bytes per sector. Up to 4
sector groups can be added. They are used with the se command to
erase a single sector. Optionally you can also override the sector erase
command for a group of sectors, if different sector erase commands
are needed. If sector erase is not supported, then add one pair with
count = 1 and bytes = size of memory.

dummy boolean Use dummy byte

name string Name of device

banks value Set the number of banks, up to four is supported.

banksize value Set size of each bank.

Issue spi flash show to see current attribute values.

Status register of the memory must have the following bits defined for the custom device to be supported.
Bit 1 WEL (write enable latch)
Bit 0 WIP (write in progress)

spi flash show ?spi#?

Shows current memory device configuration
spi flash ssval ?options...? ?value? ?spi#?

Sets slave value to be used with the SPICTRL core. When GRMON wants to select the memory device
it will write this value to the slave select register. When the device is deselected, GRMON will write all
ones to the slave select register. Example: Set slave select line 0 to low, all other lines high when selecting
a device
grmon3> spi flash ssval 0xfffffffe

The -bank n can used to set the slave select value for a different bank. Up to four banks are supported.
spi flash status ?spi#?

Displays device specific information
spi flash strict ?boolean? ?spi#?

Enable/Disable strict communication mode. Enable if programming fails. Strict communication mode may
be necessary when using very fast debug links or for SPI implementations with a slow SPI clock

spi flash verify ?options...? filename ?address? ?spi#?

Verifies that data in the file filename matches data in memory device. If the address is present, then
binary files will be compared with data at the address of the SPI-device (i.e. not AMBA address), oth-
erwise binary files will be compared against data at the beginning of the device.

The -binary option forces GRMON to interpret the file as binary file.

The -max option can be used to force GRMON to stop verifying when num errors have been found.

When the -errors option is specified, the verify returns a list of all errors instead of number of errors.
Each element of the list is a sublist whose format depends on the first item if the sublist. Possible errors
can be detected are memory verify error (MEM), read error (READ) or an unknown error (UNKNOWN).
The formats of the sublists are: MEM address read-value expected-value , READ address
num-failed-addresses , UNKNOWN address

Upon successful completion spi flash verify returns the number of error detected. If the -errors has
been given, it returns a list of errors instead.

spi flash wrdi ?spi#?
spi flash wren ?spi#?

Issue write disable/enable instruction to the device.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 223

EXAMPLE

Set AM configuration register
grmon3> spi am cfg strict ovdb

Set AM period register
grmon3> spi am per 1000

Poll queue 10 times
grmon3> spi am poll 10

Set fields in Mode register
grmon3> spi set ms cpha len 7 rev

Unset fields in Mode register
grmon3> spi unset ms cpha rev

SEE ALSO

Section 3.11.4, “SPI memory device”
Section 6.14, “Memory controllers ”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 224

92. spwrtr - syntax

NAME

spwrtr - SpaceWire router information

SYNOPSIS

spwrtr info ?port? ?spwrtr#?
spwrtr rt ?options? ?port? ?endport? ?spwrtr#?
spwrtr rt add ?options? port ?dst...? ?spwrtr#?
spwrtr rt remove ?options? port ?dst...? ?spwrtr#?

DESCRIPTION
spwrtr info ?port? ?spwrtr#?

Print register information for the router or a single port.
spwrtr rt ?options? ?port? ?endport? ?spwrtr#?

Print the routing table. A single port or a range of ports can be specified, otherwise all ports will be printed.

Options -physical or -logical can be used to filter out ports.

Options -nh can be used to suppress the printing of the header.
spwrtr rt add ?options? port ?dst...? ?spwrtr#?

Enable one more destination ports to the routing table.

Options -en, -hd, -pr, -sr and -pd can be used to set the corresponding bits. If no destination port has
been specified, the option flags will still set the corresponding bits.

spwrtr rt remove ?options? port ?dst...? ?spwrtr#?

Disable one more destination ports to the routing table.

Options -en, -hd, -pr, -sr and -pd can be used to unset the corresponding bits. If no destination port
has been specified, the option flags will still unset the corresponding bits.

RETURN VALUE

Command spwrtr has no return value.

SEE ALSO

Section 6.20, “SpaceWire router”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 225

93. stack - syntax

NAME

stack - Set or show the initial stack-pointer.

SYNOPSIS

stack ?cpu#?
stack address ?cpu#?

DESCRIPTION
stack ?cpu#?

Show current active CPUs initial stack-pointer, or the CPU specified by cpu#.
stack address ?cpu#?

Set the current active CPUs initial stack-pointer, or the CPU specified by cpu#.

RETURN VALUE

Upon successful completion stack returns a list of initial stack-pointer addresses, one per CPU.

EXAMPLE

Set current active CPUs initial stack-pointer to 0x4FFFFFF0
grmon3> stack 0x4FFFFFF0

SEE ALSO

Section 6.3.1, “Switches”
Section 3.4.13, “Multi-processor support”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 226

94. step - syntax

step - Step one or more instructions

SYNOPSIS

step ?nsteps? ?cpu#?

DESCRIPTION

step ?nsteps? ?cpu#?

Step one or more instructions on all CPU:s. If cpu# is set, then only the specified CPU index will be
stepped.
When single-stepping over a conditional or unconditional branch with the annul bit set, and if the delay
instruction is effectively annulled, the delay instruction itself and the instruction thereafter are stepped
over in the same go. That means that three instructions are executed by one single step command in this
particular case.

EXAMPLE

Step 10 instructions
grmon3> step 10

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 227

95. stop - syntax

stop - Interrupt current CPU execution

SYNOPSIS

stop ?-nowait?

DESCRIPTION

stop ?-nowait?

This command will interrupt the CPU execution initiated by another shell or by the graphical user interface.
If the CPU is not currently executing the command will be ignored. By default stop will block until the
CPU execution has stopped and it is safe to access CPU registers immediately after.

If -nowait option is given the command will not block until the CPU execution stop request has been
completed. Instead the command will return immediately and accessing CPU registers afterwards might
result in "CPU not in debug mode" messages a short time while GRMON stops the on-going CPU execution.

EXAMPLE

Block until on-going CPU execution has been interrupted and then read the registers of CPU0 safely.
grmon> stop; reg cpu0

Attempt to interrupt on-going CPU execution if started by another shell or GUI without blocking:
grmon> stop -nowait

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 228

96. svga - syntax

NAME

svga - Commands for the SVGA controller

SYNOPSIS

svga subcommand ?args...? ?svga#?

DESCRIPTION

This command provides functions to control the SVGACTRL core. If more than one core exists in the system,
then the index of the core to control should be specified after the svga command (before the subcommand). The
'info sys' command lists the device indexes.

svga custom ?period horizontal_active_video horizontal_front_porch
horizontal_sync horizontal_back_porch vertical_active_video
vertical_front_porch vertical_sync vertical_back_porch? ?svga#?

The svga custom command can be used to specify a custom format. The custom format will have prece-
dence when using the svga draw command. If no parameters are given, then is will print the current custom
format.

svga draw file bitdepth ?svga#?

The svga draw command will determine the resolution of the specified picture and select an appropriate
format (resolution and refresh rate) based on the video clocks available to the core. The required file format
is ASCII PPM which must have a suitable amount of pixels. For instance, to draw a screen with resolution
640x480, a PPM file which is 640 pixels wide and 480 pixels high must be used. ASCII PPM files can
be created with, for instance, the GNU Image Manipulation Program (The GIMP). The color depth can
be either 16 or 32 bits.

svga draw test_screen fmt bitdepth ?svga#?

The svga draw test_screen command will show a simple grid in the resolution specified via the format
fmt selection (see svga formats to list all available formats). The color depth can be either 16 or 32 bits.

svga frame ?address? ?svga#?

Show or set start address of framebuffer memory
svga formats ?svga#?

Show available display formats
svga formatsdetailed ?svga#?

Show detailed view of available display formats

EXAMPLE

Draw a 1024x768, 60Hz test image
grmon3> svga draw test_screen 12 32

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 229

97. symbols - syntax

NAME

symbols - Load, print or lookup symbols

SYNOPSIS

symbols ?options? filename ?cpu#?
symbols subcommand ?arg?

DESCRIPTION

The symbols command is used to load symbols from an object file. It can also be used to print all loaded symbols
or to lookup the address of a specified symbol.

symbols ?options? filename ?cpu#?

Load the symbols from filename. If cpu# argument is omitted, then the symbols will be associated with
the active CPU.

Options:
-tid id

Associate the file with a specfic thread. Accepts a thread id or thread path as an argument.
-tname name

Associate the file with a specfic thread
symbols clear ?cpu#?

Remove all symbols associated with the active CPU or a specific CPU.
symbols list ?options? ?cpu#?

This command lists loaded symbols. If no options are given, then all local and global functions and objects
are listed. The optional argument cpu# can be used to limit the listing for a specific CPU.

Options:
-global

List global symbols
-local

List local symbols
-func

List functions
-object

List objects
-all

List all symbols
symbols lookup symbol ?cpu#?

Lookup the address of the specified symbol using the symbol table of the active CPU. If cpu# is specified,
then it will only look in the symbol table associated with that CPU.

symbols lookup address ?cpu#?

Lookup symbol for the specified address using the symbol table of the active CPU. If cpu# is specified,
then it will only look in the symbol table associated with that CPU. At most one symbol is looked up.

RETURN VALUE

Upon successful completion symbols list will return a list of all symbols and their attributes.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 230

Nothing will be returned when loading or clearing.

Command symbols lookup will return the corresponding address or symbol.

EXAMPLE

Load the symbols in the file hello.
grmon3> symbols hello

List symbols.
grmon3> symbols list

List all loaded symbols.
grmon3> symbols list -all

List all function symbols.
grmon3> symbols list -func -local -global

List all symbols that begins with the letter m
grmon3> puts [lsearch -index {3} -subindices -all -inline [symbols list] m*]

SEE ALSO

Section 3.6, “Symbolic debug information”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 231

98. system - syntax

NAME

system - Attach or detach devices

SYNOPSIS

system attach ?options? dev...
system detach dev...

DESCRIPTION
system attach ?options? dev...

Attach and initlize a core. It will also enable the core in the clockgate if needed for known ASIC devices.
The -ni can be added to avoid initlization (but it will still probe for capabilities).

system detach dev...

Detach a device from GRMON to make it run in the background. If a device is detached while being
clockgated, then it will remain detached when it becomes enabled in the clockgate.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 232

99. thread - syntax

NAME

thread - Show OS-threads information or backtrace

SYNOPSIS

thread info ?cpu#?
thread current ?cpu#?
thread bt id ?cpu#?
thread os
thread tree ?options?

DESCRIPTION

The thread command may be used to list all threads or to show backtrace of a specified thread. Note that the only
OS:s supported by GRMON are RTEMS, PikeOS and VxWorks.

The thread command tries to auto-detect the running OS on the target. If this mechanism doesn't work it is possible
to force which OS thread backend to use by command line options to GRMON. For more information see for
example the -rtems, -bmnothreads and -nothreads options.

thread info ?cpu#?
thread current ?cpu#?

List information about the threads. This should be used to get the id:s for the thread bt command.
thread bt id ?cpu#?

Show backtrace of the thread specified by id. The command thread info can be used find the available id:s.
thread os id

Print the name of the current OS.
thread tree ?options? ?cpu#?

Print a hierarchy of all threads. One of the options -tid, -path or -fullname can be set to print extra
information about the threads.

RETURN VALUE

Upon successful completion, thread info returns a list of threads. Each entry is a sublist on the format format:
{id name current pc sp }. See table below for a detailed description.

Name Description

id OS specific identification number

name Name of the thread

current Boolean describing if the thread is the current running thread.

pc Program counter

sp Stack pointer

cpu Value greater or equal to 0 means that the thread is executing on CPU. Negative value indicates
that the thread is idle.

The thread current command returns information about the current thread only, using the format described for
the return value of the command thread info above.

The other subcommands have no return value.

EXAMPLE

List all threads

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 233

grmon3> thread info
 NAME TYPE ID PRIO TIME (h:m:s) ENTRY POINT PC ...
 * Int. internal 0x09010001 255 0:0:0.000000000 0x4000a5b4 <+0xFFF...
 TA1 classic 0x0a010002 1 0:0:0.064709999 Test_task 0x40016ab8 <_Threa...
 TA2 classic 0x0a010003 1 0:0:0.061212000 Test_task 0x40016ab8 <_Threa...
 TA3 classic 0x0a010004 1 0:0:0.060206998 Test_task 0x40016ab8 <_Threa...

TCL returns:
{151060481 Int. 1 1073784244 0} {167837698 {TA1 } 0 1073834680 0} {167837699
{TA2 } 0 1073834680 0} {167837700 {TA3 } 0 1073834680 0}

SEE ALSO

Section 3.8, “Thread support”
Section 3.8.1, “GRMON thread options”
Section 3.7.6, “GDB Thread support”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 234

100. timer - syntax

timer - Show information about the timer devices

SYNOPSIS

timer ?devname?
timer reg ?devname?

DESCRIPTION

timer ?devname?

This command will show information about the timer device. Optionally which device to show information
about can be specified. Device names are listed in 'info sys'.

timer reg ?devname?

This command will get the timers register. Optionally which device to get can be specified. Device names
are listed in 'info sys'.

EXAMPLE

Execute instructions starting at 0x40000000.
grmon3> timer 0x40000000

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 235

101. tmode - syntax

tmode - Select tracing mode between none, processor-only, AHB only or both

SYNOPSIS

tmode
tmode none
tmode both
tmode ahb boolean
tmode proc ?boolean? ?cpu#?

DESCRIPTION

tmode

Print the current tracing mode
tmode none

Disable tracing
tmode both

Enable both AHB and instruction tracing
tmode ahb ?boolean?

Enable or disable AHB transfer tracing
tmode proc ?boolean? ?cpu#?

Enable or disable instruction tracing. Use cpu# to toggle a single CPU.

EXAMPLE

Disable AHB transfer tracing
grmon3> tmode ahb disable

SEE ALSO

Section 3.4.9, “Using the trace buffer”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 236

102. tps - syntax

tps - Control the TPS service

SYNOPSIS

tps ?port? ?address?
tps stop
tps status

DESCRIPTION

The tps command allows the VxWorks 7 workbench to use the active debug link to debug applications. This
removes the need for hardware Ethernet support.

It implements the host side of a virtual interface that only uses memory reads/writes over the debug link for
communication. Instead of connecting directly to the target, the workbench needs to connect to GRMON using
the port specified when issuing the tps command.

See the "LEON Architectural Support for VxWorks 7" manual for information on how to configure the target side
support.

tps ?port? ?address?

Start the TPS service. The default port used is 5780 and the default address is taken from the symbol
TPS_DRIVER_REGS if provided by the application. If the TPS service is already started the command
will print the current status.

tps stop

Stop the TPS service.
tps status

Print status.

RETURN VALUE

The command tps returns a tuple with the port and address used.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 237

103. uhci - syntax

NAME

uhci - Control the USB host's UHCI core

SYNOPSIS

uhci subcommand ?args...?

DESCRIPTION
uhci endian ?devname?

Displays the endian conversion setting
uhci opregs ?devname?

Displays contents of the I/O registers
uhci reset ?devname?

Performs a Host Controller Reset

RETURN VALUE

Upon successful completion, uhci have no return value.

SEE ALSO

Section 6.6, “USB Host Controller”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 238

104. usrsh - syntax

NAME

usrsh - Run commands in threaded user shell

SYNOPSIS

usrsh
usrsh subcommand ?arg?

DESCRIPTION

The usrsh command is used to create custom user shells. Each custom shell has an associated Tcl interpreter
running in a separate thread. Log output from a custom user shell is prefix with its name (see description of the
-log option in Section 3.2.3, “General options”).

usrsh
usrsh list

List all custom user shells.
usrsh add name

Create a user shell named name. The name is used as an identifier for the shell when using other usrsh
commands.

usrsh delete name

Delete user shell name.
usrsh eval ?-bg? ?-std? name arg ?arg ...?

Evaluate command arg in the user shell identified as name. If a script is running, then the command will
fail with the error code set to EBUSY.

If the option -bg is set, then the script will be evaluated in the background, and GRMON will return to
the prompt.

If the option -std, in combination with option -bg, then output from the background operation will be
forwarded to the current shells stdout.

usrsh result name

Retrieve the result from the last evaluation. If a script is running, then the command will fail with the error
code set to EBUSY.

RETURN VALUE

Upon successful completion usrsh list will return a list of all custom user shells.

usrsh eval will return the result from the script. If the option -bg then nothing will be returned. Instead the usrsh
result will return the result when the script is finished.

EXAMPLE

Create a user shell named myshell and evaluate a command in it.

grmon3> usrsh add myshell
 Added user shell: myshell

grmon3> usrsh eval myshell puts "Hello World!"
 Hello World!

Evaluate command in user shell named myshell in the background and wait for it to finish.

grmon3> usrsh eval -bg myshell {after 2000; expr 1+1}

grmon3> while {[catch {usrsh result myshell}] && $errorCode == "EBUSY"} {puts "waiting"; after 1000}
 waiting

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 239

 waiting

grmon3> puts [usrsh result myshell]
 2

SEE ALSO

Section 3.5, “Tcl integration”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 240

105. va - syntax

NAME

va - Translate a virtual address

SYNOPSIS

va address ?cpu#?

DESCRIPTION
va address ?cpu#?

Translate a virtual address. The command will use the MMU from the current active CPU and the cpu#
can be used to select a different CPU.

OPTIONS
-v

The -v will show a walk output.
-s

The command will operate using the supervisor MMU table.
-h

The command will operate using the hypervisor two-stage MMU tables.
-hg

The command will operate using the hypervisor guest MMU table.
-vs

The command will return the first stage address. First stage PTEs will still be translated using the second
stage.

RETURN VALUE

Command va returns the translated address.

SEE ALSO

Section 3.4.15, “Memory Management Unit (MMU) support”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 241

106. verify - syntax

NAME

verify - Verify that a file has been uploaded correctly.

SYNOPSIS

verify ?options...? filename ?address?

DESCRIPTION
verify ?options...? filename ?address?

Verify that the file filename has been uploaded correctly. If the address argument is present, then
binary files will be compared against data at this address, if left out then they will be compared to data at
the base address of the detected RAM.

RETURN VALUE

Upon successful completion verify returns the number of error detected. If the -errors has been given, it returns
a list of errors instead.

OPTIONS
-binary

The -binary option can be used to force GRMON to interpret the file as a binary file.
-bsize bytes

The -bsize option may be used to specify the size blocks of data in bytes that will be written. Sizes that
are not even words may require a JTAG based debug link to work properly. See Chapter 5, Debug link
more information.

-delay ms

The -delay option can be used to specify a delay between each word written. If the delay is non-zero
then the default block size will be 4 bytes, but can be changed using the -bsize option.

-max num

The -max option can be used to force GRMON to stop verifying when num errors have been found.
-bsize bytes

The -bsize option may be used to specify the size of blocks of data in bytes that will be read. Sizes that
are not even words may require a JTAG based debug link to work properly. See Chapter 5, Debug link
more information.

-errors

When the -errors option is specified, the verify returns a list of all errors instead of number of errors.
Each element of the list is a sublist whose format depends on the first item if the sublist. Possible errors
can be detected are memory verify error (MEM), read error (READ) or an unknown error (UNKNOWN).
The formats of the sublists are: MEM address read-value expected-value , READ address
num-failed-addresses , UNKNOWN address

EXAMPLE

Load and then verify a hello_world application

grmon3> load ../hello_world/hello_world
grmon3> verify ../hello_world/hello_world

SEE ALSO

Section 3.4.2, “Uploading application and data to target memory”
bload

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 242

eeload
load

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 243

107. vmemb - syntax

NAME

vmemb - AMBA bus 8-bit virtual memory read access, list a range of addresses

SYNOPSIS

vmemb ?-ascii? address ?length?

DESCRIPTION
vmemb ?-ascii? address ?length?

GRMON will translate address to a physical address, do an AMBA bus read 8-bit read access and print
the data. The optional length parameter should specified in bytes and the default size is 64 bytes. If no
MMU exists or if it is turned off, this command will behave like the command vwmemb

Only JTAG debug links supports byte accesses. Other debug links will do a 32-bit read and then parse out
the unaligned data.

OPTIONS
-bsize bytes

The -bsize option can be used to specify the size blocks of data in bytes that will be read between each
print to the screen. Setting a high value may increase performance but cause a less smooth printout when
using a slow debug link.

-delay ms

The -delay option can be used to specify a delay between each word written. If the delay is non-zero
then the default block size will be 1 bytes, but can be changed using the -bsize option.

-ascii

If the -ascii flag has been given, then a single ASCII string is returned instead of a list of values.
-cstr

If the -cstr flag has been given, then a single ASCII string, up to the first null character, is returned
instead of a list of values.

-dec

Give the -dec flag to make the Tcl return signed decimal values instead of hexadecimal strings.
-s

The command will operate using the supervisor MMU table.
-h

The command will operate using the hypervisor two-stage MMU tables.
-hg

The command will operate using the hypervisor guest MMU table.

RETURN VALUE

Upon successful completion vmemb returns a list of the requested 8-bit words. Some options changes the result
value, see options for more information.

EXAMPLE

Read 4 bytes from address 0x40000000:
grmon3> vmemb 0x40000000 4

TCL returns:

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 244

64 0 0 0

SEE ALSO

Section 3.4.7, “Displaying memory contents”
Section 3.4.15, “Memory Management Unit (MMU) support”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 245

108. vmemd - syntax

NAME

vmemd - AMBA bus 64-bit virtual memory read access, list a range of addresses

SYNOPSIS

vmemd ?-ascii? address ?length?

DESCRIPTION
vmemd ?-ascii? address ?length?

GRMON will translate address to a physical address, do an AMBA bus read access and print the data
as 64-bit words. The optional length parameter should specified in bytes and the default size is 64 bytes
(8 words).

OPTIONS
-bsize bytes

The -bsize option can be used to specify the size blocks of data in bytes that will be read between each
print to the screen. Setting a high value may increase performance but cause a less smooth printout when
using a slow debug link.

-delay ms

The -delay option can be used to specify a delay between each word written. If the delay is non-zero
then the default block size will be 8 bytes, but can be changed using the -bsize option.

-ascii

If the -ascii flag has been given, then a single ASCII string is returned instead of a list of values.
-cstr

If the -cstr flag has been given, then a single ASCII string, up to the first null character, is returned
instead of a list of values.

-dec

Give the -dec flag to make the Tcl return signed decimal values instead of hexadecimal strings.
-s

The command will operate using the supervisor MMU table.
-h

The command will operate using the hypervisor two-stage MMU tables.
-hg

The command will operate using the hypervisor guest MMU table.

RETURN VALUE

Upon successful completion vmemd returns a list of the requested 64-bit words. Some options changes the result
value, see options for more information.

EXAMPLE

Read 2 64-bit words (16 bytes) from address 0xffffffe000000000:
grmon3> vmemd 0xffffffe000000000 16

TCL returns:
0xffff1244901022 0x543348

SEE ALSO

Section 3.4.7, “Displaying memory contents”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 246

Section 3.4.15, “Memory Management Unit (MMU) support”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 247

109. vmemh - syntax

NAME

vmemh - AMBA bus 16-bit virtual memory read access, list a range of addresses

SYNOPSIS

vmemh ?-ascii? address ?length?

DESCRIPTION
vmemh ?-ascii? address ?length?

GRMON will translate address to a physical address, do an AMBA bus read 16-bit read access and print
the data. The optional length parameter should specified in bytes and the default size is 64 bytes (32 words).
If no MMU exists or if it is turned off, this command will behave like the command vwmemh

Only JTAG debug links supports byte accesses. Other debug links will do a 32-bit read and then parse out
the unaligned data.

OPTIONS
-bsize bytes

The -bsize option can be used to specify the size blocks of data in bytes that will be read between each
print to the screen. Setting a high value may increase performance but cause a less smooth printout when
using a slow debug link.

-delay ms

The -delay option can be used to specify a delay between each word written. If the delay is non-zero
then the default block size will be 2 bytes, but can be changed using the -bsize option.

-ascii

If the -ascii flag has been given, then a single ASCII string is returned instead of a list of values.
-cstr

If the -cstr flag has been given, then a single ASCII string, up to the first null character, is returned
instead of a list of values.

-dec

Give the -dec flag to make the Tcl return signed decimal values instead of hexadecimal strings.
-s

The command will operate using the supervisor MMU table.
-h

The command will operate using the hypervisor two-stage MMU tables.
-hg

The command will operate using the hypervisor guest MMU table.

RETURN VALUE

Upon successful completion vmemh returns a list of the requested 16-bit words. Some options changes the result
value, see options for more information.

EXAMPLE

Read 4 words (8 bytes) from address 0x40000000:
grmon3> vmemh 0x40000000 8

TCL returns:

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 248

16384 0 0 0

SEE ALSO

Section 3.4.7, “Displaying memory contents”
Section 3.4.15, “Memory Management Unit (MMU) support”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 249

110. vmem - syntax

NAME

vmem - AMBA bus 32-bit virtual memory read access, list a range of addresses

SYNOPSIS

vmem ?-ascii? address ?length?

DESCRIPTION
vmem ?-ascii? address ?length?

GRMON will translate address to a physical address, do an AMBA bus read 32-bit read access and print
the data. The optional length parameter should specified in bytes and the default size is 64 bytes (16 words).
If no MMU exists or if it is turned off, this command will behave like the command vwmem

OPTIONS
-bsize bytes

The -bsize option can be used to specify the size blocks of data in bytes that will be read between each
print to the screen. Setting a high value may increase performance but cause a less smooth printout when
using a slow debug link.

-delay ms

The -delay option can be used to specify a delay between each word written. If the delay is non-zero
then the default block size will be 4 bytes, but can be changed using the -bsize option.

-ascii

If the -ascii flag has been given, then a single ASCII string is returned instead of a list of values.
-cstr

If the -cstr flag has been given, then a single ASCII string, up to the first null character, is returned
instead of a list of values.

-dec

Give the -dec flag to make the Tcl return signed decimal values instead of hexadecimal strings.
-s

The command will operate using the supervisor MMU table.
-h

The command will operate using the hypervisor two-stage MMU tables.
-hg

The command will operate using the hypervisor guest MMU table.

RETURN VALUE

Upon successful completion vmem returns a list of the requested 32-bit words. Some options changes the result
value, see options for more information.

EXAMPLE

Read 4 words from address 0x40000000:
grmon3> vmem 0x40000000 16

TCL returns:
1073741824 0 0 0

SEE ALSO

Section 3.4.7, “Displaying memory contents”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 250

Section 3.4.15, “Memory Management Unit (MMU) support”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 251

111. vwmemb - syntax

NAME

vwmemb - AMBA bus 8-bit virtual memory write access

SYNOPSIS

vwmemb ?options...? address data ?...?

DESCRIPTION
vwmemb ?options...? address data ?...?

Do an AMBA write access. GRMON will translate address to a physical address and write the 8-bit
value specified by data. If more than one data word has been specified, they will be stored at consecutive
physical addresses. If no MMU exists or if it is turned off, this command will behave like the command
vwmemb

Only JTAG debug links supports byte accesses. Other debug links will do a 32-bit read-modify-write when
writing unaligned data.

OPTIONS
-bsize bytes

The -bsize option may be used to specify the size blocks of data in bytes that will be written.
-delay ms

The -delay option can be used to specify a delay between each word written. If the delay is non-zero
then the default block size will be 1 bytes, but can be changed using the -bsize option.

-wprot

Disable memory controller write protection during the write.
-s

The command will operate using the supervisor MMU table.
-h

The command will operate using the hypervisor two-stage MMU tables.
-hg

The command will operate using the hypervisor guest MMU table.

RETURN VALUE

vwmemb has no return value.

EXAMPLE

Write 0xAB to address 0x40000000 and 0xCD to 0x40000004:
grmon3> vwmemb 0x40000000 0xAB 0xCD

SEE ALSO

Section 3.4.7, “Displaying memory contents”
Section 3.4.15, “Memory Management Unit (MMU) support”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 252

112. vwmemd - syntax

NAME

vwmemd - AMBA bus 64-bit virtual memory write access

SYNOPSIS

vwmemd ?options...? address data ?...?

DESCRIPTION
vwmemd ?options...? address data ?...?

Do an AMBA write access. GRMON will translate address to a physical address and write the 64-bit
value specified by data. If more than one data word has been specified, they will be stored at consecutive
physical addresses.

OPTIONS
-bsize bytes

The -bsize option may be used to specify the size blocks of data in bytes that will be written.
-delay ms

The -delay option can be used to specify a delay between each word written. If the delay is non-zero
then the default block size will be 8 bytes, but can be changed using the -bsize option.

-wprot

Disable memory controller write protection during the write.
-s

The command will operate using the supervisor MMU table.
-h

The command will operate using the hypervisor two-stage MMU tables.
-hg

The command will operate using the hypervisor guest MMU table.

RETURN VALUE

vwmemd has no return value.

EXAMPLE

Write 0xffff1244901022 to address 0xffffffe000000000 and 0x1234 to 0xffffffe000000008:
grmon3> vwmemd 0xffffffe000000000 0xffff1244901022 0x1234

SEE ALSO

Section 3.4.7, “Displaying memory contents”
Section 3.4.15, “Memory Management Unit (MMU) support”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 253

113. vwmemh - syntax

NAME

vwmemh - AMBA bus 16-bit virtual memory write access

SYNOPSIS

vwmemh ?options...? address data ?...?

DESCRIPTION
vwmemh ?options...? address data ?...?

Do an AMBA write access. GRMON will translate address to a physical address and write the 16-bit
value specified by data. If more than one data word has been specified, they will be stored at consecutive
physical addresses. If no MMU exists or if it is turned off, this command will behave like the command
vwmemh

Only JTAG debug links supports byte accesses. Other debug links will do a 32-bit read-modify-write when
writing unaligned data.

OPTIONS
-bsize bytes

The -bsize option may be used to specify the size blocks of data in bytes that will be written.
-delay ms

The -delay option can be used to specify a delay between each word written. If the delay is non-zero
then the default block size will be 2 bytes, but can be changed using the -bsize option.

-wprot

Disable memory controller write protection during the write.
-s

The command will operate using the supervisor MMU table.
-h

The command will operate using the hypervisor two-stage MMU tables.
-hg

The command will operate using the hypervisor guest MMU table.

RETURN VALUE

vwmemh has no return value.

EXAMPLE

Write 0xABCD to address 0x40000000 and 0x1234 to 0x40000004:
grmon3> vwmemh 0x40000000 0xABCD 0x1234

SEE ALSO

Section 3.4.7, “Displaying memory contents”
Section 3.4.15, “Memory Management Unit (MMU) support”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 254

114. vwmems - syntax

NAME

vwmems - Write a string to an AMBA bus virtual memory address

SYNOPSIS

vwmems address data

DESCRIPTION
vwmems address data

Do an AMBA write access. GRMON will translate address to a physical address and write the string
value specified by data, including the terminating NULL-character. If no MMU exists or if it is turned
off, this command will behave like the command vwmems'

Only JTAG debug links supports byte accesses. Other debug links will do a 32-bit read-modify-write when
writing unaligned data.

OPTIONS
-s

The command will operate using the supervisor MMU table.
-h

The command will operate using the hypervisor two-stage MMU tables.
-hg

The command will operate using the hypervisor guest MMU table.

RETURN VALUE

vwmems has no return value.

EXAMPLE

Write "Hello World" to address 0x40000000-0x4000000C:
grmon3> vwmems 0x40000000 "Hello World"

SEE ALSO

Section 3.4.7, “Displaying memory contents”
Section 3.4.15, “Memory Management Unit (MMU) support”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 255

115. vwmem - syntax

NAME

vwmem - AMBA bus 32-bit virtual memory write access

SYNOPSIS

vwmem ?options...? address data ?...?

DESCRIPTION
vwmem ?options...? address data ?...?

Do an AMBA write access. GRMON will translate address to a physical address and write the 32-bit
value specified by data. If more than one data word has been specified, they will be stored at consecutive
physical addresses. If no MMU exists or if it is turned off, this command will behave like the command
vwmem

OPTIONS
-bsize bytes

The -bsize option may be used to specify the size blocks of data in bytes that will be written.
-delay ms

The -delay option can be used to specify a delay between each word written. If the delay is non-zero
then the default block size will be 4 bytes, but can be changed using the -bsize option.

-wprot

Disable memory controller write protection during the write.
-s

The command will operate using the supervisor MMU table.
-h

The command will operate using the hypervisor two-stage MMU tables.
-hg

The command will operate using the hypervisor guest MMU table.

RETURN VALUE

vwmem has no return value.

EXAMPLE

Write 0xABCD1234 to address 0x40000000 and to 0x40000004:
grmon3> vwmem 0x40000000 0xABCD1234 0xABCD1234

SEE ALSO

Section 3.4.7, “Displaying memory contents”
Section 3.4.15, “Memory Management Unit (MMU) support”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 256

116. walk - syntax

NAME

walk - Translate a virtual address, print translation

SYNOPSIS

walk ?options...? address ?cpu#?

DESCRIPTION
walk ?options...? address ?cpu#?

Translate a virtual address and print translation. The command will use the MMU from the current active
CPU and the cpu# can be used to select a different CPU.

OPTIONS
-v

The -v will show the intermediate steps when doing a hypervisor two-stage translation.
-s

The command will operate using the supervisor MMU table.
-h

The command will operate using the hypervisor two-stage MMU tables.
-hg

The command will operate using the hypervisor guest MMU table.
-vs

The command will return the first stage address. First stage PTEs will still be translated using the second
stage.

RETURN VALUE

Command walk returns the translated address.

SEE ALSO

Section 3.4.15, “Memory Management Unit (MMU) support”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 257

117. wash - syntax

wash - Clear memory or set all words in a memory range to a value.

SYNOPSIS

wash ?options...? ?start stop? ?value?

DESCRIPTION

wash ?options...?

Clear all memories.
wash ?options...? start stop ?value?

Wash the memory area from start up to stop and set each word to value. The parameter value
defaults to 0.

OPTIONS
-delay ms

The -delay option can be used to specify a delay between each word written.
-nic

Disable the instruction cache while washing the memory
-nocpu

Do not use the CPU to increase performance.
-wprot

If the -wprot option is given then write protection on the memory will be disabled

EXAMPLE

Clear all memories
grmon3> wash

Set a memory area to 1
grmon3> wash 0x40000000 0x40000FFF 1

SEE ALSO

Section 3.10.1, “Using EDAC protected memory”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 258

118. wmdio - syntax

NAME

wmdio - Set PHY registers

SYNOPSIS

wmdio paddr raddr value ?greth#?

DESCRIPTION
wmdio paddr raddr value ?greth#?

Set value of PHY address paddr and register raddr. If more than one device exists in the system, the
greth# can be used to select device, default is greth0. The command tries to disable the EDCL duplex
detection if enabled.

SEE ALSO

Section 6.4, “Ethernet controller”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 259

119. wmemb - syntax

NAME

wmemb - AMBA bus 8-bit memory write access

SYNOPSIS

wmemb ?options...? address data ?...?

DESCRIPTION
wmemb ?options...? address data ?...?

Do an AMBA write access. The 8-bit value specified by data will be written to address. If more than
one data word has been specified, they will be stored at consecutive addresses.

Only JTAG debug links supports byte accesses. Other debug links will do a 32-bit read-modify-write when
writing unaligned data.

OPTIONS
-bsize bytes

The -bsize option may be used to specify the size blocks of data in bytes that will be written.
-delay ms

The -delay option can be used to specify a delay between each word written. If the delay is non-zero
then the default block size will be 1 bytes, but can be changed using the -bsize option.

-wprot

Disable memory controller write protection during the write.
-delay ms

Insert a delay between each block of data
-asi asi

Write from SPARC alternate space.

RETURN VALUE

wmemb has no return value.

EXAMPLE

Write 0xAB to address 0x40000000 and 0xBC to 0x40000001:
grmon3> wmemb 0x40000000 0xAB 0xBC

SEE ALSO

Section 3.4.7, “Displaying memory contents”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 260

120. wmemd - syntax

NAME

wmemd - AMBA bus 64-bit memory write access

SYNOPSIS

wmemd ?options...? address data ?...?

DESCRIPTION
wmemd ?options...? address data ?...?

Do an AMBA write access. The 64-bit value specified by data will be written to address. If more than
one data word has been specified, they will be stored at consecutive addresses.

OPTIONS
-bsize bytes

The -bsize option may be used to specify the size blocks of data in bytes that will be written.
-delay ms

The -delay option can be used to specify a delay between each word written. If the delay is non-zero
then the default block size will be 8 bytes, but can be changed using the -bsize option.

-wprot

Disable memory controller write protection during the write.
-delay ms

Insert a delay between each block of data
-asi asi

Write from SPARC alternate space.

RETURN VALUE

wmemd has no return value.

EXAMPLE

Write 0xffff1244901022 to address 0x40000000 and 0x1234 to 0x40000008:
grmon3> wmemd 0x40000000 0xffff1244901022 0x1234

SEE ALSO

Section 3.4.7, “Displaying memory contents”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 261

121. wmemh - syntax

NAME

wmemh - AMBA bus 16-bit memory write access

SYNOPSIS

wmemh ?options...? address data ?...?

DESCRIPTION
wmemh ?options...? address data ?...?

Do an AMBA write access. The 16-bit value specified by data will be written to address. If more than
one data word has been specified, they will be stored at consecutive addresses.

Only JTAG debug links supports byte accesses. Other debug links will do a 32-bit read-modify-write when
writing unaligned data.

OPTIONS
-bsize bytes

The -bsize option may be used to specify the size blocks of data in bytes that will be written.
-delay ms

The -delay option can be used to specify a delay between each word written. If the delay is non-zero
then the default block size will be 2 bytes, but can be changed using the -bsize option.

-wprot

Disable memory controller write protection during the write.
-delay ms

Insert a delay between each block of data
-asi asi

Write from SPARC alternate space.

RETURN VALUE

wmemh has no return value.

EXAMPLE

Write 0xABCD to address 0x40000000 and 0x1234 to 0x40000002:
grmon3> wmem 0x40000000 0xABCD 0x1234

SEE ALSO

Section 3.4.7, “Displaying memory contents”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 262

122. wmems - syntax

NAME

wmems - Write a string to an AMBA bus memory address

SYNOPSIS

wmems ?options...? address data

DESCRIPTION
wmems address data

Write the string value specified by data, including the terminating NULL-character, to address.

Only JTAG debug links supports byte accesses. Other debug links will do a 32-bit read-modify-write when
writing unaligned data.

OPTIONS
-bsize bytes

The -bsize option may be used to specify the size blocks of data in bytes that will be written.
-delay ms

The -delay option can be used to specify a delay between each word written. If the delay is non-zero
then the default block size will be 8 bytes, but can be changed using the -bsize option.

-wprot

Disable memory controller write protection during the write.
-delay ms

Insert a delay between each block of data
-asi asi

Write from SPARC alternate space.

RETURN VALUE

wmems has no return value.

EXAMPLE

Write "Hello World" to address 0x40000000-0x4000000C:
grmon3> wmems 0x40000000 "Hello World"

SEE ALSO

Section 3.4.7, “Displaying memory contents”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 263

123. wmem - syntax

NAME

wmem - AMBA bus 32-bit memory write access

SYNOPSIS

wmem ?options...? address data ?...?

DESCRIPTION
wmem ?options...? address data ?...?

Do an AMBA write access. The 32-bit value specified by data will be written to address. If more than
one data word has been specified, they will be stored at consecutive addresses.

OPTIONS
-bsize bytes

The -bsize option may be used to specify the size blocks of data in bytes that will be written.
-wprot

Disable memory controller write protection during the write.
-delay ms

Insert a delay between each block of data
-asi asi

Write from SPARC alternate space.

RETURN VALUE

wmem has no return value.

EXAMPLE

Write 0xABCD1234 to address 0x40000000 and to 0x40000004:
grmon3> wmem 0x40000000 0xABCD1234 0xABCD1234

SEE ALSO

Section 3.4.7, “Displaying memory contents”

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 264

Appendix C. Tcl API
GRMON will automatically load the scripts in GRMON appdata folder. On Linux the appdata folder is
located in ~/.grmon-4.0/ and on Windows it's typically located at C:\Users\%username%\AppDa-
ta\Roaming\Frontgrade Gaisler\GRMON\4.0. In the folder there are two different sub folders where
scripts may be found, <appdata>/scripts/sys and <appdata>/scripts/user. Scripts located in the
sys-folder will be loaded into the system shell only, before the Plug and Play area is scanned, i.e. drivers and fix-
ups should be defined here. The scripts found in the user-folder will be loaded into all shells (including the system
shell), i.e. all user defined commands and hooks should be defined there.

In addition there are two commandline switches -udrv <filename> and -ucmd <filename> to load scripts
into the system shell or all shells.

TCL API switches:

-udrv<filename>
Load script specified by filename into system shell. This option is mainly used for user defined drivers.

-ucmd<filename>
Load script specified by filename into all shells, including the system shell. This option is mainly used for
user defined procedures and hooks.

Also the TCL command source or GRMON command batch can be used to load a script into a single shell.

The variable TCL grmon_shell can be used to identify a shell. This can used to run shell specific code from a
script is intended to be used in multiple shells. GRMON creates the following shells:

sys System shell

exec Execution shell

cli Command line interface shell

term# GUI terminal shell (# is replaced by a number)

gdb GDB remote server shell

Example using shell name:

if {$grmon_shell == "cli"} {
 puts "Hello CLI!"
}

1. Device names

All GRLIB cores are assigned a unique adevN name, where N is a unique number. The debug driver controlling
the core also provides an alias which is easier to remember. For example the name mctrl0 will point to the first
MCTRL regardless in which order the AMBA Plug and Play is assigned, thus the name will be consistent between
different chips. The names of the cores are listed in the output of the GRMON command info sys.

PCI devices can also be registered into GRMON's device handling system using one of the pci conf -reg, pci
scan -reg or pci bus reg commands. The devices are handled similar to GRLIB devices, however their base name
is pdevN.

It is possible to specify one or more device names as an argument to the GRMON commands info sys and info
reg to show information about those devices only. For info reg a register name can also be specified by appending
the register name to the device name separated by colon. Register names are the same as described in Section 2,
“Variables”.

For each device in a GRLIB system, a namespace will be created. The name of the namespace will be the same
as the name of the device. Inside the namespace Plug and Play information is available as variables. Most debug
drivers also provide direct access to APB or AHB registers through variables in the namespace. See Section 2,
“Variables” for more details about variables.

Below is an example of how the first MCTRL is named and how the APB register base address is found using
Plug and Play information from the GRMON mctrl0 variable. The eleventh PCI device (a network card) is also
listed using the unique name pdev10.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 265

grmon3> info sys mctrl0
 mctrl0 Frontgrade Gaisler Memory controller with EDAC
 AHB: 00000000 - 20000000
 AHB: 20000000 - 40000000
 AHB: 40000000 - 80000000
 APB: 80000000 - 80000100
 8-bit prom @ 0x00000000
 32-bit static ram: 1 * 8192 kbyte @ 0x40000000
 32-bit sdram: 2 * 128 Mbyte @ 0x60000000
 col 10, cas 2, ref 7.8 us
grmon3> info sys pdev10
 pdev10 Bus 02 Slot 03 Func 00 [2:3:0]
 vendor: 0x1186 D-Link System Inc
 device: 0x4000 DL2000-based Gigabit Ethernet
 class: 020000 (ETHERNET)
 subvendor: 0x1186, subdevice: 0x4004
 BAR1: 00001000 - 00001100 I/O-32 [256B]
 BAR2: 82203000 - 82203200 MEMIO [512B]
 ROM: 82100000 - 82110000 MEM [64kB]
 IRQ INTA# -> IRQW

2. Variables

GRMON provides variables that can be used in scripts. A list of the variables can be found below.

grmon_version

The version number of GRMON
grmon_shell

The name of the shell
grmon::settings::suppress_output

The variable is a bitmask to control GRMON output.

bit 0 Block all output from GRMON commands to the terminal

bit 1 Block all output from TCL commands (i.e. puts) to the terminal

bit 2 Block all output from GRMON commands to the log

bit 3 Block all output from TCL commands to the log (i.e. puts)

grmon::settings::echo_result

If setting this to one, then the result of a command will always be printed in the terminal.
grmon::settings::nb
grmon::settings::nb_mask

When the nb option is set, the OS running on the CPU must handle all error traps. The CPUs will not go
into debug mode when a error trap occurs. The nb variable configures all CPUs and the nb_mask variable
is a mask (one bit per CPU) for an asymmetric configuration. (LEON only)

grmon::settings::nswb
grmon::settings::nswb_mask

When the nswb flag is set, the CPUs will not go into debug mode when a software breakpoint occur. This
option is required when a native software debugger like GDB is running on the target CPU. The nswb
variable configures all CPUs and the nswb_mask variable is a mask (one bit per CPU) for an asymmetric
configuration.

grmon::interrupt

This variable will be set to 1 when a user issues an interrupt (i.e. pressing Ctrl-C from the commandline), it's
always set to zero before a commands sequence is issued. It can be used to abort user defined commands.

It is also possible to write this variable from inside hooks and procedures. E.g. writing a 1 from a exec
hook will abort the execution

grlib_device

The device ID of the system, read from the plug and play area.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 266

grlib_build

The build ID of the system, read from the plug and play area.
grlib_system

The name of the system. Only valid on known systems.
grlib_freq

The frequency of the system in Hz.
target_big_endian
target_little_endian

Boolean describing the endianess of the target system.
<devname#>1::pnp::device
<devname#>1::pnp::vendor
<devname#>1::pnp::mst::custom0
<devname#>1::pnp::mst::custom1
<devname#>1::pnp::mst::custom2
<devname#>1::pnp::mst::irq
<devname#>1::pnp::mst::idx
<devname#>1::pnp::ahb::0::start
<devname#>1::pnp::ahb::0::mask
<devname#>1::pnp::ahb::0::type
<devname#>1::pnp::ahb::custom0
<devname#>1::pnp::ahb::custom1
<devname#>1::pnp::ahb::custom2
<devname#>1::pnp::ahb::irq
<devname#>1::pnp::ahb::idx
<devname#>1::pnp::apb::start
<devname#>1::pnp::apb::mask
<devname#>1::pnp::apb::irq
<devname#>1::pnp::apb::idx

The AMBA Plug and Play information is available for each AMBA device. If a device has an AHB Master
(mst), AHB Slave (ahb) or APB slave (apb) interface, then the corresponding variables will be created.

1Replace with device name.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 267

<devname#>1::vendor
<devname#>1::device
<devname#>1::command
<devname#>1::status
<devname#>1::revision
<devname#>1::ccode
<devname#>1::csize
<devname#>1::tlat
<devname#>1::htype
<devname#>1::bist
<devname#>1::bar0
<devname#>1::bar1
<devname#>1::bar2
<devname#>1::bar3
<devname#>1::bar4
<devname#>1::bar5
<devname#>1::cardbus
<devname#>1::subven
<devname#>1::subdev
<devname#>1::rombar
<devname#>1::pri
<devname#>1::sec
<devname#>1::sord
<devname#>1::sec_tlat
<devname#>1::io_base
<devname#>1::io_lim
<devname#>1::secsts
<devname#>1::memio_base
<devname#>1::memio_lim
<devname#>1::mem_base
<devname#>1::mem_lim
<devname#>1::mem_base_up
<devname#>1::mem_lim_up
<devname#>1::io_base_up
<devname#>1::io_lim_up
<devname#>1::capptr
<devname#>1::res0
<devname#>1::res1
<devname#>1::rombar
<devname#>1::iline
<devname#>1::ipin
<devname#>1::min_gnt
<devname#>1::max_lat
<devname#>1::bridge_ctrl

If the PCI bus has been registered into the GRMON's device handling system the PCI Plug and Play con-
figuration space registers will be accessible from the Tcl variables listed above. Depending on the PCI
header layout (standard or bridge) some of the variables list will not be available. Some of the read-only
registers such as DEVICE and VENDOR are stored in GRMON's memory, accessing such variables will
not generate PCI configuration accesses.

<devname#>1::<regname>2

<devname#>1::<regname>2::<fldname>3

Many devices exposes their registers, and register fields, as variables. When writing these variables, the
registers on the target system will also be written.

grmon3> info sys
...

2Replace with a register name
3Replace with a register field name

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 268

 mctrl0 Frontgrade Gaisler Memory controller with EDAC
 AHB: 00000000 - 20000000
 AHB: 20000000 - 40000000
 AHB: 40000000 - 80000000
 APB: 80000000 - 80000100
 8-bit prom @ 0x00000000
 32-bit static ram: 1 * 8192 kbyte @ 0x40000000
 32-bit sdram: 2 * 128 Mbyte @ 0x60000000
 col 10, cas 2, ref 7.8 us
...
grmon3> puts [format 0x%x $mctrl0:: [TAB-COMPLETION]
mctrl0::mcfg1 mctrl0::mcfg2 mctrl0::mcfg3 mctrl0::pnp::
mctrl0::mcfg1:: mctrl0::mcfg2:: mctrl0::mcfg3::
grmon3> puts [format 0x%x $mctrl0::pnp:: [TAB-COMPLETION]
mctrl0::pnp::ahb:: mctrl0::pnp::device mctrl0::pnp::ver
mctrl0::pnp::apb:: mctrl0::pnp::vendor
grmon3> puts [format 0x%x $mctrl0::pnp::apb:: [TAB-COMPLETION]
mctrl0::pnp::apb::irq mctrl0::pnp::apb::mask mctrl0::pnp::apb::start
grmon3> puts [format 0x%x $mctrl0::pnp::apb::start]
 0x80000000

3. User defined hooks

GRMON supports user implemented hooks using Tcl procedures. Each hook is variable containing a list of pro-
cedure names. GRMON will call all the procedures in the list.

Like normal procedures in TCL, each hook can return a code and a result value using the TCL command return. If
a hook returns a code that is not equal to zero, then the GRMON will skip the rest of the hooks that are registered in
that list. Some hooks will change GRMONs behavior depending on the return code, see hook descriptions below.

Hooks in the system shell can only be installed using a startup script, see -udrv<filename> for more
information.api.udrv

Hooks can be installed in the execution shell using the command grmon::execsh eval <script> or using a
startup script. The hooks that are installed in the execution shell will be called when the target system is started
from a shell or from the GUI.

To uninstall hooks, either remove the procedure name from the list using the Tcl lreplace or delete the variable
using unset to uninstall all hooks. Hooks in the system shell can only be uninstalled in the startup script or by
letting the hook uninstall itself. Always use lreplace when uninstalling hooks in the system shell, otherwise it's
possible to delete hooks the GRMON has installed that may lead to undefined behavior.

preinit
The preinit hooks is called after GRMON has connected to the board and before any driver initialization
is done. It is also called before the plug and play area is scanned. The hook may only be defined in the
system shell.

postinit
The post init hook is called after all drivers have been initialized. The hook may only be defined in the
system shell.

init#
During GRMON's startup, 9 hooks are executed. These hooks are called init1, init2, etc. Each hook
is called before the corresponding init function in a user defined driver is called. In addition init1 is
called after the plug and play area is scanned, but before any initialization. The init# hooks may only
be defined in the system shell.

deinit
Called when GRMON is closing down. The deinit hooks may only be defined in the system shell.

closedown
Called when a TCL is closing down.

preexec
These hooks are called before the CPU:s are started, when issuing a run, cont or go command. They may
be defined in the execution shell or the local shell that is executing the command.

exec
The exec hooks are called once each iteration of the polling loop, when issuing a run, cont or go command.
They may be defined in the execution shell or the local shell that is executing the command.

postexec
These hooks are called after the CPU:s have stopped, when issuing a run, cont or go command. They may
be defined in the execution shell or the local shell that is executing the command.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 269

load
This hook is called before each block of data is written to the target. See tables below for argument de-
scription and return code definitions for the hook procedure.

Argument Type Description

addr integer Destination addr

bytes integer Number of bytes

data byte-array Data to be written

Return
Code Value Description

0 - The hook was successful, but let GRMON continue as usual. This can be used
to do extra configuration or fix-ups. Any return value will be ignored.

-1 Integer value The hook overrides GRMON and the access was successful. Any return value
will be ignored.

1 Error text The hook overrides GRMON and the access failed. Any return value will be
ignored.

pcicfg
This hook is called when a PCI configuration read access is issued. It can be used to override GRMON's
PCI configuration space access routines. See tables below for argument descriptions and return codes/value
definitions for the hook procedure.

Argument Type Description

bus integer Bus index

slot integer Slot index

func integer Function index

ofs integer Offset into the device's configuration space

size integer Size in bits of the access (8, 16 or 32)

Return
Code Value Description

0 - The hook was successful, but let GRMON continue as usual. This can be used
to do extra configuration or fix-ups. Any return value will be ignored.

-1 Integer value The hook overrides GRMON and the access was successful. Return the value
read.

1 Error text The hook overrides GRMON and the access failed. Return an error descrip-
tion.

pciwcfg
This hook is called when a PCI configuration write access is issued. It can be used to override GRMON's
PCI configuration space access routines. See tables below for argument descriptions and return codes/value
definitions the hook procedure.

Argument Type Description

bus integer Bus index

slot integer Slot index

func integer Function index

ofs integer Offset into the device's configuration space

size integer Size in bits of the access (8, 16 or 32)

value integer The value to be written

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 270

Return
Code Value Description

0 - The hook was successful. GRMON continue doing the access. This can be
used to do extra configuration or fix-ups. Any return value will be ignored.

-1 - The hook overrides GRMON and the access was successful. Any return value
will be ignored.

1 Error text The hook overrides GRMON and the access failed. Return an error descrip-
tion.

reset
The reset hook is called after GRMON has connected to the board and when a command reset or run is
issued.

Example C.1. Using hooks

Define hook procedures
grmon::execsh eval {
 proc myhook1 {} {puts "Hello World"}
 proc myhook2 {} {puts "Hello again"; return -code 1 "Blocking next hook"}
 proc myhook3 {} {puts "Will never run"}
 lappend ::hooks::preexec ::myhook1 ::myhook2 ::myhook3 ;# Add hooks
}

run
grmon::execsh eval {unset ::hooks::preexec ;# Remove all hooks}

proc mypcicfg {bus slot func ofs size} {
 if {$size == 32} {
 return -code -1 0x01234567
 } elseif {$size == 16} {
 return -code -1 0x89AB
 } elseif {$size == 8} {
 return -code -1 0xCD
 }
 return -code 1 "Unknown size"
}
lappend ::hooks::pcicfg ::mypcicfg ;# Add hooks
puts [format 0x%x [pci cfg16 0:1:0 0]]

4. User defined driver

It is possible to extend GRMON with user defined drivers by implementing certain hooks and variables in Tcl.
GRMON scans the namespace ::drivers for user defined drivers. Each driver must be located in the sub-
namespace with the name of the driver. Only the variables vendor, device, version_min, version_max
and description are required to be implemented, the other variables and procedures are optional. The script
must be loaded into the system shell.

Cores that GRMON finds while scanning the plug and play area, will be matched against the defined vendor,
device and version_min/max variables. If it matches, then the core will be paired with the driver. If a driver is
called 'mydrv', then the first found core will be named 'mydrv0', the second 'mydrv1',etc. This name will be passed
to the to all the procedures defined in the driver, and can be used to identify the core.

The name of the driver may not end with a number.

variable vendor
The plug and play vendor identification number.

variable device
The plug and play device identification number.

variable version_min
variable version_max

Minimum and maximum version of the core that this driver supports
variable description

A short description of the device

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 271

variable regs (optional)
If implemented, the regs variable contains information used to parse the registers and present them to
the user, i.e. they will be printed in 'info reg' and Tcl-variables will be created in each shell. All register
descriptions must be put in the regs variable. Each register consists of a name, description and an optional
list of fields. The field entries are a quadruple on the format {name pos bits description}. Name should be
max 16 characters and description should be max 38 characters long.

proc info devname (optional)
Optional procedure that may be used to present parsed information when 'info sys' is called. Returns a
newline separated string.

proc init {devname level} (optional)
Optional procedure that will be called during initialization. The procedure will be called nine times for each
device, with level argument set to 1-9. This way drivers that depend on another driver can be initialized in
a safe way. Normally initialization of devices is done in level 7.

proc restart devname (optional)
Procedure to reinitialize the device to a known state. This is called when GRMON starts (after initialization)
and when commands 'run' or 'reset' is issued.

proc regaddr {devname regname} (optional)
Required only if registers have been defined. It returns the address of the requested register. It's required
to be implemented if the variable regs is implemented.

If the variable regs is implemented, then the procedure regaddr is required.

namespace eval drivers::mydrv {
 # These variables are required
 variable vendor 0x1
 variable device 0x16
 variable version_min 0
 variable version_max 0
 variable description "My device desciption"

 # Proc init
 # Args devname: Device name
 # level : Which stage of initialization
 # Return -
 #
 # Optional procedure that will be called during initialization. The procedure
 # will be called with level argmuent set to 1-9, this way drivers that depend
 # on another driver can be initialized in a safe way. Normally
 # initialization is done in level 7.
 #
 # Commands wmem and mem can be used to access the registers. Use the driver procedure
 # regaddr to calculate addresses or use static addresses.
 proc init {devname level} {
 puts "init $devname $level"
 if {$level == 7} {
 puts "Hello $devname!"
 puts "Reg1 = mem [regaddr $devname myreg1] 4"
 }
 }

 # Proc restart
 # Args devname: Device name
 # Return -
 #
 # Optional procedure to reinit the device. This is called when GRMON start,
 # when commands 'run' or 'reset' is issued.
 proc restart devname {
 puts "restart $devname"
 }

 # Proc info
 # Args devname: Device name
 # Return A newline-separated string
 #
 # Optional procedure that may be used to present parsed information when
 # 'info sys' is called.
 proc info devname {
 set str "Some extra information about $devname"
 append str "\nSome more information about $devname"
 return $str
 }

 # Proc regaddr
 # Args devname: Device name,
 # regname: Register name

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 272

 # Return Address of requested register
 #
 # Required only if any registers have been defined.
 # This is a suggestion how the procedure could be implemented
 proc regaddr {devname regname} {
 array set offsets {myreg1 0x0 myreg2 0x4}
 if {[namespace exists ::[set devname]::pnp::apb]} {
 set start [set ::[set devname]::pnp::apb::start]
 } elseif {[namespace exists ::[set devname]::pnp::ahb]} {
 set start [set ::[set devname]::pnp::ahb::0::start]
 } else {
 error "Unknown register address for $devnam::$regname"
 }
 return [format 0x%08x [expr ($start + $offsets($regname)) & 0xFFFFFFFF]]
 }

 # Register descriptions
 #
 # All description must be put in the regs-namespace. Each register concist
 # of a name, description and an optional list of fields.
 # The fields are quadruple of the format {name pos bits description}
 # Name should be max 16 characters and description should be max 38 characters long.
 #
 # Registers and fields can be added, removed or changed up to initialization
 # level 8. After level 8 TCL variables are created and the regs variable
 # should be considered to a constant.
 variable regs {
 {"myreg1" "Register1 description"
 {"myfld3" 4 8 "Field3 descpription"}
 {"myfld2" 1 1 "Field2 descpription"}
 {"myfld1" 0 1 "Field1 descpription"}
 }
 {"myreg2" "Register2 description"
 }
 }
}; # End of mydrv

5. User defined commands

User defined commands can be implemented as Tcl procedures, and then loaded into all shells. See the docu-
mentation of the proc command [http://www.tcl.tk/man/tcl8.6/TclCmd/proc.htm] on the Tcl website for more in-
formation.

6. Links

More about Tcl, its syntax and other useful information can be found at:

Tcl Website [http://www.tcl.tk]
Tcl Commands [http://www.tcl.tk/man/tcl8.6/TclCmd/contents.htm]
Tcl Tutorial [http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html]
Tcler's Wiki [http://wiki.tcl.tk/]

frontgrade.com/gaisler
http://www.tcl.tk/man/tcl8.6/TclCmd/proc.htm
http://www.tcl.tk/man/tcl8.6/TclCmd/proc.htm
http://www.tcl.tk/man/tcl8.6/TclCmd/proc.htm
http://www.tcl.tk
http://www.tcl.tk
http://www.tcl.tk/man/tcl8.6/TclCmd/contents.htm
http://www.tcl.tk/man/tcl8.6/TclCmd/contents.htm
http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html
http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html
http://wiki.tcl.tk/
http://wiki.tcl.tk/

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 273

Appendix D. Fixed target
configuration file format
To use a fixed configuration file, GRMON should be started with -cfg file. A fixed configuration file can
be used to describe the target system instead of reading the plug and play information. The configuration file
describes which IP cores are present on the target and on which addresses they are mapped, using an XML format.
An description file can be generated from an plug and play system using the command info sys -xml file.

Valid tags for the XML format are described below.

<grxml>
• Parents:
• Children: grlib

Attribute Description

version Version of the XML syntax

<grlib>
• Parents: grxml
• Children: bus

Attribute Description

build GRLIB build identification number

device GRLIB device identification number

<bus>
• Parents: grlib, slave, bus
• Children: master, slave, bus

Attribute Description

type Valid values are AHB or APB

ffactor Frequency factor relavtive parent bus

<master>
• Parents: bus
• Children:

Attribute Description

vendor Core vendor identification number

device Core device identification number

version Version number

irq Assigned interrupt number

<slave>
• Parents: bus
• Children: bus, bar, custom

Attribute Description

vendor Core vendor identification number

device Core device identification number

version Version number

irq Assigned interrupt number

<bar>
• Parents: slave
• Children:

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 274

Attribute Description

address Base address of the bar

length Length of the bar in bytes

<custom>
• Parents: slave
• Children:

Attribute Description

register Value of the user defined bar

Below is an example configuration file for a simple LEON3 system.

<?xml version="1.0" standalone="yes"?>
<grxml version="1.0">
 <grlib device="0x0" build="4109">
 <bus type="AHB" ffactor="1.000000">
 <!-- LEON3 SPARC V8 Processor -->
 <master vendor="0x1" device="0x3">
 </master>
 <!-- JTAG Debug Link -->
 <master vendor="0x1" device="0x1c" version="1">
 </master>
 <!-- LEON2 Memory Controller -->
 <slave vendor="0x4" device="0xf">
 <bar address="0x00000000" length="0x20000000"/>
 <bar address="0x20000000" length="0x20000000"/>
 <bar address="0x40000000" length="0x40000000"/>
 </slave>
 <!-- AHB/APB Bridge -->
 <slave vendor="0x1" device="0x6">
 <bar address="0x80000000" length="0x100000"/>
 <bus type="APB" ffactor="1.000000">
 <!-- LEON2 Memory Controller -->
 <slave vendor="0x4" device="0xf">
 <bar address="0x80000000" length="0x100"/>
 </slave>
 <!-- Generic UART -->
 <slave vendor="0x1" device="0xc" irq="2" version="1">
 <bar address="0x80000100" length="0x100"/>
 </slave>
 <!-- Multi-processor Interrupt Ctrl. -->
 <slave vendor="0x1" device="0xd" version="3">
 <bar address="0x80000200" length="0x100"/>
 </slave>
 <!-- Modular Timer Unit -->
 <slave vendor="0x1" device="0x11" irq="8">
 <bar address="0x80000300" length="0x100"/>
 </slave>
 <!-- General Purpose I/O port -->
 <slave vendor="0x1" device="0x1a" version="1">
 <bar address="0x80000500" length="0x100"/>
 </slave>
 </bus>
 </slave>
 <!-- LEON3 Debug Support Unit -->
 <slave vendor="0x1" device="0x4" version="1">
 <bar address="0x90000000" length="0x10000000"/>
 </slave>
 </bus>
 </grlib>
</grxml>

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 275

Appendix E. License key installation
GRMON is licensed using a Sentinel LDK USB hardware key and has support for node-locked and floating license
keys. The type of key can be identified by the color of the USB dongle. The node-locked keys are purple and the
floating license keys are red.

1. Sentinel LDK Run-time

The latest run-time can be found on the website. Included in the downloaded Sentinel LDK run-time archive is
a README file which contains system requirements and detailed installation instructions. However, ignore all
instructions about installing haspvlib_<vendorID>.so and/or haspvlib_x86_64_<vendorID>.so.

Administrator privileges are required on Windows. On Linux it is required that the run-time is installed as root user.

https://www.gaisler.com/products/sentinel-ldk-hasp-run-time

2. Node-locked keys (purple USB key)

For node-locked keys, the Sentinel LDK Run-time for the key must be installed before the key can be used.

3. Floating keys (red USB key)

In the case of floating keys, the Sentinel LDK Run-time must be installed on the server and the client computer.

Sentinel LDK communicates via TCP and UDP on socket 1947. This socket is IANA-registered exclusively for
this purpose. By default the client will find the server by issuing a UDP broadcast to local subnets on port 1947.

If broadcasting is not working or unwanted, then advanced network settings can be setup via the Sentinel Admin
Control Center. The Sentinel Admin Control Center is accessed by opening the URL localhost:1947 in a web
browser. The network settings are reached by selecting "Configuration" in the menu and then selecting the "Access
to Remote License Managers" tab. Detailed information on how to setup the network settings can be found by
selecting "Help" in the menu.

frontgrade.com/gaisler
https://www.gaisler.com/products/sentinel-ldk-hasp-run-time

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 276

Appendix F. Appending environment
variables
1. Windows

Open the environment variables dialog by following the steps below:

Windows 7

1. Select Computer from the Start menu
2. Choose System Properties from the context menu
3. Click on Advanced system settings
4. Select Advanced tab
5. Click on Environment Variables button

Windows XP

1. Select Control Panel from the Start menu
2. Open System
3. Select Advanced tab
4. Click on Environment Variables button

Variables listed under User variables will only affect the current user and System variables will affect
all users. Select the desired variable and press Edit to edit the variable value. If the variable does not exist, a
new can be created by pressing the button New.

To append the PATH, find the variable under System variables or User variables (if the user variable does not exist,
then create a new) and press Edit. At the end of the value string, append a single semicolon (;) as a separator
and then append the desired path, e.g. ;C:\my\path\to\append

2. Linux

Use the export <name>=<value> command to set an environment variable. The paths in the variables PATH or
LD_LIBRARY_PATH should be separated with a single colon (:).

To append a path to PATH or LD_LIBRARY_PATH, add the path to the end of the variable. See example below.

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/my/path/to/appand

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 277

Appendix G. Compatibility

Table of Contents
G.1. Compatibility notes for GRMON3 .. 277
G.2. Compatibility notes for GRMON2 .. 277
G.3. Compatibility notes for GRMON1 .. 277

G.1. Compatibility notes for GRMON3
Command spim/spi/i2c/iommu/svga/l4stat/l5stat

Removed support to add an device index before the subcommand. Add device name at the end to select
index. I.e. "cmd index subcommand..." is not supported.

G.2. Compatibility notes for GRMON2
Default startup-behavior

If GRMON4 is started without a debug link option on the command line, then the GRMON4 GUI connec-
tion dialog will be opened. Furthermore, if no debug link option is given on the command line, then any
other command line options are also ignored. The user can select them in the connection dialog.

If GRMON version 2.0 and earlier is started without an explicit debug link option on the command line,
then it will try to connect to the target using the serial debug link by default. The behavior of GRMON
version 2.0 and earlier can be achieved in GRMON4 by giving the -uart option.

System-specific command-line options

The GRMON 2.0 options
• -leon2
• -at697
• -at697e
• -at697f
• -agga4
are no longer available. Corresponding options in GRMON4 are:
• -sys leon2
• -sys at697
• -sys at697e
• -sys at697f
• -sys agga4

Command mem/memh/memb

-hex/-x options was removed in version 3.2.1.

G.3. Compatibility notes for GRMON1
Breakpoints

Tcl has a native command called break, that terminates loops, which conflicts the the GRMON1 command
break. Therefore break, hbreak, watch and bwatch has been replaces by the command bp.

Cache flushing
Tcl has a native command called flush, that flushed channels, which conflicts the the GRMON1 command
flush. Therefore flush has been replaced by the command cctrl flush. In addition the command icache
flush can be used to flush the instruction cache and the command dcache flush can be used to flush the
data cache .

Case sensitivity
GRMON4 command interpreter is case sensitive whereas GRMON1 is insensitive. This is because Tcl is
case sensitive.

-eth -ip
-ip flag is not longer required for the Ethernet debug link, i.e. it is enough with -eth 192.168.0.51.

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 278

Appendix H. Third-party licenses
GRMON incorporates source code and libraries from several Open Source software projects. Therefore the use
of these is governed by different Open Source licenses. This appendix provides a list of the Open Source project
used and their respective license file.

The license files can be found in share/grmon/3rdparty folder of the GRMON installation.

Name Version File

TomsFastMath 1.13.0 LICENSE.tfm

LibTomCrypt 1.17.0 LICENSE.ltc

OpenSSL 1.1.0g LICENSE.openssl

uthash 2.1.0 LICENSE.uthash

Netscape Portable Runtime 4.9.2 LICENSE.nspr

Expat 2.1.1 COPYING.expat

libFTDI 0.20 COPYING.libftdi

Libusb-win32 1.2.6.0 COPYING_LGPL.libusb-win32

Libusb 0.1.12 COPYING.libusb

ncurses 5.9 LICENSE.ncurses

FreeBSD 13.1.0 COPYRIGHT.freebsd

Editline 3.0 COPYING.libedit

Regex 3.8a COPYRIGHT.regex

eltclsh 1.17 LICENSE.eltclsh

TCL 8.6.10 LICENSE.tcl

Zlib 1.2.3 LICENSE.zlib

TCF Agent Prototype 1.7 LICENSE.tcf-agent

Eclipse.org Various 1 LICENSE.eclipse
1All specific versions of the Eclipse plug-ins can be found in the GUI, if you open menu Help, select About GRMON3, press Installation
details

frontgrade.com/gaisler

GRMON4-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 4.0.5 279

Frontgrade Gaisler AB
Kungsgatan 12
411 19 Göteborg
Sweden
frontgrade.com/gaisler
sales@gaisler.com
T: +46 31 7758650
F: +46 31 421407

Frontgrade Gaisler AB, reserves the right to make changes to any products and services described herein at any time without
notice. Consult the company or an authorized sales representative to verify that the information in this document is current before
using this product. The company does not assume any responsibility or liability arising out of the application or use of any product
or service described herein, except as expressly agreed to in writing by the company; nor does the purchase, lease, or use of
a product or service from the company convey a license under any patent rights, copyrights, trademark rights, or any other of
the intellectual rights of the company or of third parties. All information is provided as is. There is no warranty that it is correct or
suitable for any purpose, neither implicit nor explicit.

Copyright © 2025 Frontgrade Gaisler AB

frontgrade.com/gaisler
frontgrade.com/gaisler

	
	Table of Contents
	1. Introduction
	1.1. Overview
	1.2. Supported platforms and system requirements
	1.3. Obtaining GRMON
	1.4. Installation
	1.5. License
	1.6. NOEL-V Support
	1.6.1. Limitations

	1.7. GRMON Evaluation version
	1.8. Problem reports

	2. Debugging concept
	2.1. Overview
	2.2. Target initialization
	2.2.1. LEON2 target initialization
	2.2.2. Configuration file target initialization

	2.3. Memory register reset values
	2.4. Hardware reset

	3. Operation
	3.1. Overview
	3.2. Starting GRMON
	3.2.1. Debug link options
	3.2.2. Debug driver options
	3.2.3. General options

	3.3. GRMON command-line interface (CLI)
	3.4. Common debug operations
	3.4.1. Examining the hardware configuration
	3.4.2. Uploading application and data to target memory
	3.4.3. Running applications
	3.4.4. Inserting breakpoints and watchpoints
	3.4.5. Displaying processor registers
	3.4.6. Backtracing function calls
	3.4.7. Displaying memory contents
	3.4.8. Instruction disassembly
	3.4.9. Using the trace buffer
	3.4.10. Profiling
	3.4.11. Attaching to a target system without initialization
	3.4.12. Attaching to a target system without Plug and Play scanning
	3.4.13. Multi-processor support
	3.4.14. Stack and entry point
	3.4.15. Memory Management Unit (MMU) support
	3.4.16. CPU cache support

	3.5. Tcl integration
	3.5.1. Shells
	3.5.2. Commands
	3.5.3. API

	3.6. Symbolic debug information
	3.6.1. Multi-processor symbolic debug information

	3.7. GDB interface
	3.7.1. Connecting GDB to GRMON
	3.7.2. Executing GRMON commands from GDB
	3.7.3. Running applications from GDB
	3.7.4. Running SMP applications from GDB
	3.7.5. Running AMP applications from GDB
	3.7.6. GDB Thread support
	3.7.7. Virtual memory
	3.7.8. Specific GDB optimization
	3.7.9. GRMON GUI considerations
	3.7.10. Limitations of GDB interface

	3.8. Thread support
	3.8.1. GRMON thread options
	3.8.2. GRMON thread commands

	3.9. Forwarding application console I/O
	3.9.1. UART debug mode

	3.10. EDAC protection
	3.10.1. Using EDAC protected memory
	3.10.2. LEON3-FT error injection

	3.11. PROM programming
	3.11.1. EEPROM
	3.11.2. MRAM
	3.11.3. CFI compatible Flash PROM
	3.11.4. SPI memory device

	3.12. Automated operation
	3.12.1. Tcl commanding during CPU execution
	3.12.2. Communication channel between target and monitor
	3.12.3. Test suite driver

	4. Graphical user interface
	4.1. Overview
	4.2. Starting GRMON GUI
	4.3. Connect to target
	4.3.1. Debug link
	4.3.2. Options
	4.3.3. Argument contribution
	4.3.4. Configurations
	4.3.5. Connect

	4.4. Launch configurations
	4.4.1. Target image setup
	4.4.2. Launch properties

	4.5. Perspectives
	4.6. C/C++ source level debugging
	4.6.1. GDB interface

	4.7. Views
	4.7.1. Debug View
	4.7.2. System Information View
	4.7.3. IO Registers View
	4.7.4. CPU Registers View
	4.7.4.1. Pinning
	4.7.4.2. Context menu

	4.7.5. Registers View
	4.7.5.1. Context menu

	4.7.6. Router View
	4.7.6.1. Status tab
	4.7.6.2. Error tab

	4.7.7. Source Editor
	4.7.8. Terminals View
	4.7.9. Memory View
	4.7.10. Breakpoints View
	4.7.11. Disassembly View
	4.7.12. Messages View
	4.7.13. Executables View
	4.7.14. Outline View
	4.7.15. Variables View
	4.7.16. Expressions View

	4.8. Target communication
	4.8.1. Memory view update

	4.9. Limitations
	4.10. Troubleshooting the GUI

	5. Debug link
	5.1. UART debug link
	5.2. Ethernet debug link
	5.3. JTAG debug link
	5.3.1. Xilinx parallel cable III/IV
	5.3.2. Xilinx Platform USB cable
	5.3.3. Altera USB Blaster or Byte Blaster
	5.3.4. FTDI FT4232/FT2232
	5.3.5. Amontec JTAGkey
	5.3.6. Actel FlashPro 3/3x/4/5
	5.3.7. Digilent HS1/HS2/HS3/SMT2/SMT3

	5.4. USB debug link
	5.5. GRESB debug link
	5.5.1. AGGA4 SpaceWire debug link

	5.6. User defined debug link
	5.6.1. API

	6. Debug drivers
	6.1. AMBA AHB trace buffer driver
	6.2. Clock gating
	6.2.1. Switches

	6.3. Debug support drivers
	6.3.1. Switches
	6.3.2. Commands
	6.3.3. Tcl variables

	6.4. Ethernet controller
	6.4.1. Commands

	6.5. GRPWM core
	6.6. USB Host Controller
	6.6.1. Switches
	6.6.2. Commands

	6.7. I2C
	6.8. I/O Memory Management Unit
	6.9. Multi-processor interrupt controller
	6.10. L2-Cache Controller
	6.10.1. Switches
	6.10.2. Errata

	6.11. Statistics Unit
	6.12. LEON2 support
	6.12.1. Switches

	6.13. On-chip logic analyzer driver
	6.14. Memory controllers
	6.14.1. Switches
	6.14.2. Commands

	6.15. Memory scrubber
	6.16. MIL-STD-1553B Interface
	6.17. PCI
	6.17.1. PCI Trace

	6.18. GR716B Real-Time Accelerator
	6.18.1. Switches

	6.19. SPI
	6.20. SpaceWire router
	6.21. SVGA frame buffer

	7. Support
	Appendix A. Command index
	Appendix B. Command syntax
	1. about - syntax
	2. ahb - syntax
	3. amem - syntax
	4. attach - syntax
	5. at - syntax
	6. batch - syntax
	7. bdump - syntax
	8. bload - syntax
	9. bp - syntax
	10. bt - syntax
	11. cctrl - syntax
	12. cont - syntax
	13. cpu - syntax
	14. dcache - syntax
	15. dccfg - syntax
	16. dcom - syntax
	17. ddr2cfg1 - syntax
	18. ddr2cfg2 - syntax
	19. ddr2cfg3 - syntax
	20. ddr2cfg4 - syntax
	21. ddr2cfg5 - syntax
	22. ddr2delay - syntax
	23. ddr2skew - syntax
	24. detach - syntax
	25. disassemble - syntax
	26. dtb - syntax
	27. dump - syntax
	28. edcl - syntax
	29. eeload - syntax
	30. ehci - syntax
	31. ei - syntax
	32. ep - syntax
	33. grmon::execsh - syntax
	34. exit - syntax
	35. flash - syntax
	36. float - syntax
	37. forward - syntax
	38. fpgaload - syntax
	39. gdb - syntax
	40. go - syntax
	41. gr1553b - syntax
	42. grcg - syntax
	43. grpwm - syntax
	44. grtmtx - syntax
	45. gui - syntax
	46. help - syntax
	47. hist - syntax
	48. i2c - syntax
	49. icache - syntax
	50. iccfg - syntax
	51. info - syntax
	52. inst - syntax
	53. iommu - syntax
	54. irq - syntax
	55. l2cache - syntax
	56. l3stat - syntax
	57. l4stat - syntax
	58. la - syntax
	59. leon - syntax
	60. load - syntax
	61. mcfg1 - syntax
	62. mcfg2 - syntax
	63. mcfg3 - syntax
	64. mdio - syntax
	65. memb - syntax
	66. memd - syntax
	67. memh - syntax
	68. mem - syntax
	69. mil - syntax
	70. mmu - syntax
	71. nolog - syntax
	72. pci - syntax
	73. perf - syntax
	74. phyaddr - syntax
	75. profile - syntax
	76. quit - syntax
	77. reg - syntax
	78. reset - syntax
	79. rtg4fddr - syntax
	80. rtg4serdes - syntax
	81. run - syntax
	82. rviommu - syntax
	83. scrub - syntax
	84. sdcfg1 - syntax
	85. sddel - syntax
	86. sf2mddr - syntax
	87. sf2serdes - syntax
	88. shell - syntax
	89. silent - syntax
	90. spim - syntax
	91. spi - syntax
	92. spwrtr - syntax
	93. stack - syntax
	94. step - syntax
	95. stop - syntax
	96. svga - syntax
	97. symbols - syntax
	98. system - syntax
	99. thread - syntax
	100. timer - syntax
	101. tmode - syntax
	102. tps - syntax
	103. uhci - syntax
	104. usrsh - syntax
	105. va - syntax
	106. verify - syntax
	107. vmemb - syntax
	108. vmemd - syntax
	109. vmemh - syntax
	110. vmem - syntax
	111. vwmemb - syntax
	112. vwmemd - syntax
	113. vwmemh - syntax
	114. vwmems - syntax
	115. vwmem - syntax
	116. walk - syntax
	117. wash - syntax
	118. wmdio - syntax
	119. wmemb - syntax
	120. wmemd - syntax
	121. wmemh - syntax
	122. wmems - syntax
	123. wmem - syntax

	Appendix C. Tcl API
	1. Device names
	2. Variables
	3. User defined hooks
	4. User defined driver
	5. User defined commands
	6. Links

	Appendix D. Fixed target configuration file format
	Appendix E. License key installation
	1. Sentinel LDK Run-time
	2. Node-locked keys (purple USB key)
	3. Floating keys (red USB key)

	Appendix F. Appending environment variables
	1. Windows
	2. Linux

	Appendix G. Compatibility
	G.1. Compatibility notes for GRMON3
	G.2. Compatibility notes for GRMON2
	G.3. Compatibility notes for GRMON1

	Appendix H. Third-party licenses

