GRMONZ2

A debug monitor for LEON-based computer systems
and SOC designs based on the GRLIB IP library

2018 User's Manual

The most important thing we build is trust

GRMONZ2 User's Manual

GRMON2-UM
April 2018, Version 2.0.93

www.cobham.com/gaisler

Table of Contents

O [gL oo [0 1o o R PPTTRPPPPTR 5
LLL OVEIVIEBIW ittt ettt e et ettt e et e et e et e et 5
1.2. Supported platforms and SyStem reqQUIreMENESuueierieneiiiii e 5
1.3. ObtaiNiNg GRIMON iiiiii ettt ettt e et e et e e e b 5
A 1 0 =] = (o PP PP SPPPPTI 5
T I o= 0 TP STSO PP TRSUP PPN 6
1.6. GRMON EVAUBLION VEISIONiiiitieiiiiii ettt e ettt et e et e e e eai e e e e e e eenans 6
1.7, PrODIEIM FEPOMS ...ttt ettt ettt ettt e et et et e e e e eaaa s 6

2. DEDUGUING CONMCEPE .. .vtneieitie ettt e ettt e ettt ettt e ettt e e et et e et e tb e et ettt e e et et e e e e e et e e e enna s 7
2.0 OVEIVIBIW ittt et ettt ettt ettt e e e e e et e e e et e e e e nb e e enb e aeee 7
2.2. Targel INIIAlIZAIIONeueiiei et ettt et 7

2.2.1. LEON2 Target initialiZationocoeuuiiiiiiiiieiii et 9
2.2.2. Configuration file target initializationcoooiiiiiiiiii e 9
2.3. MemOory register rESEL VAIUESiiiiiii ettt e e 9

KO0 < ¢ o] H TSP PP PUPPPTPUUPPIN: 10
L. OVEIVIBIW ittt ettt ettt 10
3.2. StArting GRIMON ...ttt ettt ettt 10

3.2.1. DebUg 1INK OPLIONS ...ceitieieiite ettt ettt e e e e 10
3.2.2. DEbUQG driVEr OPLIONSceiitiieiiitie ettt ettt e et ettt e et e et e e e e et e e e eenaaaeaens 10
3.2.3. GENEIAl OPLIONSciiiii ettt ettt ettt et e e e e aeen 10

3.3. GRMON command-line interface (CLI)uiiiiiiiei e 12
3.4. ComMON dEDUYG OPEFALIONScevtueiiiii ettt e e ettt e et e e et e et e e e ab e e erea s 13
3.4.1. Examining the hardware configurationcccouiiiiiiiiioiii e 13
3.4.2. Uploading application and data to target MEMONYviiiiiiiieiiiiiieeee e 14
3.4.3. RUNNING @PPHICALIONS ...eeeeiiiiii ettt e e e e 15
3.4.4. Inserting breakpoints and WatChPOINISccuvuiiiiiiiiiieii e 15
3.4.5. Displaying ProCeSSOr FEJISIEISiieruuieieti ettt ettt e et e e 16
3.4.6. Backtracing funCtion CallScooiiiiiiiii e 16
3.4.7. Displaying MemOry COMEENTSuuiieertneeeetiii e eeii e ettt e e e eat e e eert e e eeat e e eentnaeeeen 17
3.4.8. INStruction diSasSeMBIYcoouiiieiii e 18
3.4.9. UsiNg the trace DUFFEr ...ouee e 18
A0, ProfilinNg oeeeeee e 20
3.4.11. Attaching to atarget system without initializationcccooveviiiniiiiiinieieeeen, 20
3.4.12. MUILi-PrOCESSOr SUPPOITeieeitieeeeti ettt ettt ettt e et et et e e e e e e e nae e e ennens 21
3.4.13. Stack and €NLrY POINE ...ceeuei ettt e et e ettt e e et e e e e et e e et e eeena e aen 21
3.4.14. Memory Management Unit (MMU) SUPPOITcooeviiiiiiiiiieeiii e 21
3.4.15. CPU CAChE SUPPOITiiiiieeiiii ettt ettt ettt e e e e e e e enaens 22

T e BT 1= o = (o PP ST SPPPTRT 22
BB L SIS et 22
3.5.2, COMIMANAS ...ttt ettt ettt ettt e et e e e e ae e e eenans 22
B B, AP e e e 23

3.6. Symbolic debug iNfOrMEaLTONiiiiii e 23
3.6.1. Multi-processor symbolic debug informationccoooveiiiieiiiiiiiei e, 23

3.7, GDB INEEITACE ..ttt ettt 24
3.7.1. Connecting GDB t0 GRMON uuiiiiiiiiieiiii et eei e 24
3.7.2. Executing GRMON commands from GDB ooeiiiiiiiiiiiiiieiiieeei e 24
3.7.3. Running applications from GDB ccc.uuiiiiiiiiciii e 25
3.7.4. Running SMP applications from GDBcccuuiiiiiiiiiiiiiiiieee e 25
3.7.5. Running AMP applications from GDB coooiiiiiiiiiiiieeei e e 26
3.7.6. GDB THr€ad SUPPOIT ...c.veueieitiieiiet ettt ettt ettt e et e e et eeena s 27
ST.7. VIrtUal MEMOIY oottt e e et e e e b 29
3.7.8. Specific GDB OPtIMIZALIONcc.uuiiiiii e eai e 31
3.7.9. Limitations of GDB iNtErfatecoouuiiiiiiiiiiiii e 31

3.8, THIEa SUPPIOIT ...eeeiieiiii et ettt e e et e e et et e e e et e e e e et e e eeena e eaees 31
3.8.1. GRMON thread COMMANGSuuiiiiiieiiiii e e e e e e e e eeees 31
GRMON2-UM 2 www.cobham.com/gaisler

April 2018, Version 2.0.93

3.9. Forwarding application CoNSOIE /Ouiiiiiiii e e 32
TN L0 T I A O o] (o) = 1 [0 o [33
3.10.1. Using EDAC protected MEMONYcc.uuiiiiiiiiiiee e ee e e e e e e e e e e e eaa s 33
3.10.2. LEONS3-FT €TOr iNJECHIONiiviieiiiieiiiieeie e e et e e e e e e e e e e e e et e e e e e eaneeeees 33

00 I NS oo =001 11 o [P 34
3.11.1. CFl compatible FIash PROMooouiiiiiiecc e 34
3.11.2. SPI MEMOIY EVICE ...vuiiiiieiii e e e e e e e e e e e et e e e eaeaas 35

T2 ANU 1 (o) 017 (= o I o]0 = - 1 o o P 36
3.12.1. Tcl commanding during CPU EXECULIONccvuniiiinieiiieeiineceie e e e e e e e e eaenns 36
3.12.2. Communication channel between target and MOoNItoroccveviiiieiiineiiiieiiieeeieens 36
I e B s = DT (=3 | Y= PP 36

I T o (o T 38
A1, Serial debUG TINK oo 38
4.2, Ethernet debug [INK ... 39
N | AN C o = o 0o I T | PSP 39
4.3.1. Xilinx parallel cable HH/IV ..o e 41
4.3.2. Xilinx Platform USB Cableuuiiiiiiiiiiiiii e 41
4.3.3. Altera USB Blaster or Byte BIAStErccuuiiiiniiiiiiiiiii e e e e 43
A.3.4. FTDI FTA232/FT2232 ..ottt ettt e e et e e et e e e anens 44
4.3.5. AMONEEC JTAGKEY 1oiuiiii ettt e e e e e e e e e e et e et e e e e eeas 45
4.3.6. ACEl FIAShPIO 3IXIAIS ..nieee e 45
A.3.7. DIGIENt HSL .ot e et et e e e e 45

N U S e = o 11 o I 1 |G PP 45
4.5, GRESB dehUg [INK oeveieeii et 47
4.5.1. AGGA4 SpaceWire debug lINKooiiiiiiiii e 47

4.6. User defined debug [INK ...ooouoii e 48
30 L PP 48

LI 1= o8 o o | 1= = PP 50
5.1. AMBA AHB trace BUffer driver ... 50
32 i o Tox Q' =T [50
B.2. 1, SWITCRES oiiiiiii e 50

RGN B 1S W BT o 18 o o [Y= ¢ PP 50
B.3. L. SWILCNES oot e 50
5.3.2. COMIMANAS ..evtiiiiiii ettt e et e e et e e e e ettt e e e et n e e e et neeesaaneeeannns 51
B5.3.3. TC VaADIES oo 52

Y 01 g 0= o011 o = PP 52
oY B @0 010 7= 00 =P UPPPT 52

5.5, GRPWM COME ...ttt ettt et et et et e e e et e et e et e et e e e e e e e eenns 52
5.6. USB HOSE CONITOIEr ...ttt et e e e et e e e e e et e e eenans 53
B.B.1. SWITCNES ootiiiiiiii e 53
5.6.2. COMIMANAS ...euttiiiiiii ettt e e et et e e et e e e et e e e e et r e e e et r e e e eaan e e e st neeennnns 53

B.7. 12C oottt 53
5.8. /O Memory Management UNItcoooiiiiiiiiii e e e e e e e e e e e e eeeen 53
5.9. Multi-processor interrupt CONTOIIEriiiiieii e e e e e e e 54
5.10. L2-CaChe COntrollEruiieieiii e e et e e e et e e e e aa e 54
B.10. L. SWITCRES .eniieiiii et 54

oI S = = 1 o3 U T S PP 55
LN A =0 0 A= U o] o o PP 57
B.12. 1. SWITCRES ovuiiiiii et 57

5.13. On-chip 10giC @nalyzZer AriVEroiiiiiii e e e 57
LIV = 0o YA oo 11 o] 1= = 58
BUAA L SWITCNES ovuiiiiii e 59

LI O o 1 1 174 o = T PSPPSR 60

LI LT IV = 0T A= o £ o] = 60
5.16. MIL-STD-1553B INEITACEuiiiiiiiiieiiiii ettt e et e e et e e e e et e e e eatn e eeenes 61
ST A = O SRS 62
T 0 T = 1 i I - PP 66

ST S TS PPN 66
GRMON2-UM 3 www.cobham.com/gaisler

April 2018, Version 2.0.93

5.19. SPACEWITE FOULES .uuiiiit it e et e et e ettt et e e e e e e et e e e e et e e et e e et e et e e aa e e et e eeaneeeneeeen 66

5.20. SVGA frame DUFFEr .o 67
(SIS U o oo g PPt 68
YN o 0 1447010 [T o (>t QST 69
T Oo 101 00F=T0To ISV) = PN 72
LI I L = P 206
D. Fixed target configuration file fOrmatccouiiiiiiiiiiii e 214
E. License KeY INSAllGtONcouuiiiiiiiii e e e e e e e e e e et e aas 216
F. Appending environment VariablESc..iiiiiiiiiiiiiii e 217
LT 001071 o1 i Y/ PPN 218
GRMON2-UM 4 www.cobham.com/gaisler

April 2018, Version 2.0.93

COBHAM

1. Introduction

1.1. Overview

GRMON isageneral debug monitor for the LEON processor, and for SOC designs based onthe GRLIB IPlibrary.
GRMON includes the following functions:

» Read/write accessto all system registers and memory

 Built-in disassembler and trace buffer management

« Downloading and execution of LEON applications

« Breakpoint and watchpoint management

* Remote connection to GNU debugger (GDB)

» Support for USB, JTAG, RS232, PCI, Ethernet and SpaceWire debug links

» Tcl interface (scripts, procedures, variables, loops etc.)

1.2. Supported platforms and system requirements

GRMON iscurrently provided for platforms: Linux (GLIBC >2.3.4), Windows X P Sp3, Windows 7 and Windows
10. Both 32-bit and 64-bit versions are supported.

The available debug communication links for each platfrom vary and they may have additiona 3rd party depen-
densies that have additional system requirements. See Chapter 4, Debug link for more information.

1.3. Obtaining GRMON

The primary site for GRMON is Aeroflex Gaisler website [http://www.gaisler.com/], where the latest version of
GRMON can be ordered and evaluation versions downloaded.

1.4. Installation

Toinstall GRMON, extract the archive anywhere on the host computer. The archive contains adirectory for each
OS that grmon supports. Each OS- folder contains additional directories as described in the list below.

grmon- pro- 2. 0. XX/ <OS>/ bin
grnmon-pro-2.0. XX/ <0S>/1ib
grnon- pro-2. 0. XX/ <OS>/ shar e

Thebi n directory containsthe executable. For conveniencetheit isrecommended to add the bi n directory of the
host OS to the environment variable PATH. See Appendix F, Appending environment variables for instructions
on how to append environment variables.

GRMON must find the shar e directory to work properly. GRMON will try to automatically detect the location
of the folder. A warning will be printed when starting GRMON if it fails to find the shar e folder. If it failsto
automatically detect the folder, then the environment variable GRMON_SHARE can be set to point the shar e/
gr non folder. For example on Windowsit could be setto c: \ opt \ gr mon- pr o\ wi n32\ shar e\ gr non or
on Linux it could besetto/ opt / gr mon- pr o/ | i nux/ shar e/ gr non.

Thel i b directory contains some additional libraries that GRMON requires. On the Windows platform thel i b
directory is not available. On the Linux platform, if GRMON fails to start because of some missing libraries that
are located in this directory, then add this path to the environment variable LD LI BRARY_PATH or add it the
| d. so. cache (see man pages about Idconfig for more information).

In addition, some debug interfaces requires installation of third-party drivers, see Chapter 4, Debug link for more
information.

The professional versions use a HASP HL license key. See Appendix E, License key installation for installation
of the HASP HL device drivers.

GRMON2-UM 5 www.cobham.com/gaisler
April 2018, Version 2.0.93

http://www.gaisler.com/
http://www.gaisler.com/

COBHAM

1.5. License

The GRMON license file can be found in the share folder of the installation. For example on Windows it can
be found in c: \ opt\ gr non- pr o\ wi n32\ shar e\ gr non or on Linux it could be found in / opt/ gr -
non- pro/ | i nux/ shar e/ gr mon.

1.6. GRMON Evaluation version

The evaluation version of GRMON can be downloaded from Aeroflex Gaisler website [http://www.gaisler.com/].
The evaluation version may be used during a period of 21 days without purchasing a license. After this period,
any commercial use of GRMON is not permitted without avalid license. The following features are not available
in the evaluation version:

 Support for LEON2, LEON3-FT, LEON4

¢ FT memory controllers

e SpaceWiredrivers

e Custom JTAG configuration

¢ Profiling
TCL API (drivers, init scripts, hooks, 1/0 forward to TCL channel etc)

1.7. Problem reports
Please send bug reports or comments to support@gaisier.com.

Customers with a valid support agreement may send questions to support@gaisier.com. Include a GRMON log
when sending questions, please. A log can be obtained by starting GRMON with the command line switch -log
filenane.

Theleon_sparc community at Y ahoo may also be a source to find solutions to problems.

GRMON2-UM 6 www.cobham.com/gaisler
April 2018, Version 2.0.93

http://www.gaisler.com/
http://www.gaisler.com/

COBHAM

2. Debugging concept

2.1. Overview

The GRMON debug monitor is intended to debug system-on-chip (SOC) designs based on the LEON processor.
The monitor connects to a dedicated debug interface on the target hardware, through which it can perform read
and write cycles on the on-chip bus (AHB). The debug interface can be of various types. the LEON3/4 processor
supports debugging over a serial UART, 32-bit PCI, JTAG, Ethernet and SpaceWire (using the GRESB Ethernet
to SpaceWire bridge) debug interfaces. On the target system, al debug interfaces are realized as AHB masters
with the Debug protocol implemented in hardware. Thereis thus no software support necessary to debug a LEON
system, and a target system does in fact not even need to have a processor present.

Terminal GDEB (port 2222)

| GRMON l
I I
: Command layer Standard input GDB protocol :
|

[User Shell | GDB Shell | System Shell | :
| |
! IP debug drivers layer GRLIB Debug Drivers :
| |
| Debug interface layer | Serial f | Ethemet | JTAG | wuse | PCcl | GRESB |
S (D AP N A S } oo

GRESE

|_ oo e s s e _l; _______ | + ! I C _|
i LEONM 50C AHBUART | [GRETH AHB|TAG GRUSB PCI SPW |
I H H I
i Target system with EDCL DCL target ||with RMAP| !
I 3 3 3 3 3 I
: AHB :
' | ! | | '
| |
: LEON Memory APB Custom !
i Processor | | Controller Bridge IP core ;
| |

Figure 2.1. GRMON concept overview

GRMON can operate in two modes: command-line mode and GDB mode. In command-line mode, GRMON
commands are entered manually through aterminal window. In GDB mode, GRMON acts asa GDB gateway and
translates the GDB extended-remote protocol to debug commands on the target system.

GRMON is implemented using three functional layers. command layer, debug driver layer, and debug interface
layer. The command layer takes input from the user and parsesit in aTcl Shell. It is also possible to start a GDB
server service, which has its own shell, that takes input from GDB. Each shell has it own set of commands and
variables. Many commands depends on drivers and will fail if the core is note present in the target system. More
information about Tcl integration can be found in the Section 3.5, “Tcl integration”.

Thedebug driver layer implementsdriversthat probesand initializesthe cores. GRMON will scanthetarget system
at start-up and detect which |P cores are present. The drivers may also provides information to the commands.

The debug interface layer implements the debug link protocol for each supported debug interface. Which interface
to use for adebug session is specified through command line options during the start of GRMON. Only interfaces
based on JTAG supports 8-/16-bit accesses, all other interfaces access subwords using read-modify-write. 32-bit
accesses are supported by all interfaces. More information can be found in Chapter 4, Debug link.

2.2. Target initialization

When GRMON first connectsto the target system, it scans the system to detect which | P cores are present. Thisis
done by reading the plug and play information which isnormally located at address Oxfffff000 on the AHB bus. A

GRMON2-UM 7
April 2018, Version 2.0.93

www.cobham.com/gaisler

COBHAM

debug driver for each recognized | P core isthen initialized, and performs a core-specific initialization sequence if
required. For amemory controller, theinitialization sequence would typically consist of amemory probe operation
to detect the amount of attached RAM. For a UART, it could consist of initializing the baud rate generator and
flushing the FIFOs. After the initialization is complete, the system configuration is printed:

GRMON2 LEON debug nonitor v2.0.15 professional version

Copyright (C) 2012 Aeroflex Gaisler - Al rights reserved.

For |l atest updates, go to http://ww. gaisler.conl
Comrents or bug-reports to support @aisler.com

GRLIB build version: 4111
Detected frequency: 40 Mi

Conponent Vendor

LEON3 SPARC V8 Processor Aerof | ex Gai sl er
AHB Debug UART Aerof ex Gai sl er
JTAG Debug Link Aerof | ex Gai sl er
CGRSPW2 SpaceWre Serial Link Aerof | ex Gai sl er
LEON2 Menory Controller Eur opean Space Agency
AHB/ APB Bri dge Aerof ex Gaisler
LEON3 Debug Support Unit Aerof | ex Gai sl er
Ceneric UART Aerof | ex Gai sl er
Mil ti-processor Interrupt Cirl. Aerof | ex Gai sl er
Modul ar Timer Unit Aerof | ex Gai sl er
General Purpose I/0O port Aerof | ex Gai sl er

Use command 'info sys' to print a detailed report of attached cores

grmon2>

Moredetailed system information can be printed using the ‘info sys' command aslisted below. Thedetailed system
view also providesinformation about address mapping, interrupt allocation and I P core configuration. Information
about which AMBA AHB and APB buses a core is connected to can be seen by adding the - v option. GRMON
assigns a unique name to all cores, the core name is printed to the left. See Appendix C, Tcl API for information

about Tcl variables and device names.

grmon2> info sys

cpu0 Aerof | ex Gaisler LEON3 SPARC V8 Processor
AHB Master O

ahbuart0 Aeroflex Gaisler AHB Debug UART
AHB Master 1

APB: 80000700 - 80000800

Baudrate 115200, AHB frequency 40000000. 00

ahbjtag0 Aeroflex Gaisler JTAG Debug Link

AHB Master 2
gr spwo Aerofl ex Gaisler GRSPW2 SpaceWre Serial
AHB Master 3
APB: 80000A00 - 80000B00
IRQ 10

Nunber of ports: 1

Li nk

nctrl 0 Eur opean Space Agency LEON2 Menory Controller

AHB: 00000000 - 20000000
AHB: 20000000 - 40000000
AHB: 40000000 - 80000000
APB: 80000000 - 80000100
8-bit prom @ 0x00000000

32-bit sdram 1 * 64 Myte @ 0x40000000

col 9, cas 2, ref 7.8 us
apbmst 0 Aerof | ex Gaisler AHB/ APB Bridge
AHB: 80000000 - 80100000

dsu0 Aerofl ex Gaisler LEON3 Debug Support Unit

AHB: 90000000 - A0000000
AHB trace: 128 lines, 32-bit bus

CPUO: wn 8, hwop 2, itrace 128, V8 mul/div,

stack pointer 0x43fffff0

icache 2 * 4096 kB, 32 B/line lru

dcache 1 * 4096 kB, 16 B/line

uart0 Aerof l ex Gaisler Generic UART
APB: 80000100 - 80000200
IRQ 2

Baudrate 38461

i rqmp0 Aerofl ex Gaisler Milti-processor Interrupt Crl.

APB: 80000200 - 80000300

gptimer0 Aeroflex Gaisler Mdular Tinmer Unit
APB: 80000300 - 80000400
IRQ 8

8-bit scalar, 2 * 32-bit timers, divisor 40

Srmmu,

| ddel

1

GRMON2-UM
April 2018, Version 2.0.93

8

www.cobham.com/gaisler

COBHAM

grgpi o0 Aeroflex Gaisler GCeneral Purpose I/0O port
APB: 80000800 - 80000900

2.2.1. LEONZ2 Target initialization

The plug and play information wasintroduced in the LEON3 processor (GRLIB), and is not available for LEON2
systems. LEON2 mode can be enable by starting GRMON with the - | eon2 switch or one of the switches that
correspond to aknown LEON2 device, see Section 5.12, “Leon2 support”.

A LEON2 system has a fixed set of IP cores and address mapping, and GRMON will use an internal plug and
play table that describes this configuration. The plug and play table used for LEON2 is fixed, and no automatic
detection of present coresis attempted. Only those coresthat need to be initialized by GRMON are included inthe
table, so thelisting might not correspond to the actual target. It ishowever possible to load a custom configuration
filethat describes the target system configuration using see Section 2.2.2, “ Configuration file target initialization”

2.2.2. Configuration file target initialization

Itispossibleto provide GRMON with aconfiguration file that describes a static configuration by starting GRMON
with the switch- cf g fi | enane.

The format of the plug and play configuration file is described in section Appendix D, Fixed target configuration
file format. It can be used for both LEON3 and LEON2 systems. An example configuration file is also supplied
with the GRMON professional distribution in share/src/cfg/leon3.xml.

2.3. Memory register reset values

To ensure that the memory registers has sane values, GRMON will reset the registers when commands that access
the memories are issued, for example run, load commands and similar commands. To modify the reset values,
use the commands listed in Section 5.14.2, “Commands’.

GRMON2-UM 9 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

3. Operation

This chapter describes how GRMON can be controlled by the user in an interactive debug session and how it can
be automated with scripts for batch execution. The first sections describe and exemplifies typical operations for
interactive use. The later sections describe automation concepts. Most interactive commands are applicable also
for automated use.

3.1. Overview

An interactive GRMON debug session typically consists of the following steps:
1. Starting GRMON and attaching to the target system
2. Examining the hardware configuration
3. Uploading application program
4. Setup debugging, for example insert breakpoints and watchpoints
5. Executing the application
6. Debugging the application and examining the CPU and hardware state

Step 2 though 6 is performed using the GRMON terminal interface or by attaching GDB and use the standard
GDB interface. The GDB section describes how GRMON specific commands are accessed from GDB.

The following sections will give an overview how the various steps are performed.

3.2. Starting GRMON

GRMON is started by giving the grmon command in aterminal window. Without options, GRMON will default
to connect to the target using the serial debug link. UART1 of the host (ttySO or COM1) will be used, with a
default baud rate of 115200 baud. On windows hosts, GRMON can be started in a command window (cmd.exe)
orinaMSY Sshell.

Command line options may be split up in several different groups by function as below.

« Thedebug link options: setting up a connection to GRLIB target
¢ General options. debug session behavior options
« Debug driver options: configure the hardware, skip core auto-probing etc.

Below is an example of GRMON connecting to a GR712 evaluation board using the FTDI USB serial interface,
tunneling the UART output of APBUARTO to GRMON and specifying three RAM wait states on read and write:

$ grnon -ftdi -u -ramms 3
3.2.1. Debug link options

GRMON connects to a GRLIB target using one debug link interface, the command line options selects which
interface the PC uses to connect to the target and optionally how the debug link is configured. All options are
described in Chapter 4, Debug link.

3.2.2. Debug driver options

The debug drivers provide an interface to view and access AMBA devices during debugging and they offer device
specific ways to configure the hardware when connecting and before running the executable. Drivers usually au-
to-probetheir devicesfor optimal configuration values, however sometimesit isuseful to override the auto-probed
values. Some options affects multiple drivers. The debug driver options are described in Chapter 5, Debug drivers.

3.2.3. General options

The general options are mostly target independent options configuring the behavior of GRMON. Some of them
affects how the target system is accessed both during connection and during the whole debugging session. All
general options are described below.

grnon [options]

GRMON2-UM 10 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

Options:

- abaud baudr at e
Set baud-rate for all UARTsin the system, (except the debug-link UART). By default, 38400 baud is used.

-anbanb [maxbuses]
Enable auto-detection of AHBCTRL_MB system and (optionally) specifiesthe maximum number of buses
in the system if an argument is given. The optional argument to -ambamb is decoded as below:
0, 1: No Multi-bus (MB) (max one bus)
2..3: Limit MB support to 2 or 3 AMBA PnP buses
4 or no argument: Selects Full MB support

-cfilenane
Run the commands in the batch file at start-up.

-cfgfilename
Load fixed PnP configuration from axml-file.

-echo
Echo al the commands in the batch file at start-up. Has no effect unless - ¢ isalso set.

- edac
Enable EDAC operation in memory controllers that support it.

-freqgsysclk
Overrides the detected system frequency. The frequency is specified in MHz.

-gdb [port]
Listen for GDB connection directly at start-up. Optionally specify the port number for GDB communica-
tions. Default port number is 2222.

-i oareaaddress
Specify the location of the I/O area. (Default is Oxfff00000).

-logfilename
Log session to the specified file. If the file already exists the new session is appended. This should be used
when requesting support.

- ni
Read plug n' play and detect all system device, but don't do any target initialization. See Section 3.4.11,
“ Attaching to atarget system without initialization” for more information.

- nopnp
Disable the plug n' play scanning. GRMON won't detect any hardware and any hardware dependent func-
tionality won't work.

- not hr eads
Disable thread support.

-u[device]
Put UART 1in FIFO debug mode if hardware supportsit, else put it in loop-back mode. Debug mode will
enable both reading and writing to the UART from the monitor console. L oop-back mode will only enable
reading. See Section 3.9, “Forwarding application console 1/0”. The optional device parameter is used to
select a specific UART to be put in debug mode. The device parameter is an index starting with O for the
first UART and then increasing with onein the order they are found in the bus scan. If the device parameter
isnot used the first UART is selected.

-udm[devi ce]
Put UART 1in FIFO debug modeif hardware supportsit. Debug modewill enable both reading and writing
tothe UART from the monitor console. See Section 3.9, “ Forwarding application console|/O”. The optional
device parameter is used to select a specific UART to be put in debug mode. The device parameter is an
index starting with O for the first UART and then increasing with one in the order they are found in the bus
scan. If the device parameter is not used the first UART is selected.

-ul b[device]
Put UART 1inloop-back mode. Loop-back mode will only enable reading from the UART to the monitor
console. See Section 3.9, “Forwarding application console I/O”. The optional device parameter is used to
select a specific UART to be put in debug mode. The device parameter is an index starting with O for the
first UART and then increasing with onein the order they are found in the bus scan. If the device parameter
isnot used the first UART is selected.

-ucmd fil enane
Load script specified by filename into all shells, including the system shell.

GRMON2-UM 11 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

-udrv fil enane
L oad script specified by filename into system shell.

3.3. GRMON command-line interface (CLI)

The GRMON2 command-line interface features a Tcl 8.5 interpreter which will interpret all entered commands
substituting variables etc. before GRMON is actualy called. Variables exported by GRMON can aso be used
to access internal states and hardware registers without going through commands. The GRMON Tcl interface is
described in Section 3.5, “Tcl integration”.

GRMON dynamically loadsl i br eadl i ne. so if available on your host system, and usesthereadlinelibrary to
enter and edit commands. Short forms of the commands are allowed, e.glo, loa, or load, are all interpreted asload.
Tab completion is available for commands, Tcl variables, text-symbols, file names, etc. If | i br eadl i ne. so
is not found, the standard input/output routines are used instead (no history, poor editing capabilities and no tab-
completion).

The commands can be separated in to three categories:
e Tcl internal commands and reserved key words
¢ GRMON built-in commands always available regardless of target
« GRMON commands accessing debug drivers

Tcl internal and GRMON built-in commands are available regardless of target hardware present whereas debug
driver commands may only be present on supported systems. The Tcl and driver commands are described in
Section 3.5, “Tcl integration” and Chapter 5, Debug driversrespectively. In Table 3.1isasummary of al GRMON
built-in commands. For the full list of commands, see Appendix A, Command index.

Table 3.1. BUILT-IN commands

amem Asynchronous bus read

batch Execute batch script

bdump Dump memory to afile

bload Load abinary file

disassemble Disassemble memory

dump Dump memory to afile

dwarf print or lookup dwarf information

ecload Load afileinto an EEPROM

exit Exit GRMON

gdb Controll the builtin GDB remote server

help Print all commands or detailed help for a specific command
info Show information

load Load afile or print filenames of uploaded files

memb AMBA bus 8-bit memory read access, list arange of addresses
memh AMBA bus 16-bit memory read access, list arange of addresses
mem AMBA bus 32-bit memory read access, list arange of addresses
nolog Suppress stdout of a command

quit Quit the GRMON console

reset Reset drivers

rtgdfddr Print initilization sequence

rtgdserdes Print initilization sequence

sf2mddr Print initilization sequence

sf2serdes Print initilization sequence
GRMON2-UM 12 www.cobham.com/gaisler

April 2018, Version 2.0.93

shell
silent
symbols
usrsh
verify
wash
wmemb
wmemh
wmems
wmem

Execute shell process

Suppress stdout of a command

Load, print or lookup symbols

Run commands in threaded user shell

Verify that afile has been uploaded correctly
Clear or set memory areas

AMBA bus 8-bit memory write access
AMBA bus 16-bit memory write access

Write astring to an AMBA bus memory address

AMBA bus 32-bit memory write access

3.4. Common debug operations

COBHAM

This section describes and gives some examples of how GRMON is typically used, the full command reference
can be found in Appendix A, Command index.

3.4.1. Examining the hardware configuration

When connecting for the first time it is essential to verify that GRMON has auto-detected all devices and their
configuration correctly. At start-up GRMON will print the cores and the frequency detected. From the command
line one can examine the system by executing info sys as below:

grmon2> info sys

cpu0 Aerofl ex Gaisler LEON3-FT SPARC V8 Processor
AHB Master O
cpul Aerofl ex Gaisler LEON3-FT SPARC V8 Processor
AHB Master 1
gretho Aerofl ex Gaisler CR Ethernet MAC
AHB Master 3
APB: 80000E00 - 80000F00
IRQ 14
gr spwo Aerofl ex Gaisler GRSPW2 SpaceWre Serial Link
AHB Master 5
APB: 80100800 - 80100900
IRQ 22
Nunber of ports: 1
grspwl Aerofl ex Gaisler GRSPW2 SpaceWre Serial Link
AHB Master 6
APB: 80100900 - 80100A00
IRQ 23
Nunber of ports: 1
nctrl 0 Aerofl ex Gaisler Menory controller with EDAC
AHB: 00000000 - 20000000
AHB: 20000000 - 40000000
AHB: 40000000 - 80000000
APB: 80000000 - 80000100
8-bit prom @ 0x00000000
32-bit static ram 1 * 8192 kbyte @ 0x40000000
32-bit sdram 2 * 128 Myte @ 0x60000000
col 10, cas 2, ref 7.8 us
apbnst0 Aeroflex Gaisler AHB/ APB Bridge
AHB: 80000000 - 80100000
dsu0 Aerof l ex Gaisler LEON3 Debug Support Unit
AHB: 90000000 - A0000000
AHB trace: 256 |ines, 32-bit bus
CPUW: win 8 hwbp 2, itrace 256, V8 mul/div, srmmu, |ddel 1, GRFPU
stack pointer 0x407ffff0
icache 4 * 4096 kB, 32 B/line Iru
dcache 4 * 4096 kB, 16 B/line Iru
CPUL: win 8 hwbp 2, itrace 256, V8 mul/div, srmmu, |ddel 1, GRFPU
stack pointer 0x407ffff0
icache 4 * 4096 kB, 32 B/line Iru
dcache 4 * 4096 kB, 16 B/line Iru
uart0 Aerofl ex Gaisler GCeneric UART
APB: 80000100 - 80000200
IRQ 2
Baudr at e 38461, FIFO debug node
i rqmp0 Aerofl ex Gaisler Milti-processor Interrupt Crl.
APB: 80000200 - 80000300
EIRQ 12
GRMON2-UM 13 www.cobham.com/gaisler

April 2018, Version 2.0.93

COBHAM

gptimer0 Aeroflex Gaisler Mdular Tinmer Unit
APB: 80000300 - 80000400
IRQ 8
16-bit scalar, 4 * 32-bit timers, divisor 80
grgpi o0 Aeroflex Gaisler GCeneral Purpose I/0O port
APB: 80000900 - 80000A00

uartl Aerof l ex Gaisler Generic UART
APB: 80100100 - 80100200
IRQ 17

Baudrate 38461

The memory section for example tells us that GRMON are using the correct amount of memory and memory
type. The parameters can be tweaked by passing memory driver specific options on start-up, see Section 3.2,
“Starting GRMON". The current memory settings can be viewed in detail by listing the registers with info reg or
by accessing the registers by the Tcl variables exported by GRMON:

grnon2> info sys

nctrl 0 Aerofl ex Gaisler Menory controller with EDAC
AHB: 00000000 - 20000000
AHB: 20000000 - 40000000
AHB: 40000000 - 80000000
APB: 80000000 - 80000100
8-bit prom @ 0x00000000
32-bit static ram 1 * 8192 kbyte @ 0x40000000
32-bit sdram 2 * 128 Myyte @ 0x60000000
col 10, cas 2, ref 7.8 us

grnmon2> info reg

Menory control ler with EDAC

0x80000000 Menory config register 1 0x1003cO0f f
0x80000004 Menory config register 2 0x9ac05463
0x80000008 Menory config register 3 0x0826e000
grnon2> puts [format Ox%8x $nctrlO:: [TAB- COVPLETI ON]

nctrl 0:: nefgl nctrl 0::necf g2 nctrl 0:: nef g3 nctrl 0::pnp::
nctrl O::nefgl:: noctrlO::ncfg2:: netrlO::ncfg3::
grnon2> puts [format O0x%8x $nctrl 0:: ncfgl]

0x0003cOf f
grnon2> puts [format Ox%8x $nctrl 0::ncfg2 :: [TAB- COVPLETI ON]
nctrl 0:: nefg2:: d64 nctrl 0:: nefg2: : sdrancnd
nctrl 0:: nefg2: :ranbanksz nctrl 0:: nefg2: : sdrantol sz
nctrl 0:: nefg2::rantws nctrl 0:: nefg2::sdrant f
nctrl 0::nefg2::ramwi dth nctrl 0:: nefg2:: sdrantcas
nctrl 0:: nefg2: : ramws nctrl 0::nefg2::sdrantrfc
nctrl 0:: nefg2::rbrdy nctrl 0::nefg2::sdrantrp
nctrl 0::nefg2::rmw nctrl 0:: nefg2::se
nctrl 0:: nefg2:: sdpb nctrl 0:: nefg2: @ si

nctrl 0:: nef g2: : sdranbanksz
grnon2> puts [format % $nctrl0::ncfg2::rami dth]

3.4.2. Uploading application and data to target memory

A LEON software application can be uploaded to the target system memory using the load command:

grnon2> | oad v8/stanford. exe
40000000 . text 54.8kB / 54.8kB [==
4000DB30 . data 2.9kB / 2.9kB [==
Total size: 57.66kB (786.00kbit/s)
Entry point 0x40000000
I mage / hone/ dani el / exanpl es/ v8/ st anford. exe | oaded

The supported file formats are SPARC ELF-32, ELF-64 (MSB truncated to 32-bit addresses), srecord and a.out
binaries. Each section is loaded to its link address. The program entry point of the file is used to set the %PC,
%NPC when the application is later started with run. It is also possible to load binary data by specifying file and
target address using the bload command.

===>] 100%
===>] 100%

One can use the verify command to make sure that the file has been loaded correctly to memory as below. Any
discrepancies will be reported in the GRMON console.

grnon2> verify v8/ stanford. exe

40000000 . t ext 54.8kB / 54.8kB
4000DB30 . dat a 2.9kB / 2.9KkB
GRMON2-UM 14 www.cobham.com/gaisler

April 2018, Version 2.0.93

COBHAM

Total size: 57.66kB (726. 74kbit/s)
Entry point 0x40000000
I mage of /hone/dani el /exanpl es/v8/ stanford. exe verified without errors

NOTE: On-going DMA can be turned off to avoid that hardware overwrites the loaded image by issuing the r eset
command prior to load. Thisisimportant after the CPU has been executing using DMA in for example Ethernet
network traffic.

3.4.3. Running applications

After the application has been uploaded to the target with load the run command can be used to start execution.
The entry-point taken from the ELF-file during loading will serve as the starting address, the first instruction
executed. Therun command issuesadriver reset, however it may be neccessary to perform areset prior to loading
the image to avoid that DMA overwrites the image. See the reset command for details. Applications already
located in FLASH can be started by specifying an absolute address. The cont command resumes execution after
atemporary stop, e.g. a breakpoint hit. go also affects the CPU execution, the difference compared to run is that
the target device hardwareis not initialized before starting execution.

grnmon2> reset

grrmon2> | oad v8/stanford. exe
40000000 . text 54.8kB / 54.8kB ===>] 100%
4000DB30 . data 2.9kB / 2. 9kB ==>] 100%
Total size: 57.66kB (786.00kbit/s)
Entry point 0x40000000
I mage / hone/ dani el / exanpl es/ v8/ st anf ord. exe | oaded

grnmon2> run

Starting
Perm Towers Queens I nt nm Mn Puzzle Quick Bubble Tree FFT
34 67 33 117 1117 367 50 50 250 1133
Nonfl oati ng point conposite is 144
Fl oating point conposite is 973

CPU 0: Program exited normally.
CPU 1: Power down node

The output from the application normally appears on the LEON UARTSs and thus not in the GRMON console.
However, if GRMON is started with the - u switch, the UART is put into debug mode and the output is tunneled
over the debug-link and finally printed on the console by GRMON. See Section 3.9, “Forwarding application
console1/O”. Notethat older hardware (GRLIB 1.0.17-b2710 and older) has only partial support for - u, it will not
work when the APBUART software driver uses interrupt driven 1/0O, thus Linux and vxWorks are not supported
on older hardware. Instead, a terminal emulator should be connected to UART 1 of the target system.

Since the application changes (at |east) the .data segment during run-time the application must be reloaded before
it can be executed again. If the application uses the MMU (e.g. Linux) or installs data exception handlers (e.g.
eCos), GRMON should be started with - nb to avoid going into break mode on a page-fault or data exception.
Likewise, when a software debugger isrunning on the target (e.g. GDB natively in Linux user-space or WindRiver
Workbench debugging atask) soft breakpoints ("TA 0x01" instruction) will result in traps that the OS will handle
and tell the native debugger. To prevent GRMON from interpreting it as its own breakpoints and stop the CPU
one must use the - nswb switch.

3.4.4. Inserting breakpoints and watchpoints

All breakpoints areinserted with the bp command. The subcommand (soft, hard, watch, bus, data, delete) given to
bp determine which type of breakpoint isinserted, if no subcommand isgiven bp defaultsto a software breakpoint.

Instruction breakpoints areinserted using bp soft or bp hard commands. Inserting a software breakpoint will add
a (TA 0x1) instruction by modifying the target's memory before starting the CPU, while bp hard will insert a
hardware breakpoint using one of the |U watchpoint registers. To debug instruction code in read-only memories
or memories which are self-modifying the only option is hardware breakpoints. Note that it's possible to debug
any RAM-based code using software breakpoints, even where traps are disabled such as in trap handlers. Since
hardware breakpoints triggers on the CPU instruction address one must be aware that when the MMU s turned
on, virtual addresses are triggered upon.

GRMON2-UM 15 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

CPU data address watchpoints (read-only, write-only or read-write) are inserted using the bp watch command.
Watchpoints can be setup to trigger within a range determined by a bit-mask where a one means that the address
must match the address pattern and a zero mask indicate don't care. The lowest 2-hits are not available, meaning
that 32-hit words are the smallest address that can be watched. Byte accesses can still be watched but accesses to
the neighboring three bytes will also be watched.

AMBA-bus watchpoints can be inserted using bp bus or bp data. When a bus watchpoint is hit the trace buffer
will freeze. The processor can optionally be put in debug mode when the bus watchpoint is hit. Thisis controlled
by the tmode command:

grmon2> tnode break N

If N =0, the processor will not be halted when the watchpoint is hit. A value > 0 will break the processor and set
the AHB trace buffer delay counter to the same value.

NOTE: For hardware supported break/watchpoints the target must have been configured accordingly, otherwise
afailure will be reported. Note also that the number of watchpoints implemented varies between designs.

3.4.5. Displaying processor registers

The current register window of aL EON processor can be displayed using the reg command or by accessing the Tcl
¢ pu namespace that GRMON provides. GRMON exports cpu and cpuN where N selects which CPU's registers
are accessed, the cpu namespace points to the active CPU selected by the cpu command.

grnon2> reg

I'NS LOCALS QTS GLOBALS
00000008 0000000C 00000000 00000000
80000070 00000020 00000000 00000001
00000000 00000000 00000000 00000002
00000000 00000000 00000000 00300003
00000000 00000000 00000000 00040004
00000000 00000000 00000000 00005005
407FFFFO 00000000 407FFFFO 00000606
00000000 00000000 00000000 00000077

NogarwWONRQ

psr: F34010E0 wim 00000002 tbr: 40000060 y: 00000000

pc: 40003E44 be 0x40003FB8
npc: 40003E48 nop
grmon2> puts [format % $::cpu::iu::o06]
407ffff0

Other register windows can be displayed using reg wN, when N denotes the window number. Use the float com-
mand to show the FPU registers (if present).

3.4.6. Backtracing function calls

When debugging an application it is often most useful to view how the CPU entered the current function. The bt
command analyze the previous stack frames to determine the backtrace. GRMON reads the register windows and
then switches to read from the stack depending on the %WIM and %PSR register.

The backtraceispresented with the caller's program counter (%PC) to return to (below wherethe CALL instruction
was issued) and the stack pointer (%SP) at that time. The first entry (frame #0) indicates the current location of
the CPU and the current stack pointer. The right most column print out the %PC address relative the function
symbol, i.e. if symbols are present.

grnon2> bt

%pc %sp
#0 0x40003e24 0x407ffdb8 <Fft+0x4>
#1 0x40005034 0x407ffe28 <mai n+0xfc4>
#2 0x40001064 0x407fff70 <_start+0x64>
#3 0x4000cf40 0x407fffb0 <_hardreset_real +0x78>

NOTE: In order to display a correct backtrace for optimized code where optimized leaf functions are present a
symbol table must exist.

GRMON2-UM 16 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

In a MP system the backtrace of a specific CPU can be printed, either by changing the active CPU with the cpu
command or by passing the CPU index to bt.

3.4.7. Displaying memory contents

Any memory location can be displayed and written using the commands listed in the table below. Memory com-
mands that are prefixed with a v access the virtual address space seen by doing MMU address lookups for active
CPU.

Table 3.2. Memory access commands

Command Description

Name

mem AMBA bus 32-bit memory read access, list arange of addresses
wmem AMBA bus 32-bit memory write access

vmem AMBA bus 32-bit virtual memory read access, list arange of addresses
memb AMBA bus 8-bit memory read access, list arange of addresses

memh AMBA bus 16-bit memory read access, list arange of addresses
vmemb AMBA bus 8-bit virtual memory read access, list arange of addresses
vmemh AMBA bus 16-bit virtual memory read access, list arange of addresses
vwmemb AMBA bus 8-bit virtual memory write access

vwmemh AMBA bus 16-bit virtual memory write access

vwmems Write astring to an AMBA bus virtual memory address

vwmem AMBA bus 32-bit virtual memory write access

wmemb AMBA bus 8-bit memory write access

wmemh AMBA bus 16-bit memory write access

wmems Write a string to an AMBA bus memory address

amem AMBA bus 32-bit asynchronous memory read access

NOTE: Most debug links only support 32-bit accesses, only JTAG links support unaligned access. An unaligned
accessiswhen the address or number of bytesare not evenly divided by four. When an unaligned dataread request
isissued, then GRMON will read some extra bytes to align the data, but only return the requested data. If awrite
request isissued, then an aligned read-modify-write sequence will occur.

The mem command requires an address and an optional length, if the length isleft out 64 bytes are displayed. If a
program has been |oaded, text symbol s can be used instead of anumeric address. The memory content is displayed
in hexadecimal-decimal format, grouped in 32-bit words. The ASCII equivalent is printed at the end of the line.
grmon> mem 0x40000000

40000000 a0100000 29100004 81c52000 01000000) e

40000010 91d02000 01000000 01000000 01000000 P

40000020 91d02000 01000000 01000000 01000000 P

40000030 91d02000 01000000 01000000 01000000 P
grmon> mem 0x40000000 16

40000000 @a0100000 29100004 81c52000 01000000) e

grnon> nmem mai n 48

40003278 9de3bf98 2f100085 31100037 90100000 Y A T S
40003288 d02620c0 d025e178 11100033 40000b4b & .%x...3@.K
40003298 901223b0 11100033 40000af4 901223c0 LL#..3@. .. #

The memory access commands listed in Table 3.2 are not restricted to memory: they can be used on any bus
address accessible by the debug link. However, for access to peripheral control registers, the command info reg
can provide amore user-frienly output.

GRMON2-UM 17 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

All commandsin Table 3.2, except for amem, return to the caller when the bus access has compl eted, which means
that a sequence of these commands generates a sequence of bus accesses with the same ordering. In situations
where the bus accesses order is not critical, the command amem can be used to schedule multiple concurrent read
accesseswhose results can beretrieved at alater time. Thisisuseful when GRMON isautomated using Tcl scripts.

3.4.8. Instruction disassembly

If the memory contents is SPARC machine code, the contents can be displayed in assembly code using the dis-
assemble command:

grmon2> di sassenbl e 0x40000000 10

0x40000000: 88100000 clr 9g4 <start +0>
0x40000004: 09100034 sethi 9%i (0x4000d000), %g4 <start+4>
0x40000008: 81c12034 jnmp Yg4 + 0x34 <start +8>
0x4000000c: 01000000 nop <start+12>
0x40000010: al1480000 nov Ypsr, %0 <start+16>
0x40000014: a7500000 nov 9%mim %3 <start+20>
0x40000018: 10803401 ba 0x4000d01lc <start+24>
0x4000001c: acl102001 nov 1, %6 <start+28>
0x40000020: 91d02000 ta 0x0 <start+32>
0x40000024: 01000000 nop <start +36>
grmon2> dis main

0x40004070: 9de3beb8 save %sp, -328, %p <mai n+0>
0x40004074: 15100035 sethi 9%i (0x4000d400), %2 <mai n+4>
0x40004078: d102a3f4 |d [%2 + O0x3f4], %8 <mai n+8>

0x4000407c: 13100035 sethi 9%i (0x4000d400), %1 <nai n+12>
0x40004080: 39100088 sethi 9%i (0x40022000), % 4 <nai n+16>
0x40004084: 3710003a sethi 9%i (0x4000e800), % 3 <nai n+20>

0x40004088: d126e2e0 st %8, [% 3 + 0x2e0] <mai n+24>
0x4000408c: d1272398 st %8, [% 4 + 0x398] <mai n+28>
0x40004090: 400006a9 call 0x40005b34 <mai n+32>
0x40004094: 901262f0 or %1, 0x2f0, %0 <mai n+36>
0x40004098: 11100035 sethi %hi (0x4000d400), %0 <nmi n+40>
0x4000409c: 40000653 call 0x400059e8 <mai n+44>
0x400040a0: 90122300 or %0, 0x300, %0 <mai n+48>
0x400040a4: 7ffff431 call 0x40001168 <mai n+52>

0x400040a8: 3510005b sethi 9%i (0x40016c00), % 2 <nai n+56>
0x400040ac: 2510005b sethi 9%i (0x40016c00), %2 <nai n+60>

3.4.9. Using the trace buffer

The LEON processor and associated debug support unit (DSU) can be configured with trace buffers to store both
the latest executed instructions and the latest AHB bus transfers. The trace buffers are automatically enabled by
GRMON during start-up , but can also beindividually enabled and disabled using tmode command. The command
ahb is used to show the AMBA buffer. The command inst is used to show the instruction buffer. The command
hist is used to display the contents of the instruction and the AMBA buffers mixed together. Below is an example
debug session that shows the usage of breakpoints, watchpoints and the trace buffer:

grmon2> | o v8/stanford. exe

40000000 . text 54.8kB / 54.8kB ============== =>] 100%

4000DB30 . data 2.9kB / 2. 9kB == ===>] 100%

Total size: 57.66kB (786.00kbit/s)

Entry poi nt 0x40000000

I mage / hone/ dani el / exanpl es/ v8/ st anf ord. exe | oaded
grrmon2> bp Fft

Sof tware breakpoint 1 at <Fft>
grnmon2> bp wat ch 0x4000eae0

Har dwar e wat chpoi nt 2 at 0x4000eae0
grnmon2> bp

NUM ADRESS MASK TYPE SYMBOL

1 : 0x40003e20 (soft) Fft +0
2 : 0x4000eae0 Oxfffffffc (watch rw) floated+0

grnon2> run

CPU 0: watchpoint 2 hit

0x40001024: c0388003 std %0, [%2 + %3] <_start+36>

CPU 1: Power down nobde

grnmon2> inst
TI ME ADDRESS | NSTRUCTI ON RESULT
84675 40001024 std %0, [%2 + %3] [4000eaf 8 00000000 00000000]

GRMON2-UM 18 www.cobham.com/gaisler

April 2018, Version 2.0.93

84678
84679
84682
84685
84686
84689
84692
84693
84694

grnon2> ahb

TI ME ADDRESS

4000101c
40001020
40001024
4000101c
40001020
40001024
4000101c
40001020
40001024

TYPE D{31:0]

subcc %3, 8, %3
bge,a 0x4000101c
std %0, [%92 + %g3]
subcc %3, 8, %3
bge, a 0x4000101c
std %0, [%92 + %g3]
subcc %3, 8, %3
bge, a 0x4000101c
std %0, [%92 + %g3]

[00000440]
[00000448]

COBHAM

[4000eaf 0 00000000 00000000]

[00000438]
[00000440]

[4000eae8 00000000 00000000]

[00000430]
[00000438]
[TRAP]

84664 4000eb08 write 00000000 2 2 1 0o o0 0
84667 4000ebOc write 00000000 3 2 1 0o o0 0
84671 4000eb00 write 00000000 2 2 1 0o o0 0
84674 4000eb04 write 00000000 3 2 1 0o o0 0
84678 4000eaf8 write 00000000 2 2 1 0o o0 0
84681 4000eafc write 00000000 3 2 1 0o 0 0
84685 4000eaf 0 write 00000000 2 2 1 0o o0 0
84688 4000eaf4 write 00000000 3 2 1 0o 0 0
84692 4000eae8 write 00000000 2 2 1 0o o0 0
84695 4000eaec write 00000000 3 2 1 0o o0 0
grnmon2> reg
I NS LOCALS auTs GLOBALS
0: 80000200 00000000 00000000 00000000
1: 80000200 00000000 00000000 00000000
2: 0000000C 00000000 00000000 4000E6BO
3: FFFO0000 00000000 00000000 00000430
4: 00000002 00000000 00000000 4000CCO0
5: 800FFO10 00000000 00000000 4000E680
6: 407FFFBO 00000000 407FFF70 4000CF34
7: 4000CF40 00000000 00000000 00000000
psr: F30010E7 wim 00000002 thbr: 40000000 y: 00000000
pc: 40001024 std %0, [Yg2 + Y%g3]
npc: 4000101c subcc %3, 8, %3
grnon2> bp del 2
grnon2> cont
Towers Queens I nt mm Mn Puzzle Quick Bubbl e Tree
CPU 0: breakpoint 1 hit
0x40003e24: a0100018 nov %0, %0 <Fft+4>
CPU 1: Power down nobde
grnon2>
grnmon2> hi st
TI ME ADDRESS I NSTRUCTI ONS/ AHB SI GNALS RESULT/ DATA
30046975 40003e20 AHB read nst=0 size=2 [9de3bf 90]
30046976 40005030 or %2, Oxle0, %3 [40023de0]
30046980 40003e24 AHB read net=0 size=2 [91d02001]
30046981 40005034 call 0x40003e20 [40005034]
30046985 40003e28 AHB read nst=0 size=2 [b136201f]
30046990 40003e2c AHB read nst=0 size=2 [f 83f bf f 0]
30046995 40003e30 AHB read nst=0 size=2 [82040018]
30047000 40003e34 AHB read nst=0 size=2 [d11f bf f 0]
30047005 40003e38 AHB read nst=0 size=2 [9a100019]
30047010 40003e3c AHB read net=0 size=2 [96100014a]

TRANS S| ZE BURST MST LOCK RESP HI RQ

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

FFT

When printing executed instructions, the value within brackets denotes the instruction result, or in the case of
store instructions the store address and store data. The value in the first column displays the relative time, equal
to the DSU timer. The time is taken when the instruction completes in the last pipeline stage (write-back) of the
processor. In amixed instruction/AHB display, AHB address and read or write value appears within brackets. The

time indicates when the transfer completed, i.e. when HREADY was asserted.

GRMON2-UM

April 2018, Version 2.0.93

19

www.cobham.com/gaisler

COBHAM

NOTE: Asthe AHB traceis disabled when a breakpoint is hit, AHB accesses related to instruction cache fetches
after the time of break can be missed. The command ahb for ce can be used enable AHB tracing even when the
processor isin debug mode.

NOT E: When switching between tracing modes with tmode the contents of the trace buffer will not be valid until
execution has been resumed and the buffer refilled.

3.4.10. Profiling

GRMON supports profiling of LEON applications when run on real hardware. The profiling function collects
(statistical) information on the amount of execution time spent in each function. Due to its non-intrusive nature,
the profiling data does not take into consideration if the current function is called from within another procedure.
Even 0, it still provides useful information and can be used for application tuning.

NOTE: To increase the number of samples, use the fastest debug link available on the target system. |.a. do not
use I/O forwarding (start GRMON without the -u commandline option)

grmon2> | o v8/stanford. exe
40000000 . text 54.8kB / 54.8kB [===============>] 100%
4000DB30 . data 2.9kB / 2.9kB [===============>] 100%
Total size: 57.66kB (786.00kbit/s)
Entry poi nt 0x40000000
I mage / hone/ dani el / exanpl es/ v8/ st anf ord. exe | oaded

grrmon2> profile on

grnmon2> run
Starting
Perm Towers Queens I nt nm Mn Puzzle Quick Bubble Tree FFT

CPU 0: Interrupted!

0x40003ee4: 95a0c8a4 fsubs %3, %4, %10 <Fft+196>
CPU 1: Interrupted!

0x40000000: 88100000 clr %4 <start+0>

grmon2> prof

FUNCTI ON SAMVPLES RATI O(%
Trial 0000000096 27.35
__window overflow rettseq_ret 0000000060 17.09
nmai n 0000000051 14.52
__window_overfl ow_sl owl 0000000026 7. 40
Fft 0000000023 6.55
I nsert 0000000016 4.55
Pernut e 0000000013 3.70
t ower 0000000013 3.70
Try 0000000013 3.70
Qui cksort 0000000011 3.13
Checktree 0000000007 1.99
_malloc_r 0000000005 1.42
start 0000000004 1.13
out byte 0000000003 0. 85
Tower s 0000000002 0. 56
__window overflow rettseq 0000000002 0.56
__st_pthread_nutex_| ock 0000000002 0.56
_start 0000000001 0. 28
Perm 0000000001 0. 28
__malloc_l ock 0000000001 0. 28
__st_pthread_mutex_tryl ock 0000000001 O0.28

3.4.11. Attaching to a target system without initialization

When GRMON connects to a target system, it probes the configuration and initializes memory and registers. To
determine why atarget has crashed, or resume debugging without rel oading the application, it might be desirable
to connect to the target without performing a (destructive) initialization. This can be done by specifying the -
ni switch during the start-up of GRMON. The system information print-out (info sys) will then however not be
able to display the correct memory settings. The use of the - st ack option and the go command might also be
necessary in case the application is later restarted. The run command may not have the intended effect since the
debug drivers have not been initialized during start-up.

GRMON2-UM 20 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

3.4.12. Multi-processor support

In systems with more than one LEON processor, the cpu command can be used to control the state and debugging
focus of the processors. In MP systems, the processors are enumerated with 0..N-1, where N is the number of
processors. Each processor can bein two states; enabled or disabled. When enabled, a processor can be started by
LEON software or by GRMON. When disabled, the processor will remain halted regardless. One can pauseaMP
operating system and disable a CPU to debug a hanged CPU for example.

Most per-CPU (DSU) debugging commands such as displaying registers, backtrace or adding breakpoints will be
directed to the active processor only. Switching active processor can be done using the 'cpu active N' command,
see example below. The Tcl cpu namespace exported by GRMON is also changed to point to the active CPU's
namespace, thus accessing cpu will be the same as accessing cpul if CPU1 isthe currently active CPU.

grnmon2> cpu

cpu 0: enabled active
cpu 1: enabl ed

grmon2> cpu act 1
grnmon2> cpu
cpu 0: enabl ed
cpu 1: enabled active
grmon2> cpu act 0O
grmon2> cpu dis 1
grnmon2> cpu
cpu 0: enabled active

cpu 1: disabled

grnon2> puts $cpu::fpu::fl
-1.984328031539917

grnon2> puts $cpu0::fpu::fl
-1.984328031539917

grnon2> puts $cpul::fpu::fl
2.3017966689845248e+18

NOTE: Non-MP software can still run on the first CPU unaffected of the additional CPUs since it is the target
software that is responsible for waking other CPUs. All processors are enabled by default.

Note that it is possible to debug M P systems using GDB, but the user are required to change CPU itself. GRMON
specific commands can be entered from GDB using the monitor command.

3.4.13. Stack and entry point

Thestack pointer islocated in %06 (%SP) register of SPARC CPUs. GRMON setsthe stack pointer before starting
the CPU with the run command. The address is auto-detected to end of main memory, however it is overridable
using the - st ack when starting GRMON or by issuing the stack command. Thus stack pointer can be used by
software to detect end of main memory.

The entry point (EP) determines at which address the CPU start its first instruction execution. The EP defaults to
main memory start and normally overridden by the load command when loading the application. ELF-files has
support for storing entry point. The entry point can manually be set with the ep command.

InaMP systemsif may be required to set EP and stack pointer individual per CPU, one can use the cpu command
in conjunction with ep and stack.

3.4.14. Memory Management Unit (MMU) support

The LEON optionally implements the reference MMU (SRMMU) described in the SPARCv8 specification. GR-
MON support viewing and changing the MMU registers through the DSU, using the mmu command. GRMON
also supports address translation by reading the MMU table from memory similar to the MMU. The walk com-
mand looks up one address by walking the MMU table printing out every step taken and the result. To simply
print out the result of such atrandation, use the va command.

GRMON2-UM 21 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

The memory commands that are prefixed with av work with virtual addresses, the addresses given are trandated
beforelisting or writing physical memory. If the MMU is not enabled, the vmem command for exampleisan alias
for mem. See Section 3.4.7, “ Displaying memory contents’ for more information.

NOTE: Many commands are affected by that the MMU is turned on, such as the disassemble command.

3.4.15. CPU cache support

The LEON optionally implements Level-1 instruction-cache and data-cache. GRMON supports the CPU's cache
by adopting certain operations depending on if the cache is activated or not. The user may also be able to access
the cache directly. Thisis however not normally needed, but may be useful when debugging or analyzing different
cache aspects. By default the L 1-cache is turned on by GRMON , the cctrl command can be used to change the
cache control register. The commandline switches - ni ¢ and - ndc disables instruction and data cache respec-
tively.

With theicache and dcache commandsit is possible to view and modify the current content of the cache or check
if the cache is consistent with the memory. Both caches can be flushed instantly using the commands cctr| flush.
The data cache can be flushed instantly using the commands dcache flush. The instruction cache can be flushed
instantly using the commands icache flush.

The GRLIB Level-2 cacheis supported using the |2cache command.
3.5. Tcl integration

GRMON has built-in support for Tcl 8.5. All commands lines entered in the termina will pass through a Tcl-
interpreter. Thisenablesloops, variables, procedures, scripts, arithmeticsand morefor the user. |.a. it also provides
an API for the user to extend GRMON.

3.5.1. Shells

GRMON creates several independent TCL shells, each with its own set of commands and variables. |.e. changing
active CPU in one shell does not affect any other shell. There are two shells available for the user by default: the
CLI shell and a GDB shell. The CLI shell is access from the termina and the GDB shell is accessed from GDB
by using the command mon. Thereis also a system shell running in the background that GRMON usesinternally.

Additional custom user shells can be created with the command usr sh. Each custom user shell has an associated
Tcl interpreter running in a separate execution thread.

3.5.2. Commands

There are two groups of commands, the native Tcl commands and GRMON's commands. |nformation about the
native Tcl commands and their syntax can be found at the Tcl website [http://www.tcl.tk/]. The GRMON com-
mands' syntax documentation can be found in Appendix B, Command syntax.

The commands have three types of output:

1. Standard output. GRMON's commands prints information to standard output. This information is often
structured in ahuman readable way and cannot be used by other commands. M ost of the GRMON commands
print some kind of information to the standard output, while very few of the Tcl commands does that.
Setting the variable : : gr non: : setti ngs: suppress_out put to 1 will ssop GRMON commands
from printing to the standard output, i.e. the TCL command putswill still print it'soutput. Itisalso possibleto
put the command silent in front of another GRMON command to suppress the output of a single command,
eg.grnon2> puts [expr [silent nem 0x40000000 4] + 4]

2. Return values. The return value from GRMON is seldom the same as the information that is printed to
standard output, it's often the important data in a raw format. Return values can be used as input to other
commands or to be saved in variables. All TCL commands and many GRMON commands have return
values. The return values from commands are normally not printed. To print the return value to standard
output one can use the Tcl command puts. |.a if the variable : : gr non: : setti ngs: echo_result
to 1, then GRMON will always print the result to stdout.

3. Return code. The return code from a command can be accessed by reading the variable er r or Code or
by using the Tcl command catch. Both Tcl and GRMON commands will have an error message as return

GRMON2-UM 22 www.cobham.com/gaisler
April 2018, Version 2.0.93

http://www.tcl.tk/
http://www.tcl.tk/

COBHAM

valueif it fails, which is also printed to standard output. More about error codes can be read about in the
Tcl tutoria or on the Tcler's Wiki [http://wiki.tcl.tk/].

For some of the GRMON commands it is possible to specify which core the commands is operation on. Thisis
implemented differently depending for each command, see the commands' syntax documentation in Appendix B,
Command syntax for more details. Some of these commands use a device name to specify which core to interact
with, see Appendix C, Tcl API for more information about device names.

3.5.3. API

It is possible to extend GRMON using Tcl. GRMON provides an API that makes it possible do write own device
drivers, implement hooks and to write advanced commands. See Appendix C, Tcl API for a detailed description
of the API.

3.6. Symbolic debug information

GRMON will automatically extract the symbol information from ELF-files, debug information is never read from
EL F-files. The symbols can be used to GRMON commands where an address is expected as below. Symbols are
tab completed.
grrmon2> | oad v8/stanford. exe

40000000 . text 54.8kB / 54.8kB [===============>] 100%

4000DB30 . data 2.9kB / 2.9kB [===============>] 100%
I mage / hone/ dani el / exanpl es/ v8/ st anf ord. exe | oaded

grnmon2> bp main
Sof tware breakpoint 1 at <main>

grmon2> dis strlen 5

0x40005b88: 808a2003 andcc %0, O0x3, %0 <strl en+0>
0x40005b8c: 12800012 bne 0x40005BD4 <strlen+4>
0x40005b90: 94100008 nov %0, %2 <strl en+8>
0x40005b94: 033fbfbf sethi 9%i (OxFEFEFCO0), %l <strlen+12>
0x40005b98: da020000 Id [%0], %5 <strl en+16>

The symbols command can be used to display all symbols, lookup the address of a symbol, or to read in symbols
from an alternate (ELF) file:

grmon2> synbol s | oad v8/stanford. exe

grmon2> synbol s | ookup main
Found address 0x40004070

grmon2> synbol s |ist

0x40005ab8 GLOBAL FUNC put char
0x4000b6ac GLOBAL FUNC _nprec_| ogl0
0x4000d9d0 GLOBAL OBJECT _ nprec_tinytens
0x4000bbe8 GLOBAL FUNC cl eanup_gl ue
0x4000abfc GLOBAL FUNC _hiObits
0x40005ad4 GLOBAL FUNC _puts_r
0x4000c310 GLOBAL FUNC _l seek_r
0x4000eaac GLOBAL OBJECT piecenax
0x4000laac GLOBAL FUNC Try

0x40003c6c GLOBAL FUNC Uni f or mi1

0x400059e8 GLOBAL FUNC printf

Reading symbolsfrom alternatefilesis necessary when debugging sel f-extracting applications (MK PROM), when
switching between virtual and physical address space (Linux) or when debugging a multi-core ASMP system
where each CPU has its own symbol table. It is recommended to clear old symbols with symbols clear before
switching symbol table, otherwise the new symbolswill be added to the old table.

3.6.1. Multi-processor symbolic debug information

When loading symbols into GRMON it is possible to associate them with a CPU. When all symbols/images are
associated with CPU index 0, then GRMON will assume its a single-core or SMP application and lookup all
symbols from the symbols table associated with CPU index 0.

If different CPU indexes are specified (by setting active CPU or adding cpu# argument to the commands) when
loading symbols/images, then GRMON will assume its an AMP application that has been loaded. GRMON will
use the current active CPU (or cpu# argument) to determine which CPU index to lookup symbols from.

GRMON2-UM 23 www.cobham.com/gaisler
April 2018, Version 2.0.93

http://wiki.tcl.tk/
http://wiki.tcl.tk/

COBHAM

grnmon2> cpu active 1

grmon2> synbols ../tests/threads/rtens-nmp2
Loaded 1630 synbol s

grmon2> bp _Thread_Handl er
Sof tware breakpoint 1 at <_Thread_Handl er >

grmon2> synbols ../tests/threads/rtenms-npl cpuO
Loaded 1630 synbol s

grmon2> bp _Thread_Handl er cpuO
Sof twar e breakpoint 2 at <_Thread_Handl er >

grmon2> bp
NUM ADRESS MASK TYPE CPU SYMBOL
1 : 0x40418408 (soft) 1 _Thread_Handl er +0
2 : 0x40019408 (soft) 0 _Thread_Handl er +0

3.7. GDB interface

This section describes the GDB interface support available in GRMON. Other tools that communicate over the
GDB protocol may also attach to GRMON, some tools such as Eclipse Workbench and DDD communicate with
GRMON via GDB.

GDB must be built for the SPARC architecture, a native PC GDB does not work together with GRMON. The
toolchains that Cobham Gaisler distributes comes with a patched and tested version of GDB targeting all SPARC
LEON development tools.

Please see the GDB documentation available from the official GDB homepage [http://www.gnu.org/soft-
ware/gdb/].

3.7.1. Connecting GDB to GRMON

GRMON can act asaremotetarget for GDB, allowing symbolic debugging of target applications. Toinitiate GDB
communications, start the monitor with the - gdb switch or use the GRMON gdb start command:

$ grnon -gdb
Started GDB service on port 2222.

grmon2> gdb status
CDB Service is waiting for incom ng connection
Port: 2222

Then, start GDB in a different window and connect to GRMON using the extended-remote protocol. By defaullt,
GRMON listens on port 2222 for the GDB connection:

(gdb) target extended-renote :2222
Renot e debuggi ng using : 2222

main () at stanford.c:1033

1033 {

(gdb) nonitor gdb status

GDB Service is running

Port: 2222

(gdb)
3.7.2. Executing GRMON commands from GDB

While GDB isattached to GRMON, most GRMON commands can be executed using the GDB monitor command.
Output from the GRMON commandsis then displayed in the GDB console like below. Some DSU commands are
naturally not available since they would conflict with GDB. All commands executed from GDB are executed in a
separate Tcl interpreter, thus variables created from GDB will not be available from the GRMON terminal.

(gdb) nonitor hist

TI ME ADDRESS I NSTRUCTI ONS/ AHB SI GNALS RESULT/ DATA
30046975 40003e20 AHB read nst=0 size=2 [9de3bf 90]
30046976 40005030 or %2, Ox1le0, %3 [40023de0]
30046980 40003e24 AHB read nst=0 size=2 [91d02001]
30046981 40005034 call 0x40003e20 [40005034]
30046985 40003628 AHB read nst=0 size=2 [b136201f]
30046990 40003e2c AHB read nBt=0 size=2 [f83fbff0]
GRMON2-UM 24 www.cobham.com/gaisler

April 2018, Version 2.0.93

http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/

COBHAM

30046995 40003e30 AHB read nst=0 size=2 [82040018]

30047000 40003e34 AHB read nst=0 size=2 [d11f bf f 0]

30047005 40003e38 AHB read nst=0 size=2 [92100019]

30047010 40003e3c AHB read net=0 size=2 [96100014a]
(gdb)

3.7.3. Running applications from GDB

To load and start an application, use the GDB load and run command.

$ sparc-rtens-gdb v8/stanford. exe

(gdb) target extended-renote :2222

Renot e debuggi ng usi ng : 2222

main () at stanford.c: 1033

1033 {

(gdb) | oad

Loadi ng section .text, size 0xdb30 | nma 0x40000000
Loadi ng section .data, size 0xb78 | ma 0x4000db30

Start address 0x40000000, |oad size 59048

Transfer rate: 18 KB/ sec, 757 bytes/wite.

(gdb) b nmain

Breakpoi nt 1 at 0x40004074: file stanford.c, |ine 1033
(gdb) run

The program bei ng debugged has been started al ready.
Start it fromthe beginning? (y or n) y

Starting program /hone/ dani el /exanpl es/v8/stanford. exe

Breakpoint 1, main () at stanford.c: 1033

1033 {

(gdb) list

1028 /* Printconplex(6, 99, z, 1, 256, 17); */
1029 ;

1030 } /* oscar */

1031

1032 main ()

1033 {

1034 int i;

1035 fixed = 0.0;

1036 floated = 0.0;

1037 printf ("Starting \n")
(gdb)

To interrupt execution, Ctrl-C can be typed in GDB terminal (similar to GRMON). The program can be restarted
using the GDB run command but the program image needs to be rel oaded first using theload command. Software
trap 1 (TA 0x1) isused by GDB to insert breakpoints and should not be used by the application.

GRMON tranglates SPARC trapsinto (UNIX) signalswhich are properly communicated to GDB. If the application
encounters a fatal trap, execution will be stopped exactly before the failing instruction. The target memory and
register values can then be examined in GDB to determine the error cause.

GRMON implements the GDB breakpoint and watchpoint interface and makes sure that memory and cache are
synchronized.

3.7.4. Running SMP applications from GDB

If GRMON isrunning on the same computer asGDB, or if the executableisavailable ontheremote computer that is
running GRMON, it isrecommended to issue the GDB command set remote exec-file <remote-file-path>. After
this has been set, GRMON will automatically load the file, and symbols if available, when the GDB command
run isissued.

$ sparc-rtens-gdb /opt/rtens-4.11/src/rtenms-4.11/testsuites/libtests/ticker/ticker.exe

GNU gdb 6.8.0.20090916- cvs

Copyright (C) 2008 Free Software Foundation, Inc

Li cense GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.htnl>

This is free software: you are free to change and redistribute it

There is NO WARRANTY, to the extent permitted by law. Type "show copyi ng"

and "show warranty" for details.

This GDB was configured as "--host=i 686-pc-linux-gnu --target=sparc-rtems"..

(gdb) target extended-renote :2222

Renot e debuggi ng using : 2222

0x00000000 in ?? ()

(gdb) set renpte exec-file /opt/rtems-4.11/src/rtenms-4.11/testsuites/|ibtests/ticker/ticker.exe
(gdb) break Init

Breakpoint 1 at 0x40001318: file ../../../../../1eon3snp/lib/include/rtens/score/thread.h, line 627
(gdb) run

The program bei ng debugged has been started already.

GRMON2-UM 25 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

Start it fromthe beginning? (y or n) y
Starting program /opt/rtenms-4.11/src/rtenms-4.11/testsuites/|ibtests/ticker/ticker.exe

If the executable is not available on the remote computer where GRMON is running, then the GDB command
load can be used to load the software to the target system. In addition the entry points for all CPU's, except the
first, must be set manually using the GRMON ep before starting the application.

$ sparc-rtems-gdb /opt/rtems-4.11/src/rtenms-4.11/testsuites/libtests/ticker/ticker.exe
GNU gdb 6.8.0.20090916- cvs
Copyright (C) 2008 Free Software Foundation, Inc.
Li cense GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.htm >
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permtted by law. Type "show copyi ng"
and "show warranty" for details.
This GDB was configured as "--host=i 686-pc-1linux-gnu --target=sparc-rtenms"...
(gdb) target extended-renote :2222
Renot e debuggi ng using : 2222
trap_table () at /opt/rtens-4.11/src/rtens-4.11/c/src/lib/libbsp/sparc/leon3/../../sparc/shared/start
/start.S: 69
69 /opt/rtems-4.11/src/rtems-4.11/c/src/lib/libbsp/sparc/leon3/../../sparc/shared/start/start.S: No
such file or directory.
in /opt/rtems-4.11/src/rtems-4.11/c/src/lib/libbsp/sparc/leon3/../../sparc/shared/start/start.S
Current |anguage: auto; currently asm
(gdb) | oad
Loadi ng section .text, size OxlaedO | ma 0x40000000
Loadi ng section .data, size 0x5b0 | ma 0x400laedO
Start address 0x40000000, |oad size 111744
Transfer rate: 138 KB/ sec, 765 bytes/wite.
(gdb) non ep $cpu::iu::pc cpul
(gdb) non ep $cpu::iu::pc cpu2
(gdb) non ep $cpu::iu::pc cpud
Cpu 1 entry point: 0x40000000
(gdb) run
The program bei ng debugged has been started al ready.
Start it fromthe beginning? (y or n) y
Starting program /opt/rtems-4.11/src/rtems-4.11/testsuites/|ibtests/ticker/ticker.exe

3.7.5. Running AMP applications from GDB

If GRMON is running on the same computer as GDB, or if the executables are available on the remote computer
that isrunning GRMON, it isrecommended to issuethe GDB command set r emote exec-file <remote-file-path>.
Whenthisisset, GRMON will automatically load thefile,and symbolsif available, whenthe GDB commandrunis
issued. The second application needsto be loaded into GRMON using the GRMON command load <remote-file-
path> cpul. In addition the stacks must also be set manually in GRMON using the command stack <address>
cpu# for both CPUs.

$ sparc-rtens-gdb /opt/rtens-4. 10/ src/sanpl es/rtens-npl
GNU gdb 6.8.0.20090916- cvs
Copyright (C) 2008 Free Software Foundation, Inc.
Li cense GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.htm >
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "--host=i 686-pc-|inux-gnu --target=sparc-rtems"...
(gdb) target extended-renote :2222
Renot e debuggi ng using : 2222
(gdb) set renpte exec-file /opt/rtens-4.10/src/sanples/rtens-nmpl
(gdb) non stack 0x403fff00 cpu0
CPU 0 stack pointer: 0x403fff00
(gdb) non load /opt/rtemnms-4.10/src/sanples/rtenms-nmp2 cpul
Total size: 177.33kB (1.17Mit/s)
Entry point 0x40400000
I mage /opt/rtens-4. 10/ src/ sanpl es/rtens-np2 | oaded
(gdb) non stack 0x407fff00 cpul
CPU 1 stack pointer: 0x407fff00
(gdb) run
Starting program /opt/rtens-4.10/src/sanples/rtenms-npl
NODE[0] : is Up!
NODE[0] : Waiting for Semaphore A to be created (0x53454d41)
NODE[0] : Waiting for Semaphore B to be created (0x53454d42)
NODE[0] : Waiting for Task A to be created (0x54534b41)
AC[New Thread 151060481]

Program recei ved signal SIG NT, Interrupt.

[Switching to Thread 151060481]

pwdl oop () at /opt/rtens-4.10/src/rtenms-4.10/c/src/lib/libbsp/sparc/leon3/startup/bspidle.S:26
warni ng: Source file is nore recent than executable.

26 retl

GRMON2-UM 26 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

Current |anguage: auto; currently asm
(gdb)

If the executable is not available on the remote computer where GRMON is running, then the GDB command file
and load can be used to load the software to the target system. Use the GRMON command cpu act <num> before
issuing the GDB command load to specify which CPU isthe target for the software being loaded. In addition the
stacks must also be set manually in GRMON using the command stack <address> cpu# for both CPUs.

$ sparc-rtens-gdb

GNU gdb 6.8.0.20090916- cvs

Copyright (C) 2008 Free Software Foundation, Inc.

Li cense GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.htm >
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "--host=i 686-pc-1inux-gnu --target=sparc-rtenms".
(gdb) target extended-renote :2222

Renot e debuggi ng using : 2222

0x40000000 in ?? ()

(gdb) file /opt/rtemnms-4.10/src/sanples/rtens-nmp2

A programis being debugged al ready.

Are you sure you want to change the file? (y or n) y

Readi ng synbols from/opt/rtens-4.10/src/sanpl es/rtens-np2...done.

(gdb) non cpu act 1

(gdb) | oad

Loadi ng section .text, size 0x2b3e0 | na 0x40400000

Loadi ng section .data, size 0x1170 | nma 0x4042b3e0

Loadi ng section .jcr, size 0x4 | ma 0x4042c¢550

Start address 0x40400000, |oad size 181588

Transfer rate: 115 KB/ sec, 759 bytes/wite.

(gdb) file /opt/rtems-4.10/src/sanples/rtenms-nmpl

A programis being debugged al ready.

Are you sure you want to change the file? (y or n) y

Load new synbol table from"/opt/rtens-4.10/src/sanples/rtems-npl"? (y or n) y
Readi ng synbols from/opt/rtemns-4.10/src/sanpl es/rtens-npl...done.
(gdb) non cpu act 0O

(gdb) | oad

Loadi ng section .text, size 0x2b3e0 | na 0x40001000

Loadi ng section .data, size 0x1170 | ma 0x4002c3e0

Loadi ng section .jcr, size Ox4 | ma 0x4002d550

Start address 0x40001000, |oad size 181588

Transfer rate: 117 KB/ sec, 759 bytes/wite.

(gdb) non stack 0x407fff00 cpul

CPU 1 stack pointer: 0x407fff00

(gdb) non stack 0x403fff00 cpu0

CPU 0 stack pointer: 0x403fff00

(gdb) run

The program bei ng debugged has been started al ready.

Start it fromthe beginning? (y or n) y

Starting program /opt/rtens-4.10/src/sanples/sanples/rtenms-npl

3.7.6. GDB Thread support

GDB is capable of listing a operating system's threads, however it relies on GRMON to implement low-level
thread access. GDB normally fetches the threading information on every stop, for example after a breakpoint is
reached or between single-stepping stops. GRMON have to access the memory rather many timesto retrieve the
information, GRMON. See Section 3.8, “Thread support” for more information.

Start GRMON with the - not hr eads switch to disable threads in GRMON and thusin GDB too.

Note that GRMON must have access to the symbol table of the operating system so that the thread structures of
the target OS can be found. The symbol table can be loaded from GDB by one must bear in mind that the path is
relative to where GRMON has been started. If GDB is connected to GRMON over the network one must make
the symbol file available on the remote computer running GRMON.

(gdb) non puts [pwd]

/ home/ dani el

(gdb) pwd

Working directory /hone/daniel.

(gdb) non symload /opt/rtens-4.10/src/sanples/rtens-hello
(gdb) non sym

0x00016910 GLOBAL FUNC infs_dir_lseek
0x00021f 00 GLOBAL OBJECT Device_drivers
0x0001c6b4 GLOBAL FUNC _nprec_| og10
GRMON2-UM 27 www.cobham.com/gaisler

April 2018, Version 2.0.93

COBHAM

When a program running in GDB stops GRMON reports which thread it isin. The command info threads can be
used in GDB to list al known threads, thread N to switch to thread N and bt to list the backtrace of the selected
thread.

Program recei ved signal SIG NT, Interrupt.
[Switching to Thread 167837703]

0x40001b5c in consol e_outbyte_polled (port=0, ch=113 “q°) at rtens/.../|eon3/consol e/ debugputs. c: 38
38 whi |l e ((LEON3_Consol e_Uart [LEON3_Cpu_I ndex+port]->status & LEON REG UART_STATUS_THE) == 0);

(gdb) info threads

Thread 167837702 (FTPD Wevnt) 0x4002f 760 i
Thread 167837701 (FTPa Wevnt) 0x4002f 760 i
Thread 167837700 (DCtx Wevnt) 0x4002f 760 i
Thread 167837699 (DCrx Wevnt) 0x4002f 760 i
Thread 167837698 (ntwk ready) 0x4002f 760 i

_Thread_Dispatch () at rtens/.../threaddi spatch.c: 109
_Thread_bDispatch () at rtens/.../threaddi spatch.c: 109
_Thread_bDispatch () at rtens/.../threaddi spatch.c: 109
_Thread_bDi spatch () at rtens/.../threaddi spatch.c: 109
_Thread_bDispatch () at rtens/.../threaddi spatch.c: 109
Thread 167837697 (U1 ready) 0x4002f760 in _Thread_Dispatch () at rtens/.../threaddispatch.c: 109
Thread 151060481 (Int. ready) 0x4002f760 in _Thread_Dispatch () at rtens/.../threaddi spatch.c: 109
Thread 167837703 (HTPD ready) 0x40001b5c in consol e_outbyte_polled (port=0, ch=113 “q°)

at ../../../rtems/c/src/lib/libbsp/sparc/l|eon3/consol e/ debugputs.c: 38

(gdb) thread 8

PNWAOOON©
5D 3 33333

[Switching to thread 8 (Thread 167837702)]#0 0x4002f 760 in _Thread_Di spatch ()
at rtens/.../threaddi spatch.c: 109

109 _Context_Switch(&executing->Registers, &heir->Registers);

(gdb) bt

#0 0x4002f 760 in _Thread_Di spatch () at rtens/cpukit/score/src/threaddi spatch.c: 109
#1 0x40013ee0 in rtens_event _recei ve(event _i n=33554432, option_set=0, ticks=0, event_out=0x43feccl4)
at ../../../../1eon3/lib/include/rtens/score/thread.inl:205
#2 0x4002782c in rtens_bsdnet _event _receive (event_i n=33554432, option_set=2, ticks=0
event _out =0x43feccl14) at rtens/cpukit/libnetworking/rtems/rtenms_glue.c: 641
#3 0x40027548 in soconnsl eep (so0=0x43f0cd70) at rtens/cpukit/libnetworking/rtens/rtens_glue.c: 465
#4 0x40029118 in accept (s=3, nane=0x43feccf0, nanel en=0x43feccec) at rtens/.../rtens_syscall.c:215
#5 0x40004028 in daenon () at rtens/c/src/libnetworking/rtens_servers/ftpd.c: 1925
#6 0x40053388 in _Thread_Handler () at rtens/cpukit/score/src/threadhandl er.c: 123
#7 0x40053270 in __res_nkquery (op=0, dnane=0x0, class=0, type=0, data=0x0, datal en=0, new r_i n=0x0,
buf =0x0, bufl en=0)
at ../rtens/cpukit/libnetworking/libc/res_nkquery.c: 199
#8 0x00000008 in ?? ()
#9 0x00000008 in ?? ()
Previous frame identical to this frame (corrupt stack?)

In comparison to GRMON the frame command in GDB can be used to select aindividua stack frame. One can
also step between frames by issuing the up or down commands. The CPU registers can be listed using the info
registers command. Note that the info registers command only can see the following registers for an inactive
task: g0-g7, 10-17, i0-i7, 00-07, PC and PSR. The other registers will be displayed as O:

gdb) frame 5

#5 0x40004028 in daenon () at rtens/.../rtems_servers/ftpd.c: 1925
1925 ss = accept(s, (struct sockaddr *)&addr, &addrLen);

(gdb) info reg

g0 0x0 0

gl 0x0 0

g2 Oxffffffff -1

g3 0x0 0

g4 0x0 0

g5 0x0 0

g6 0x0 0

a7 0x0 0

00 0x3 3

ol 0x43feccf0 1140772080
02 0x43f eccec 1140772076
o3 0x0 0

04 0xf 34000e4 -213909276
o5 0x4007cc00 1074252800
sp 0x43fecc88 0x43f ecc88
o7 0x40004020 1073758240
10 0x4007ce88 1074253448
11 0x4007ce88 1074253448
12 0x400048f c 1073760508
13 0x43feccf0 1140772080
| 4 0x3 3

15 Ox1 1

16 0x0 0

GRMON2-UM 28 www.cobham.com/gaisler

April 2018, Version 2.0.93

COBHAM

17 0x0 0

i0 0x0 0

i1l 0x40003f 94 1073758100

i2 0x0 0

i3 0x43f faf c8 1140830152

i4 0x0 0

i5 0x4007cd40 1074253120

fp 0x43f ecd08 0x43f ecd08

i7 0x40053380 1074082688

y 0x0 0

psr 0xf 34000e0 - 213909280

w m 0x0 0

tbr 0x0 0

pc 0x40004028 0x40004028 <daenopn+148>
npc 0x4000402c 0x4000402c <daenobn+152>
fsr 0x0 0

csr 0x0 0

NOTE: It is not supported to set thread specific breakpoints. All breakpoints are global and stops the execution
of al threads. It is not possible to change the value of registers other than those of the current thread.

3.7.7. Virtual memory

Thereis no way for GRMON to determine if an address sent from GDB is physical or virtual. If an MMU unit is
present in the system and it is enabled, then GRMON will assume that all addresses are virtual and try to translate
them. When debugging an application that uses the MMU one typically have an image with physical addresses
used to load data into the memory and a second image with debug-symbols of virtual addresses. It is therefore
important to make sure that the MMU is enabl ed/disabled when each image is used.

The example below will show atypical case on how to handle virtual and physical addresses when debugging with
GDB. The application being debugged is Linux and it consists of two different images created with Linuxbuild.
Thefilei mage. r amcontains physical addresses and a small loader, that among others configures the MMU,
whilethefilei nage contains all the debug-symbolsin virtual address-space.

First start GRMON and start the GDB server.

$ grnon -nb -gdb

Then start GDB in a second shell, load both filesinto GDB, connect to GRMON and then upload the application
into the system. The addresses will be interpreted as physical since the MMU is disabled when GRMON starts.

$ sparc-|inux-gdb

G\U gdb 6.8.0.20090916- cvs

Copyright (C) 2008 Free Software Foundation, Inc.

Li cense GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.htm >
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permtted by law. Type "show copyi ng"

and "show warranty" for details.

This CGDB was configured as "--host=i 686-pc-1linux-gnu --target=sparc-|inux".

(gdb) file output/images/imge.ram

Readi ng synbol s from/home/user/|inuxbuild-1.0.2/output/imges/imge.ram..(no d
ebuggi ng synbol s found). .. done.

(gdb) synbol -file output/imges/imge

Readi ng synbol s from/home/user/|inuxbuild-1.0.2/output/imges/imge...done.
(gdb) target extended-renote :2222

Renot e debuggi ng using : 2222

t_tflt () at /hone/user/Ilinuxbuild-1.0.2/1inux/linux-2.6-git/arch/sparc/kernel/h

ead_32. S: 88

88 t_tflt: SPARC_TFAULT /* Inst. Access Exception
*/

Current |anguage: auto; currently asm

(gdb) | oad

Loadi ng section .text, size 0x10bO | ma 0x40000000

Loadi ng section .data, size 0x50 | ma 0x400010b0

Loadi ng section .vminux, size 0x3f1a60 | ma 0x40004000
Loadi ng section .startup_prom size 0x7ee0 | ma 0x403f5a60
Start address 0x40000000, |oad size 4172352

Transfer rate: 18 KB/ sec, 765 bytes/wite.

The program must reach a state where the MMU is enabled before any virtual address can be translated. Software
breakpoints cannot be used since the MMU is still disabled and GRMON won't translate them into a physical.
Hardware breakpoints don't need to be translated into physical addresses, therefore set a hardware assisted break-
point at 0xf0004000, which isthe virtual start address for the Linux kernel.

GRMON2-UM 29 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

(gdb) hbreak *0xf 0004000

Har dwar e assi sted breakpoint 1 at Oxf0004000: file /home/user/linuxbuild-1.0.2/]
i nux/1inux-2.6-git/arch/sparc/kernel/head_32.S, |ine 87.

(gdb) cont

Cont i nui ng.

Breakpoi nt 1, trapbase_cpuO () at /home/user/linuxbuild-1.0.2/1inux/linux-2.6-gi
t/arch/ sparc/kernel / head_32. S: 87
87 t_zero: b gokernel; nop; nop; nop;

At this point the loader has enabled the MMU and both software breakpoints and symbols can be used.

(gdb) break leon_init_tiners
Breakpoint 2 at Oxf03cffl14: file /hone/user/linuxbuild-1.0.2/1inux/linux-2.6-git
| arch/ sparc/ kernel /|l eon_kernel.c, line 116.

(gdb) cont
Cont i nui ng.

Breakpoint 2, leon_init_tiners (counter_fn=0xf00180c8 <timer_interrupt>)
at /home/user/1inuxbuild-1.0.2/1inux/linux-2.6-git/arch/sparc/kernel/leon_ke
rnel.c: 116
116 |eondebug_irqg_di sable = 0;
Current |anguage: auto; currently c
(gdb) bt
#0 leon_init_tiners (counter_fn=0xf00180c8 <ti mer_interrupt>)
at /home/user/1inuxbuild-1.0.2/1inux/linux-2.6-git/arch/sparc/kernel/leon_ke
rnel.c: 116
#1 Oxf03ce944 in tine_init () at /honme/user/linuxbuild-1.0.2/1inux/linux-2.6-gi
t/arch/ sparc/ kernel /tine_32.c: 227
#2 Oxf03ccl3c in start_kernel () at /hone/user/linuxbuild-1.0.2/1inux/linux-2.6
-git/init/main.c:619
#3 Oxf03cb804 in sun4c_conti nue_boot ()
#4 0xf03cb804 in sun4c_conti nue_boot ()
Backtrace stopped: previous frane identical to this frane (corrupt stack?)
(gdb) info locals
eirq = <val ue optim zed out>
rootnp = <val ue optim zed out>
np = <val ue optim zed out>
pp = <val ue optim zed out>
len = 13
anmpopts = <val ue optim zed out>
(gdb) print len
$2 = 13

If the application for some reason need to be reloaded, then the MMU must first be disabled via GRMON. In
addition all software breakpoints should be deleted before the application is restarted since the MMU has been
disabled and GRMON won't translate virtual addresses anymore.

(gdb) nmon mmu nctrl O

nctrl: O06E0000 ctx: 00000000 ctxptr: 40440800 fsr: 00000000 far: 00000000
(gdb) | oad

Loadi ng section .text, size 0x10bO | ma 0x40000000

Loadi ng section .data, size 0x50 | ma 0x400010b0

Loadi ng section .vnlinux, size 0x3f1a60 | ma 0x40004000

Loadi ng section .startup_prom size 0x7ee0 | ma 0x403f5a60

Start address 0x40000000, |oad size 4172352

Transfer rate: 18 KB/ sec, 765 bytes/wite.

(gdb) delete

Del ete all breakpoints? (y or n) y

(gdb) hbreak *0xf 0004000

Har dwar e assi sted breakpoint 3 at Oxf0004000: file /home/user/linuxbuild-1.0.2/]
i nux/1inux-2.6-git/arch/sparc/kernel/head_32.S, |ine 87.

(gdb) run

The program bei ng debugged has been started al ready.

Start it fromthe beginning? (y or n) y

Starting program /hore/user/|inuxbuild-1.0.2/output/inmages/inmage.ram

Breakpoi nt 3, trapbase_cpuO () at /home/user/linuxbuild-1.0.2/1inux/linux-2.6-gi
t/arch/ sparc/kernel / head_32. S: 87

87 t_zero: b gokernel; nop; nop; nop;

Current |anguage: auto; currently asm

(gdb) break leon_init_tiners

Breakpoint 4 at Oxf03cffl1l4: file /hone/user/linuxbuild-1.0.2/1inux/linux-2.6-git
| arch/ sparc/ kernel /| eon_kernel.c, line 116.

(gdb) cont

Cont i nui ng.

Breakpoint 4, leon_init_tiners (counter_fn=0xf00180c8 <timer_interrupt>)
at /home/user/1inuxbuild-1.0.2/1inux/linux-2.6-git/arch/sparc/kernel/leon_ke
rnel.c: 116

GRMON2-UM 30 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

116 |eondebug_irqg_di sable = 0;
Current |anguage: auto; currently c

3.7.8. Specific GDB optimization

GRMON detects GDB access to register window frames in memory which are not yet flushed and only reside
in the processor register file. When such a memory location is read, GRMON will read the correct value from
the register file instead of the memory. This allows GDB to form a function trace-back without any (intrusive)
modification of memory. This feature is disabled during debugging of code where traps are disabled, since no
valid stack frame exist at that point.

To avoid a huge number of cache-flushes GRMON auto-detects when GDB loads a hew application to memory,
this approach however requires the user to restart the application after loading a file. Thus, loading files during
run-time may not work as expected.

3.7.9. Limitations of GDB interface

GDB must be built for the SPARC architecture, a native PC GDB does not work together with GRMON. The
toolchains that Cobham Gaidler distributes comes with a patched and tested version of GDB targeting all SPARC
LEON development tools.

Do not use the GDB wher e commandsin parts of an application where traps are disabled (e.g.trap handlers). Since
the stack pointer isnot valid at this point, GDB might go into an infinite loop trying to unwind false stack frames.
The thread support might not work either in some trap handler cases.

The step instruction commands si or stepi are implemented by GDB inserting software breakpoints through GR-
MON. Thisis an approach that is not possible when debugging in read-only memory such as boot sequences ex-
ecuted in PROM/FLASH. One can instead use hardware breakpoints using the GDB command hbreak manually.

3.8. Thread support

GRMON hasthread support for some operating systems show below. Thethread information is accessed using the
GRMON thread command. The GDB interface of GRMON is also thread aware and the related GDB commands
are described in the GDB documentation and in Section 3.7.6, “GDB Thread support”.

Supported operative systems

¢« RTEMS

*« VXWORKS
* eCos

* Bare-meta

GRMON needs the symbolic information of the image that is being debugged in order to retrieve the addresses of
the thread information. Therefore the symbols of the OS must be loaded automatically by the ELF-loader using
load or manually by using the symbols command. GRMON will traverse the thread structures located in the
target's memory when the thread command is issued (and on GDB's request). Bare-metal threads will be used
as afallback if no OS threads can be found. In addition the startup switch - bnt hr eads can be used to force
bare-metal threads.

The target's thread structures are never changed, and they are never accessed unless the thread command is exe-
cuted. Starting GRMON with the - not hr eads switch disables the thread support in GRMON and thusin GDB
too.

During debugging sessionsiit can help the developer alot to view all threads, their stack traces and their statesto
understand what is happening in the system.

3.8.1. GRMON thread commands

thread info lists al threads currently available in the operating system. The currently running thread is marked
with an asterisk.

grnon> thread info

GRMON2-UM 31 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

Nane | Type | Id | Prio | Ticks | Entry point | PC | State
int. | internal | 0x09010001 | 255 | 138 | _CPU Thread Idie_body | 0x4002{760 | READY
U1 | classic | 0x0a010001 | 120 | 200 | Init | 0x4002760 | READY
Cntwk | classic | 0x0a010002 | 100 | 11 | rtems_bsdnet_schedneti | 0x4002{760 | READY
DOx | classic | 0x0a010003 | 100 | 2 | rtems_bsdnet_schedneti | Ox4002(760 | Wevnt
Dax | classic | 0x0a010004 | 100 | 4| rtems_bsdnet_schedneti | Ox4002(760 | Wevnt
" FTPa | classic | 0x0a010005 | 10 | 1| split_commnd | 0x40021760 | Vevnt
FTPD | classic | 0x0a010006 | 10 | 1| split_commnd | 0x40021760 | Vevnt
« HIPD | classic | 0x0a010007 | 40| 79 | rtems_initialize webse | 0x40001b60 | READY

thread bt ?id? lists the stack back trace. bt lists the back trace of the currently executing thread as usual.
grmon> thread bt 0x0a010003

%pc
#0 0x4002f 760 _Thread_Di spatch + Ox1llc
#1 0x40013ed8 rtenms_event _recei ve + 0x88
#2 0x40027824 rtems_bsdnet _event _receive + 0x18
#3 0x4000b664 websFoot er + 0x484
#4 0x40027708 rtems_bsdnet _schednetisr + 0x158

A backtrace of the current thread (equivalent to the bt command):
grmon> thread bt 0x0a010007

%pc Y%sp
#0 0x40001b60 0x43f eal30 consol e_outbyte_pol |l ed + 0x34
#1 0x400017f ¢ 0x43f eal30 consol e_wite_support + 0x18
#2 0x4002dde8 0x43f eal98 rtems_term os_puts + 0x128
#3 0x4002df 60 0x43f ea200 rtems_term os_puts + 0x2a0
#4 0x4002df e8 0x43f ea270 rtems_termos_wite + 0x70
#5 0x400180a4 0x43f ea2d8 rtems_io_wite + 0x48
#6 0x4004eb98 0x43f ea340 device_wite + 0x2c
#7 0x40036ee4 0x43f ea3cO wite + 0x90
#8 0x4001118c 0x43f ead28 trace + 0x38
#9 0x4000518c 0x43f ead498 websQpenLi sten + 0x108
#10 0x40004f b4 0x43f ea500 websQOpenServer + 0xcO
#11 0x40004b0c 0x43f eab78 rtems_initialize_webserver + 0x204
#12 0x40004978 0x43f ea770 rtems_initialize_webserver + 0x70
#13 0x40053380 0x43f ea7d8 _Thread_Handl er + 0x10c
#14 0x40053268 0x43fea840 __res_nkquery + 0x2c8

3.9. Forwarding application console 1/0

If GRMON is started with -u [N] (N defaults to zero - the first UART), the LEON UART[N] is placed in
FIFO debug mode or in loop-back mode. Debug mode was added in GRLIB 1.0.17-b2710 and is reported by info
sysin GRMON as "DSU mode (FIFO debug)", older hardware is still supported using loop-back mode. In both
modes flow-control is enabled. Both in loop-back mode and in FIFO debug mode the UART is polled regularly
by GRMON during execution of an application and all console output is printed on the GRMON console. When
- U is used thereis no point in connecting a separate terminal to UART1.

In addition it is possible to enable or disable UART forwarding using the command forward. Optionaly it isalso
possible to forward the 1/0 to a custom TCL channel using this command.

With FIFO debug mode it is also possible to enter text in GRMON which is inserted into the UART receive
FIFO. Theseinsertionswill trigger interruptsif receiver FIFO interrupts are enabled. This makesit possibleto use
GRMON as aterminal when running an interrupt-driven O/S such as Linux or VxWorks.

Thefollowing restrictions must be met by the application to support either loop-back mode or FIFO debug mode:
1. The UART control register must not be modified such that neither loop-back nor FIFO debug mode is
disabled
2. Inloop-back mode the UART data register must not be read
This means that - u cannot be used with PROM images created by MKPROM. Also loop-back mode can not be
used in kernels using interrupt driven UART consoles (e.g. Linux, VxWorks).

GRMON2-UM 32 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

NOTE: RXVT must be disabled for debug mode to work in a MSY S console on Windows. This can be done
by deleting or renaming the filer xvt . exe inside the bin directory, e.g., C. \ nsys\ 1. O\ bi n. Starting with
MSY S-1.0.11 thiswill be the defaullt.

3.9.1. UART debug mode

When the application is running with UART debug mode enabled the following key sequences will be available.
The sequences can be used to adjust the input to what the target system expects.

Ctrl+A B - Toggle delete to backspace conversion

Ctrl+A C - Send break (Ctrl+C) to the running application
Ctrl+A D - Toggle backspace to delete conversion

Ctrl+A E - Toggle local echo on/off

Ctrl+A H - Show a help message

Ctrl+A N - Enable/disable newline insertion on carriage return
Ctrl+A S - Show current settings

Ctrl+A Z - Send suspend (Ctrl+Z) to the running application

3.10. EDAC protection

3.10.1. Using EDAC protected memory

Some LEON Fault-Tolerant (FT) systems use EDAC protected memory. To enable the memory EDAC during ex-
ecution, GRMON should be started with the - edac switch. Before any application isloaded, the wash command
might beissued to write all RAM memory locations and thereby initialize the EDAC check-sums. If aLEON CPU
is present in the system GRMON will instruct the CPU to clear memory, clearing memory on a CPU-less system
over aslow debug-link can be very time consuming.
$ grnon -edac
gr ﬁon2> wash

40000000 8. 0MB / 8. OMB [===============>] 100%

60000000 256. 0MB / 256. 0MB [===============>] 100%

Fi ni shed washi ng!
By default wash writesto all EDAC protected writable memory (SRAM, SDRAM, DDR, etc.) areas which has
been detected or forced with a command line switch. start and stop parameters can a so be given to wash arange.
Washing memory with EDAC disabled will not generate check bits, however it can be used to clear or set amemory
region even if the memory controller does not implement EDAC.
grnon2> wash 0x40000000 0x41000000

40000000 16.0MB / 16.0MB [===============>] 100%

Fi ni shed washi ng!
If the memory controller has support for EDAC with 8-bhit wide SRAM memory, the upper part of the memory
will consist of check hits. In this case the wash will only write to the data area (the check bits will automatically
be written by the memory controller). The amount of memory written will be displayed in GRMON.

GRMON will not automatically write the check bits for flash PROMs. For 8-bit flash PROMS, the check bits can
be generated by the mkprom2 utility and included in the image. But for 32-bit flash PROMs the check bits must
be written by the user viathe TCB field in MCFG3.

3.10.2. LEONS-FT error injection

All RAM blocks (cache and register-file memory) in LEON3-FT are Single Event Upset (SEU) protected. Error
injection function emulates SEU in LEON3-FT memory blocks and |ets the user test the fault-tol erant operation of
LEONS3-FT by inserting random bit errorsin LEON3-FT memory blocks during program execution. An injected
error flips a randomly chosen memory bit in one of the memory blocks, effectively emulating a SEU. The user
defines error rate and can choose between two error distribution modes:
1. Uniformerror distribution mode. The'el un NR T' command instructs GRMON toinsert NRerrorsduring
the time period of T minutes. After T minutes has expired no more errors are inserted, but the application
will continue its execution.

GRMON2-UM 33 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

2. Averageerror rate mode. With the'ei av R' command the user selects at which rate errors are injected.
Averageerror rateisRerrors per second. Randomly generated noiseisadded to every error injection sample.
The time between two samples vary between zero up to two periods depending on the noise, where one
period is 1/R seconds. Errors are inserted during the whole program execution.

GRMON can aso perform error correction monitoring and report error injection statistics including number of
detected and injected errors and error coverage, see ei command reference.

Error injection is performed during the run-loop of GRMON, to improve the performance and accuracy other
services in the run-loop should be disabled. For example profiling and UART tunneling should be disabled, and
one should select the fastest debug-link.

grnon> | oad rtens-tasks
40000000, .text 113.9kB / 113. 9kB
4001c7a0, .data 2.7kB / 2.7kB
Total size: 116.56kB (786.00kbit/s)
Entry poi nt 0x40000000
I mage / hone/ dani el / exanpl es/ v8/ st anford. exe | oaded

===>] 100%
===>] 100%

grnon> ei un 100 1
Error injection enabled
100 errors will be injected during 1.0 mn

grnon> ei stat en
Error injection statistics enabl ed

grnon> run

grnon> ei stat

itag 5/ 5 (100. 09 i dat a: 5/ 18 (27.8%
dtag : 1/ 1 (100.0% ddat a: 4/ 22 (18.2%
U RF : 4/ 10 (25.09%

FPU RF: o/ 4 (0.0%

Total : 19/ 60 (31.79%

gr non>

NOTE: Therea time elapsed is always greater than LEON CPU experienced since the LEON is stopped during
error injection. Times and rates given to GRMON are relative the experienced time of the LEON. The time the
LEON is stopped is taken into account by GRMON, however minor differencesisto be expected.

3.11. FLASH programming
3.11.1. CFl compatible Flash PROM

GRMON supports programming of CFl compatible flash PROMs attached to the external memory bus, through the
flash command. Flash programming is only supported if the target system contains one of the following memory
controllers MCTRL, FTMCTRL, FTSRCTRL or SSRCTRL. The PROM bus width can be 8-, 16- or 32-bit. It is
imperative that the PROM width in the MCFGL1 register correctly reflects the width of the external PROM.

To program 8-bit and 16-bit PROMs, GRMON must be ableto do byte (or half-word) accessesto thetarget system.
To support this either connect with a JTAG debug link or have at least one working SRAM/SDRAM bank and
aCPU available in the target system.

There are many different suppliers of CFl devices, and some implements their own command set. The command
set is specified by the CFI query register 14 (MSB) and 13 (LSB). The value for these register can in most cases
be found in the datasheet of the CFl device. GRMON supports the command sets that are listed in Table 3.3,
“Supported CFI command set”.

Table 3.3. Supported CFI command set

Q13 Q14 Description

0x01 0x00 Intel/Sharp Extended Command Set
0x02 0x00 AMD/Fujitsu Standard Command Set
0x03 0x00 Intel Standard Command Set

GRMON2-UM 34 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

Q13 Q14 Description
0x00 0x02 Intel Performance Code Command

Some flash chips provides|ock protection to prevent the flash from being accidentally written. The user isrequired
to actively lock and unlock the flash. Note that the memory controller can disable all write cyclesto the flash a so,
however GRMON automatically enables PROM write access before the flash is accessed.

The flash device configuration is auto-detected, the information is printed out like in the example below. One can
verify the configuration so that the auto-detection is correct if problems are experienced. The block lock status (if
implement by the flash chip) can be viewed like in the following example:

grnon2> flash

Manuf . : Intel
Devi ce : MI28F640J3
Device ID : 09169e01734a9981

User ID o fEffFeffffffefeef
1 x 8 Mytes = 8 Miytes total @ 0x00000000

CFl i nformation

Flash famly : 1

Fl ash size : 64 Mit

Erase regions : 1

Erase blocks : 64

Wite buffer : 32 bytes

Lock- down : Not supported

Region O : 64 blocks of 128 kbytes

grnmon2> flash status
Bl ock | ock status: U = Unlocked; L = Locked; D = Locked-down

Block 0 @0x00000000 : L
Bl ock 1 @0x00020000 : L
Bl ock 2 @0x00040000 : L
Bl ock 3 @0x00060000 : L

Block 60 @ 0x00780000 :
Block 61 @ 0x007a0000 :
Bl ock 62 @ 0x007c0000 :
Bl ock 63 @ 0x007e0000 :

rrrrr

A typical command sequence to erase and re-program a flash memory could be:

grnon2> flash unlock all
Unl ock conplete

grnon2> flash erase all
Erase in progress
Bl ock @0x007e0000 : code = 0x80 K
Erase conpl ete

grnon2> flash | oad rom. i mage. prom

grnon2> flash |ock all
Lock conpl ete

3.11.2. SPI memory device

GRMON supports programming of SPI memory devicesthat are attached to a SPICTRL or SPIMCTRL core. The
flash programming commands are available through the cores' debug drivers. A SPI flash connected to the SPIC-
TRL controller is programmed using 'spi flash', for SPIMCTRL connected devices the 'spim flash® command
is used instead. See the command reference for respective command for the complete syntax, below are some
typical use cases exemplified.

When interacting with amemory device via SPICTRL the driver assumes that the clock scaler settings have been
initialized to attain afrequency that is suitable for the memory device. When interacting with amemory devicevia
SPIMCTRL all commands are issued with the normal scaler setting unless the alternate scaler has been enabled.

A command sequence to save the original first 32 bytes of data before erasing and programming the SPI memory
device connected via SPICTRL could be:
spi set divlé

spi flash select 1
spi flash dunp 0 32 32bytes.srec

GRMON2-UM 35 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

spi flash erase
spi flash load ronfs.elf

The first command initializes the SPICTRL clock scaler. The second command selects a SPI memory device
configuration and the third command dumps the first 32 bytes of the memory deviceto thefile 32byt es. srec.

The fourth command erases all blocks of the SPI flash. The last command loads the ELF-filer onf s. el f into
the device, the addresses are determined by the EL F-file section address.

Below isacommand sequence to dump the data of a SPI memory device connected viaSPIMCTRL. Thefirst com-
mand triesto auto-detect the type of memory device. If auto-detection is successful GRMON will report the device
selected. The second command dumps the first 128 bytes of the memory deviceto the file 128byt es. srec.

spimflash detect
spimflash dunp O 128 128bytes. srec

3.12. Automated operation

GRMON can be used to perform automated non-interactive tasks. Some examples are:

» Test suite execution and checking

» Stand-alone memory test with scripted access patterns

¢ Generate SpaceWire or Ethernet traffic

* Peripheral register access during hardware bring-up without involving a CPU

« Evauate how alarge set of compiler option permutations affect application performance

3.12.1. Tcl commanding during CPU execution

In many situationsit is necessary to execute GRMON Tcl commands at the sametime asthe processor isexecuting.
For example to monitor a specific register or amemory region of interest. Another use case is to change system
state independent of the processor, such as error injection.

When the target executes, the GRMON terminal is assigned to the target system console and is thus not available
for GRMON shell input. Furthermore, commands such asrun and cont return to the user first when execution has
completed, which could be never for a non-behaving program.

Three different methods for executing Tcl commands during target execution are described below:

* Register an exec hook. An exec hook is a user-written Tcl script which is called periodically when the appli-
cation runs. A benefit of this method is that the exec hook is synchronized with the execution state of the
target and separate hooks are executed as the target enters and leaves debug mode. Installation of Tcl hooks
is described in Section 3, “User defined hooks’.

» Spawn one or more user Tcl shells. Theuser shellsrunin their own thread independent of the shell controlling
CPU execution. Thisis done with the usr sh command.

« Detach GRMON fromthe target. This means that the application continues running with GRMON no longer
having control over the execution. Thisis done with the detach and attach commands.

3.12.2. Communication channel between target and monitor

A communication channel between GRMON and the target can be created by sharing memory. Use casesinclude
when a target produces log or trace data in memory at run-time which is continuously consumed by GRMON
reading out the the data over the debug link. For this to work safely without the need to stop execution, some
arbitration over the data has to be implemented, such as a wait-free software FIFO.

Asan example, thetarget processors could produce log entriesinto dedicated memory bufferswhich are monitored
by an exec hook. When new datais available for the consumer, the exec hook schedul es an asynchronous bus read
with amem to fetch all new data. When the asynchronous bus read has finished, the exec hook acknowledges that
the data has been consumed so that the buffer can be reused for more produce data. One benefit of using amem is
that multiple buffers can be defined and fetched simultaneously independent of each other.

3.12.3. Test suite driver

GRMON can be used with adriver script for automatic execution of atest suite consisting of self-checking LEON
applications. For this purpose a script is created which contains multiple load and run commands followed by

GRMON2-UM 36 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

system state checking at end of each target execution. State checking could by implemented by checking an appli-
cation return value in a CPU register using the reg command. In case an anomaly is detected by the driver script,
the system state is dumped with commands such asreg, bt, inst and ahb for later inspection. All command output
is written to alog file specified with the GRMON command line option - | og. It is also useful to implement a
time-out mechanism in an exec hook to mitigate against non-terminating applications.

The example bel ows shows a simple test suite driver which uses some of the techniques described in this section
to test the applicationsnamed t est 000. el f,t est 001. el f andt est 002. el f . It can be run by issuing

$ grnon <debuglink> -u -c testsuite.tcl -log testsuite.log
$ grep FAIL testsuite.log

inthe host OS shell. Target state will bedumped inthelogfilet est sui t e. | og for each test case which returns
nonzero or crashes.

Example 3.1. Test suite driver example

This is testsuite.tcl
set nfail O

proc dunpstate {} {
bt; thread info; reg; inst 256; ahb 256; info reg
}

proc testprog {tnane} {
gl obal nfail
puts "### TEST $tname BEG N'
| oad $t name
set tstart [clock seconds]
set results [run]
set tend [cl ock seconds]
puts [format "### Test executed % seconds" [expr $tend - $tstart]]
set exec_ok O
foreach result $results {
if {$result == "SIGTERM'} {
set exec_ok 1

}

}
if {$exec_ok == 1} {
puts "### PASS. $t nane"
} else {
incr nfail 1
puts "### FAIL: $tname ($results)”
dunpst ate

}
puts "### TEST $tname END'
}

proc printsumary {} {
gl obal nfail
if {0 == 8%nfail} {
puts "### SUMVARY: ALL TESTS PASSED'
} else {
puts "### SUWARY: $nfail TEST(S) FAILED'
}

}

after 2000

testprog test000.elf
testprog test001l. el f
testprog test002.elf
print sunmary

exit

GRMON2-UM 37 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

4. Debug link

GRMON supports several different links to communicate with the target board. However all of the links may not
be supported by the target board. Refer to the board user manual to see which links that are supported. There are
also boards that have built-in adapters.

NOTE: Refer to the board user manual to see which links that are supported.

The default communication link between GRMON and the target system is the host’s serial port connected to a
serial debug interface (AHBUART) of the target system. Connecting using any of the other supported link can
be performed by using the switches listed below. More switches that may affect the connection are listed at each
subsection.

- anmont ec Connect to the target system using the Amontec USB/JTAG key.

-altjtag Connect to the target system using Altera Blaster cable (USB or paralldl).

-eth Connect to the target system using Ethernet. Requires the EDCL core to be present in
the target system.

-digil ent Connect to the target system Digilent HS1 cable.

-ftdi Connect to the target system using a JTAG cable based on aFTDI chip.

-gresb Connect to the target system through the GRESB bridge. The target needs a SpW core
with RMAP.

-jtag Connect to thetarget system the JTAG Debug Link using Xilinx Parallel Cablelll or IV.

- ush Connect to thetarget system using the USB debug link. Requiresthe GRUSB_DCL core
to be present in the target.

-Xi lusb Connect to the target system using a Xilinx Platform USB cable.

-uart <devi ce> Connect to the target system using a seria cable.
- user Connect to the target system using a custom user defined library.

8-/16-hit access to the target system is only supported by the JTAG debug links, al other interfaces access sub-
words using read-modify-write. All links supports 32-bit accesses. 8-bit accessis generally not needed. An exam-
ple of when it is needed is when programming a 8 or 16-bit flash memory on a target system without a LEON
CPU available. Another example is when one is trying to access cores that have byte-registers, for example the
CAN_OC core, but ailmost all GRLIB cores have word-registers and can be accessed by any debug link.

The speed of the debug links affects the performance of GRMON. It is most noticeable when |oading large appli-
cations, for example Linux or VxWorks. Another case when the speed of the link isimportant is during profiling,
afaster link will increase the number of samples. See Table 4.1 for alist of estimated speed of the debug links.

Table 4.1. Estimated debug link application download speed

Name Estimated speed
UART ~100 kbit/s
JTAG (Pardlel port) |~200 kbit/s
JTAG (USB) ~1 Mbit/s
GRESB ~25 Mhit/s

USB ~30 Mbit/s
Ethernet ~35 Mbit/s

4.1. Serial debug link

To successfully attach GRMON using the AHB uart, first connect the seria cable between the uart connectors on
target board and the host system. Then power-up and reset the target board and start GRMON. Use the - uar t
option in case the target is not connected to the first uart port of your host. On some hosts, it might be necessary to

GRMON2-UM 38 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

lower the baud rate in order to achieve a stable connection to the target. In this case, use the - baud switch with
the 57600 or 38400 options. Below isalist of start-up switches applicable for the AHB uart interface.

Extra options for UART:

-uart <device>
By default, GRMON communicates with the target using the first uart port of the host. This can be over-
ridden by specifying an aternative device. Device names depend on the host operating system. On Linux
systems serial devicesare named as/ dev/ t t y## and on Windows they are named\ \ . \ com#.

- baud <baudr at e>
Use baud ratefor the DSU serial link. By default, 115200 baud is used. Possible baud rates are 9600, 19200,
38400, 57600, 115200, 230400, 460800. Rates above 115200 need specia uart hardware on both host and
target.

4.2. Ethernet debug link

If the target system includes a GRETH core with EDCL enabled then GRMON can connect to the system using
Ethernet. The default network parameters can be set through additional switches.

Extra options for Ethernet:

- et h [<i pnun®][:<port >]
Use the Ethernet connection and optionally usei pnumfor the target system IP number and/or : port to
select which UDP port to use. Default |P addressis 192.168.0.51 and port 10000.

- edcl nem<kB>
The EDCL hardware can be configured with different buffer size. Use this option to force the buffer size (in
KB) used by GRMON during EDCL debug-link communication. By default the GRMON triesto autodetect
the best value. Valid options are: 1, 2, 4, 8, 16, 32, 64.

The default 1P address of the EDCL is normally determined at synthesis time. The IP address can be changed
using the edcl command. If more than one core is present i the system, then select core by appending the name.
The name of the coreislisted in the output of info sys.

Note that if the target is reset using the reset signal (or power-cycled), the default |P address is restored. The edcl
command can be given when GRMON is attached to the target with any interface (serial, JTAG, PCI ...), allowing
to change the | P address to a value compatible with the network type, and then connect GRMON using the EDCL
with the new IP number. If the edcl command is issued through the EDCL interface, GRMON must be restarted
using the new |P address of the EDCL interface. The current |P addressis also visible in the output from info sys.

grnon2> edcl
Devi ce index: grethO
Edcl ip 192.168.0.51, buffer 2 kB

grnon2> edcl grethl
Devi ce index: grethl
Edcl ip 192.168.0.52, buffer 2 kB

grnon2> edcl 192.168.0.53 grethl
Devi ce index: grethl
Edcl ip 192.168.0.53, buffer 2 kB

grnon2> info sys grethO grethl

gret ho Aerofl ex Gaisler GCR Ethernet MAC
APB: FF940000 - FF980000
IRQ 24
edcl ip 192.168.0.51, buffer 2 kbyte

grethl Aerofl ex Gaisler GCR Ethernet MAC
APB: FF980000 - FF9C0000
IRQ 25
edcl ip 192.168.0.53, buffer 2 kbyte

4.3. JTAG debug link

The subsections below describe how to connect to adesign that contains a JTAG AHB debug link (AHBJTAG).
Thefollowing commandline options are common for al JTAG interfaces. If more than one cable of the same type
is connected to the host, then you need to specify which one to use, by using a commandline option. Otherwise
it will default to the first it finds.

GRMON2-UM 39 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

Extra options common for all JTAG cables:
-jtagli st
List all available cables and exit application.
-j tagcabl e <n>
Specify which cableto useif more than oneis connected to the computer. If only one cable of the sametype
is connected to the host computer, then it will automatically be selected. It'sal so used to select parallel port.
-j tagdevi ce <n>
Specify which device in the chain to debug. Use if more than oneis device in the chain is debuggable.
-j tagconmver <versi on>
Specify JTAG debug link version.
-jtagretry <nune
Set the number of retries.
-jtagcfg<fil enane>
Load a JTAG configuration file, defining unknown devices.

JTAG debug link version

The JTAG interface has in the past been unreliable in systems with very high bus loads, or extremely slow AM-
BA AHB dlaves, that lead to GRMON reading out AHB read data before the access had actually completed on
the AHB bus. Read failures have been seen in systems where the debug interface needed to wait hundreds of
cycles for an AHB access to complete. With version 1 of the JTAG AHB debug link the reliability of the debug
link has been improved. In order to be backward compatible with earlier versions of the debug link, GRMON
cannot use al the features of AHBJTAG version 1 before the debug monitor has established that the design in fact
contains a core with this version number. In order to do so, GRMON scans the plug and play area. However, in
systems that have the characteristics described above, the scanning of the plug and play area may fail. For such
systemsthe AHBJTAG version assumed by GRMON during plug and play scanning can be set with the switch -
j tagcomver <ver si on>. Thiswill enable GRMON to keep reading datafrom the JTAG AHB debug interface
until the AHB access completes and valid datais returned. Specifying the version in systemsthat have AHBJTAG
version 0 has no benefit and may lead to erroneous behavior. Theoption - j t agr et r y<numne can be used to set
the number of attemps before GRMON gives up.

JTAG chain devices

If more than one device in the JTAG chain are recognized as debuggable (FPGAs, ASICs etc), then the device to
debug must be specified using the commandline option - j t agdevi ce. Inaddition, all devicesin the chain must
be recognized. GRMON automatically recognizes the most common FPGASs, CPLDs, proms etc. But unknown
JTAG devices will cause GRMON JTAG chain initialization to fail. This can be solved by defining a JTAG
configuration file. GRMON is started with - j t agcf g switch. An example of JTAG configuration file is shown
below. If you report the device ID and corresponding JTAG instruction register length to Aeroflex Gaidler, then
the device will be supported in future releases of GRMON.

JTAG Configuration file

Nane Id Mask Ir length Debug I/F Instr. 1 Instr. 2
xc2v3000 0x01040093 OxOf ffffff 6 1 0x2 0x3
xc18v04 0x05036093 OxOf fef fff 8 0

ETH 0x103ch0f d OxOf ffffff 16 0

Each line consists of device name, device id, device id mask, instruction register length, debug link and user
instruction 1 and 2 fields, where:

Name String with device name
Id Device identification code
Mask Device id mask is ANDed with the device id before comparing with the identification codes

obtained from the JTAG chain. Device id mask allows user to define a range of identification
codes on asingle line, e.g. mask OxOfffffff will define all versions of a certain device.

Ir length Length of the instruction register in bits
Debug I/F Set debug link to 1 if the device implements JTAG Debug Link, otherwise set to 0.
Instr. 1 Code of the instruction used to access JTAG debug link address/‘command register (default is

0x2). Only used if debug link is set to 1.

GRMON2-UM 40 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

Instr. 2 Code of the instruction used to access JTAG debug link data register (default is 0x3). Used only
if debug link is set to 1.

NOTE: The JTAG configuration file can not be used with Altera blaster cable (- al t j t ag).

4.3.1. Xilinx parallel cable lll/IV

If target system has the JTAG AHB debug link, GRMON can connect to the system through Xilinx Parallel Cable
[11 or IV. The cable should be connected to the host computers parallel port, and GRMON should be started with
the - j t ag switch. Use - j t agcabl e to select port. On Linux, you must have read and write permission, i.e.
make sure that you are a member of the group 'lp'. I.a. on some systems the Linux module Ip must be unloaded,
since it uses the port.

Extra options for Xilinx parallel cable:
-jtag
Connect to the target system using a Xilinx parallel cable I11/1V cable

4.3.2. Xilinx Platform USB cable

JTAG debugging using the Xilinx USB Platform cableis supported on Linux and Windows systems. The platform
cable models DLCOG and DL C10 are supported. The legacy model DLC9 is not supported. GRMON should be
started with - xi | usb switch. Certain FPGA boards have a USB platform cable logic implemented directly on
the board, using a Cypress USB device and adedicated Xilinx CPLD. GRMON can also connect to these boards,
using the -- xi | usb switch.

Extra options for Xilinx USB Platform cable:
-xilusb
Connect to the target system using a Xilinx USB Platform cable.
-xil mhz [12] 6] 3| 1. 5] 0. 75]
Set Xilinx Platform USB frequency. Valid values are 12, 6, 3, 1.5 or 0.75 MHz. Default is 3 MHz.

On Linux systems, the Xilinx USB drivers must be installed by executing ’./setup_pcusb’ in the ISE bin/bi n/
I i n directory (see ISE documentation). |.a. the program fxload must be available in / sbi n on the used host,
and libusb must be installed.

On Windows hosts follow the instructions below. The USB cable drivers should be installed from ISE or ISE-
Webpack. Xilinx ISE 9.2i or later isrequired. Then install the filter driver, from the libusb-win32 project [http://
libush-win32.sourceforge.net], by running install-filter-win.exe from the libusb package.

1. Install the ISE, ISE-Webpack or iMPACT by following their instructions. This will install the drivers for
the Xilinx Platform USB cable. Xilinx ISE 9.2i or later isrequired. After theinstallation is complete, make
sure that iIMPACT can find the Platform USB cable.

2. Thenrunl i busb-wi n32-devel -filter-1.2.6.0.exe,whichcanbefoundinthefolder' <gr -
non- ver >/ shar e/ gr mon/ ', where <gr non- ver > isthe path to the extracted win32 or win64 folder
fromthethe GRMON archive. Thiswill install the libusb filter driver tools. Step through theinstaller dialog
boxesasseenin Figure4.1l until thelast dialog. Thel i busb-wi n32-devel -filter-1.2.6.0. exe
installation is compatible with both 64-bit and 32-bit Windows.

3. Makesurethat 'Launch filter installer w zard'ischecked, then pressFi ni sh. Thewizard
can also be launched from the start menu.

GRMON2-UM 41 www.cobham.com/gaisler
April 2018, Version 2.0.93

http://libusb-win32.sourceforge.net
http://libusb-win32.sourceforge.net
http://libusb-win32.sourceforge.net

15! setup - LibUSB-Win32

= | @ (23| |5 Setup - LibUSB-Win32

. - License Agreement
WEIcome. to the LibUSB-Win32 Please read the following important information before continuing.
Setup Wizard

This will install LibUSB-Win32-1.2.6.0 on your computer, Please read the following License Agreement. You must accept the terms of this

agreement before continuing with the installation.
Itis recommended that you dose all other applications before
continuing.

Copyright (c) 2002-2004 Stephan Meyer, <ste_meyer @web.de> "
Copyright (c) 2000-2004 Johannes Erdfelt, <johannes@erdfelt.com>

Copyright (c) 2000-2004 Thomas Sailer, <sailer @ife.ee.ethz.ch>

Copyright (c) 2010 Travis Robinsan, <libusbdotnet@gmail.com:=

Click Next to continue, or Cancel to exit Setup.

This software is distributed under the following licenses:
Driver: GNU General Public License (GPL)
Library, Test Files, Installer: GMNU Lesser General Public License (LGPL)

I do not accept the agreement

< Back |[Next = l| Cancel |

5! Setup - LibUSB-Win32

15! Setup - LibUSE-Win22 o] 2 | ==

Select Destination Location
Where should LibUSB-Win32 be installed?

Information
Please read the following important information before continuing.

When you are ready to continue with Setup, dick Next.
E b H Setup will install LbUSB-Win32 into the following folder.

|
LibUsb-Win32 Change Log

V1.2.6.0 (01/17/2012) To continue, dick Mext. If you would like to select a different folder, dick Browse.

kC: Program Files LbUSE-in32] Brows

= Official release.

*Removed IS0 maximum transfer size restrictionsftransfer spltting,
* Fixed inf-wizard device notification issue.

V1.2.5.0 (07/23/2011)

= Official release.

V1.2.4.9 (07/13/2011) - SNAPSHOT RELEASE

e e demm e w1 Atleast 1,6 MB of free disk space is required.

< Back H Mext =]| Cancel |

< Back |[Next = l| Cancel |

15! Setup - LibUSB-Win32 = | @ 23| |i5 Setup - LibUSB-Win32

Select Start Menu Folder

Ready to Install
Where should Setup place the program's shortouts?

Setup iz now ready to begin installing LibUSBE-Win32 on your computer.

i Click Install to continue with the installation, or dick Back if you want to review or
3 Setup will create the program's shorteuts in the following Start Menu folder. change any settings.

To continue, dick Next. If you would like to select a different folder, dick Browse. Destination location: i g
C:\Program Files\LibUSB-Win32

S5 E
: IBL"LI Start Menu folder:

LibUSB-Win32

Don't create a Start Menu folder k ’

< Back H Next = || Cancel < Back

Install || Cancel

GRMON2-UM 42

www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

15! Setup - LibUSB-Win32

= o

Completing the LibUSB-Win32
Setup Wizard

Setup has finished installing LibUSB-Win32 on your computer,
The application may be launched by selecting the installed
icons.

Click Finish to exit Setup.

Figure4.1.

4. Atthefirst didog, asseenin Figure 4.2, choose'l nstal | a device filter'andpressNext.

5. Inthesecond dialog, mark the Xilinx USB cable. Y ou can identify it either by name Xi | i nx USB Cabl e
in the 'Description’ column or vi d: 03f d inthe 'Hardware ID' column. Then press| nst al | to continue.

6. Press OKto closethe pop-up dialog and then Cancel to closethefilter wizard. Y ou should now be able to
use the Xilinx Platform USB cable with both GRMON and iMPACT.

¥ libusb-win32 filter installer [=| @ [=23]| | § libusb-win32 filter installer o] @ ==

Information Device Selection

This program adds/removes libusb-win32 as a driver to an existing device

installation. Connect your device and select it from the list of unfiltered devices below. If your

device isn't listed, it may already be filtered, be in a "driverless” state, or

The libush-win32 filter driver allows access to ush devices using the libusb-win32 api incompatible with the libusb-win32 filter driver.

while maintaining compatibility with software which uses the original driver.

Hardware ID Description Mz
vid:0e0f pid:0003 rev:0101 mi:01 USB Input Device (s
Install/Remove Device Filter(s) vid:0e0f pid:0003 rev:0101 mi:00 USE Input Device (s
vid:0e0f pid:0003 rev:0101 USE Composite Device (s
9 Install a device fiiter vid:03fd pid:0008 rev:0000 ¥ilinx USB Cable
' Remove a device filter
~) Remove all device filters
4 m 3
Mext =] I Cancel I < Back I I Install I I Cancel

Install device filter @

0 \ libusb-win32 device filter successfully installed for Xilinx USB Cable

WY (usbvid_03fdepid_ 0008 Erev_0000)

Figure4.2.

The libusb-win32 filter installer wizard may have to be run again if the Xilinx Platform USB cable is connected
to another USB port or through a USB hub.

4.3.3. Altera USB Blaster or Byte Blaster
For GRLIB systemsimplemented on Alteradevices GRMON can use USB Blaster or Byte Blaster cableto connect
tothe system. GRMON isstarted with - al t j t ag switch. Driversareincluded in thethe Altera Quartus software,

see Actel's documentation on how to install on your host computer.

The connection is only supported by the 32-bit version of GRMON. And it also requires Altera Quartus version
less then or equal to 13.

GRMON2-UM 43 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

On Linux systems, the path to Quartus shared librarieshasto bedefinedinthe LD_LIBRARY _PATH environment
variable, i.e.

$ export LD LI BRARY_PATH=$LD_LI BRARY_PATH: /usr/ | ocal / quartus/|inux
$ grnon -altjtag

GRMON2 LEON debug nonitor v2.0.15 professional version

On Windows, the path to the Quartus binary folder must the added to the environment variable PATH, see Ap-
pendix F, Appending environment variablesin how to this. The default installation path to the binary folder should
besimilartoC: \ al tera\ 11. 1sp2\ quart us\ bi n, where 11.15p2 is the version of Quartus.

Extra options for Altera Blaster:
-altjtag
Connect to the target system using Altera Blaster cable (USB or paralldl).

4.3.4. FTDI FT4232/FT2232

JTAG debugging using aFTDI FT2232/FT4232 chip in MPSSE-JT A G-emulation modeis supported in Linux and
Windows. GRMON has support for two different back ends, one based on libftdi and the other based on FTDI's
official d2xx library.

When using Windows, GRMON will use the d2xx back end per default. FTDI’s D2XX driver must be installed.
Drivers and installation guides can be found at FTDI's website [http://www.ftdichip.com].

In Linux, the libftdi back end is used per default. The user must also have read and write permission to the device
file. This can be achieved by creating audev rulesfile, / et ¢/ udev/ rul es. d/ 51-ft di . rul es, containing
the lines below and then reconnect the USB cable.
ATTR{i dVendor } =="0403", ATTR{i dProduct}=="6010", MODE="666"

ATTR{i dVendor } =="0403", ATTR{i dProduct}=="6011", MODE="666"

ATTR{i dVendor } =="0403", ATTR{i dProduct}=="6014", MODE="666"
ATTR{i dVendor } =="0403", ATTR{i dProduct}=="cff8", MODE="666"

Extraoptionsfor FTDI:

-ftdi [libftdi|d2xx]
Connect to the target system using a JTAG cable based on a FTDI chip. Optionally a back end can be
specified. Defaults to libftdi on Linux and d2xx on Windows

-ftdi detach
On Linux, force the detachment of any kernel drivers attached to the USB device.

-ftdi mhz <mhz>
Set FTDI frequency divisor. Values between 0.0 and 30.0 are allowed (values higher then 6.0 MHz are
hardware dependent) The frquency will be rounded down to the closest supported frequency supported by
the hardware. Default value of mhz is 1.0 MHz

-ftdivid<vid>
Set the vendor ID of the FTDI device you are trying to connect to. This can be used to add support for
3rd-party FTDI based cables.

-ftdipid<pid>
Set the product ID of the FTDI device you are trying to connect to. This can be used to add support for
3rd-party FTDI based cables.

-ftdigpio<val >
Set the GPIO signals of the FTDI device. The lower 16hits sets the level of the GPIO and the upper bits
set the direction.

Bits 0-3 Reserved
Bits 4-3 GPIOL 0-3 level
Bits 8-15 GPIOH 0-7 level
Bits 16-19 Reserved
Bits 20-23 GPIOL 0-3 direction
Bits 24-31 GPIOH 0-7 direction
GRMON2-UM 44 www.cobham.com/gaisler

April 2018, Version 2.0.93

http://www.ftdichip.com
http://www.ftdichip.com

COBHAM

4.3.5. Amontec JTAGkey

The Amontec JTAGKey is based on a FTDI device, therefore see Section 4.3.4, “FTDI FT4232/FT2232" about
FTDI deviceson how to connect. Note that the user does not need to specify VID/PID for the Amontec cable. The
drivers and installation guide can be found at Amontec's website [http://www.amontec.com].

4.3.6. Actel FlashPro 3/3x/4/5
Support for Actel FlashPro 3/3x/4/5 is only supported by the professional version.

OnWindows 32-hit, JTAG debugging using the Microsemi FlashPro 3/3x/4/5 is supported for GRLIB systemsim-
plemented on Microsemi devices. Thisalso requires FlashPro 11.4 software or later to beinstalled on the host com-
puter (to be downloaded from Microsemi'swebsite). Windows support is detailed at the website. GRMON is start-
ed with the- f pr o switch. Technical support is provided through Cobham Gaisler only via support@gaisier.com.

JTAG debugging using the Microsemi Flashpro 5 cable is supported on both Linux and Windows, for GRLIB
systemsimplemented on Microsemi devices, using theftdi debug link. See Section 4.3.4, “FTDI FT4232/FT2232"
about FTDI devices on how to connect. Note that the user does not need to specify VID/PID for the Flashpro 5
cable. This also requires FlashPro 11.4 software or later to be installed on the host computer (to be downloaded
from Microsemi'swebsite). Technical support isprovided through Cobham Gaisler only viasupport@gaisler.com.

Extraoptions for Actel FlashPro:
-fpro
Connect to the target system using the Actel FlashPro cable. (Windows)

4.3.7. Digilent HS1

JTAG debugging using a Digilent JTAG HS1 cable is supported on Linux and Windows systems. Start GRMON
with the- di gi | ent switch to use thisinterface.

On Windows hosts, the Digilent Adept System software must be installed on the host computer, which can be
downloaded from Digilent's website.

On Linux systems, the Digilent Adept Runtime x86 must be installed on the host computer, which can be down-
loaded from Digilent's website. The Adept v2.10.2 Runtime x86 supports the Linux distributions listed bel ow.

CentOS 4/ Red Hat Enterprise Linux 4

CentOS 5/ Red Hat Enterprise Linux 5

openSUSE 11/ SUSE Linux Enterprise 11

Ubuntu 8.04

Ubuntu 9.10

Ubuntu 10.04

On 64-bit Linux systems it's recommended to install the 32-bit runtime using the manual instructions from the
README provided by the runtime distribution. Note that the 32-bit Digilent Adept runtime depends on 32-bit
versions of FTID's libd2xx library and the libusb-1.0 library.

Extraoptions for Digilent HS1:
-digil ent
Connect to the target system using the Digilent HS1 cable.
-di gi freq<hz>
Set Digilent HS1 frequency in Hz. Default is 1 MHz.

4.4. USB debug link

GRMON can connect to targets equipped with the GRUSB_DCL core using the USB bus. To do so start GRMON
with the - usb switch. Both USB 1.1 and 2.0 are supported. Several target systems can be connected to asingle
host at the same time. GRMON scans al the USB buses and claims the first free USBDCL interface. If the first
target system encountered is already connected to another GRMON instance, the interface cannot be claimed and
the bus scan continues.

GRMON2-UM 45 www.cobham.com/gaisler
April 2018, Version 2.0.93

http://www.amontec.com
http://www.amontec.com

COBHAM

On Linux the GRMON binary must have read and write permission. This can be achieved by creating a udev
rules file, / et ¢/ udev/ rul es. d/ 51- gai sl er. r ul es, containing the line below and then reconnect the
USB cable.

SUBSYSTEM=="usb", ATTR{i dVendor}=="1781", ATTR{i dProduct}=="0aa0", MODE="666"

On Windows a driver has to be installed. The first the time the device is plugged in it should be automatically
detected as an unknown device, as seen in Figure 4.3. Follow the instructions below to install the driver.

W ! Device driver software was not successfully installed * *
< Click here for details.

Figure 4.3.

1. Open the device manager by writing 'mmt devirgnt . nsc'in the run-field of the start menu.

2. Inthe device manager, find the unknown device. Right click on it to open the menu and choose 'Updat e
Driver Software..." 'asFigure4.4 shows.

24 Device Manager f=lfe =]
File Action View Help
L A= =T T
a8 vmPC
> 35 Batteries
» 18 Computer
> s Disk drives
> By Display adapters
b <) DVD/CD-ROM drives
> i Floppy disk drives
> - Floppy drive controllers
& &% Human Interface Devices
> g IDE ATA/ATAPI controllers
> -8 Jungo
b &= Keyboards
>-J*§ Mice and other pointing devices
> B Monitors
5~ Network adapters
4.1y Other devices
© 1l Unknown device|
» 7 Ports (COM & LPT)
> J2 Processors =t
> % Sound, video and ga Uninstall
b4 Storage controllers
> M System devices
>~ @ Universal Serial Bus Properties

Update Driver Software.

Scan for hardware changes

Launches the Update Driver Software Wizard for the selected device.

Figure 4.4.

3. Inthedialog that open, the first image in Figure 4.5, choose 'Br owse mny conputer for driver
sof tware'.

4. In the next dialog, press the Br owse button and locate the path to <gr non- wi n32>/ shar e/ gr -
non/ dri ver s, where grmon-win32 is the path to the extracted win32 folder from the the GRMON
archive. Press'Next ' to continue.

5. A warning dialog might pop-up, like the third image in Figure 4.5. Press‘I nstall this driver
sof t war e anyway' if it shows up.

6. Press'Cl ose' to exit the dialog. The USB DCL driver is now installed and GRMON should be able to
connect to the target system using the USB DCL connection.

= ==

() I Update Driver Software - Unknown Device @ 1 Update Driver Software - Unknown Device
How do you want to search for driver software? Browse for driver software on your computer

. . Search for driver software in this location:
% Search automatically for updated driver software

Windows will search your computer and the Interet for the latest driver software IO P S R - Browse...
Egﬂy:;; device, unless you've disabled this feature in your device installation] il subfolders

< Browse my computer for driver software
Locate and install driver software manually.

 Let me pick from a list of device drivers on my computer
This list will show installed driver software compatible with the device, and all driver
software in the same category as the device.

GRMON2-UM 46 www.cobham.com/gaisler

April 2018, Version 2.0.93

COBHAM

il Windows Security (=) (=)

@ Windows can't verify the publisher of this driver software) L Update Driver Software - USEDCL

Windows has successfully updated your driver software

< Don'tinstall this driver software
You should check your manufacturer's website for updated driver software Windows has finished installing the driver software for this device:
for your device.

= Install this driver software anyway UsBDCL

Only install driver software obtained from your manufacturer's website or
disc. Unsigned software from other sources may harm your computer or steal
information.

() Seedetails

Figure 4.5.

4.5. GRESB debug link

Targets equipped with a SpaceWire core with RMAP support can be debugged through the GRESB debug link
using the GRESB Ethernet to SpaceWire bridge. To do so start GRMON with the - gr esb switch and use the
any of the switches below to set the needed parameters.

For further information about the GRESB bridge see the GRESB manual.

Extra options for the GRESB connection:
-gresb [<i pnunp]
Use the GRESB connection and optionally use i pnum for the target system IP number. Default is

192.168.0.50.
-1i nk <nun®

Uselink | i nknumon the bridge. Defaultsto 0.
- dna <dna>

The destination node address of the target. Defaults to Oxfe.
- sna <sna>

The SpW node address for the link used on the bridge. Defaults to 32.
- dpa <dpal>|[,<dpa2>,... ,<dpa8>]

The destination path address. Comma separated list of addresses.
-spa<spal>[,<spa2>,...,<spa8>]

The source path address. Comma separated list of addresses.
- dkey <key>

The destination key used by the targets RMAP interface. Defaults to 0.
-cl kdi v <di v>

Dividethe TX bit rate by div. If not specified, the current setting is used.
- greshti meout <sec>

Timeout period in seconds for RMAP replies. Defaultsis 8.
-gresbhretry <n>

Number of retries for each timeout. Defaultsto O.

4.5.1. AGGA4 SpaceWire debug link

It is possible to debug the AGGA4 via spacewire, using the GRESB Ethernet SpaceWire Bridge, by combining
the commandline switches - gr esb' and '- agga4' when starting GRMON. In addition, the following options
canasobeadded: - | i nk, - cl kdi v,-gresbti meout and-gresbretry.

The AGGA4 SpaceWire debug link does not use aregular spacewire packet protocol, therefore the GRESB must
be setup to tunnel al the packets as raw data. To achieve this the GRESB must be configured to use separate
routing tables, this setting can only be enabled via the web interface.

GRMON2-UM a7 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

The GRESB routing tables for the SpaceWire port and the TCP port that will be used must also be configured.
The routing tables can be setup viathe web interface or using the software distributed with the gresh. All the node
addressesin therouting tablefor the SpaceWire port must be configured to forward packetsto the TCP port without
any header deletion. The routing table for the TCP port must be setup in the same way but to forward the packets
from al nodes to the SpaceWire port instead. A Linux bash script and a Windows bat-script is provided with
GRMON professional distribution in folder shar e/ gr non/ t ool s, that can be used with the GRESB software
to setup the routing tables. The scripts must be able to find the GRESB software, so either the PATH environment
variable must be setup or execute the scripts from the GRESB software folder.

GRESB separete routing table mode shall be used when connecting to the AGGA4 SpaceWire debug link. Thiscan
be configured in the GRESB web interface: "Routing table configuration”->"Set/view Mode"->"Set Separamte
mode".

4.6. User defined debug link

In addition to the supported DSU communication interfaces (Seria, JTAG, ETH and PCl), it is possible for the
user to add a custom interface using aloadable module. The custom DSU interface must provide functionsto read
and write data on the target system’s AHB bus.

Extra options for the user defined connection:

- dback <fi | enane>
Use the user defined debug link. The debug link should be implemented in aloadable module pointed out
by the filename parameter.

- dbackar g <ar g>
Set a custom argument to be passed to the user defined debug link during start-up.

4.6.1. API

The loadable module must export apointer variable named DsuUser Backend that pointstoast ruct ioif,
as described below:

struct ioif {
int (*wrem) (unsigned int addr, const unsigned int *data, int len);
int (*gmem) (unsigned int addr, unsigned int *data, int len);
int (*open) (char *device, int baudrate, int port);
int (*close) ();
int (*setbaud) (int baud, int pp);
int (*init) (char* arg);

b

struct ioif nmy_io = {my_wrem ny_gmem NULL, my_close, NULL, my_init};
struct ioif *DsuUserBackend = &my_io;

OntheLinux platform, theloadable modul e should be compiled into alibrary and loaded into GRMON asfollows:

> gcc -fPIC -c ny_io.c
> gcc -shared ny_io.o -0 ny_io.so
> grnon -dback ny_io.so -dbackarg "my argunent”

On the Windows platform, the loadable module should be compiled into a library and loaded into GRMON as
follows:
> gcc -c ny_io.c

> gcc -shared ny_io.o -o ny_io.dll
> grnon -dback ny_io.dll -dbackarg "nmy argunment”

The members of thest ruct i oi f aredefined as:

int (*wnen) (unsigned int addr, const unsigned int *data, int len);
A function that performs one or more 32-bit writes on the AHB bus. The parameters indicate the AHB
(start) address, a pointer to the data to be written, and the number of words to be written. The dataiisin
little-endian format (note that the AMBA bus on the target system is big-endian). If the len parameter is
zero, no data should be written. The return value should be the number of words written.

int (*gnem) (unsigned int addr, unsigned int *data, int |en);
A function that reads one or more 32-bit words from the AHB bus. The parametersindicate the AHB (start)
address, apointer to where the read data should be stored, and the number of wordsto beread. The returned

GRMON2-UM 48 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

data should be in little-endian format (note that the AMBA bus on the target system is big-endian). If the
len parameter is zero, no data should be read. The return value should be the number of words read.
int (*open) (char *device, int baudrate, int port);
Not used, provided only for backwards compatibility. This function is replaced by the functioni ni t .
int (*close) ();
Called when disconnecting.
int (*setbaud) (int baud, int pp);
Not used, provided only for backwards compatibility.
int (*init) (char* arg);
Called wheninitiating aconnection to thetarget system. The parameter argis set usingthe GRMON start-up
switch - dbackar g <ar g>. Thisallowsto send arbitrary parametersto the DSU interface during start-up.

An example module is provided with the professional version of GRMON located at <gr non2>/ shar e/ gr -
nmon/ src/ dsu_user _backend.

GRMON2-UM 49 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

5. Debug drivers
This section describes GRMON debug commands available through the TCL GRMON shell.

5.1. AMBA AHB trace buffer driver

The at command and its subcommands are used to control the AHBTRACE buffer core. It is possible to record
AHB transactionswithout interfering with the processor. With the commandsit is possibleto set up triggersformed
by an address and an address mask indicating what bits in the address that must match to set the trigger off. When
the triggering condition is matched the AHBTRACE stops the recording of the AHB bus and the log is available
for inspection using the at command. The at delay command can be used to delay the stop of the trace recording
after atriggering match.

Note that thisis an stand alone AHB trace buffer it is not to be confused with the DSU AHB trace facility. When
abreak point is hit the processor will not stop its execution.

Theinfo sys command displays the size of the trace buffer in number of lines.

ahbtrace0 Aeroflex Gaisler AMBA Trace Buffer
AHB: FFF40000 - FFF60000
Trace buffer size: 512 |ines

5.2. Clock gating

The GRCLKGATE debug driver provides an interface to interact with a GRCLKGATE clock gating unit. A
command line switch can be specified to automatically reset and enable al clocks, controlled by clock gating
units, during GRMON's system initialization.

The GRCLKGATE coreisaccessed using the command gr cg, see command description in Appendix B, Command
syntax for more information.

5.2.1. Switches
-cginit
Reset and enable all cores controlled by GRCLKGATE during initialization

5.3. DSU Debug drivers

The DSU debug drivers for the LEON processor(s) is a central part of GRMON. It handles most of the functions
regarding application execution, debugging, processor register access, cache access and trace buffer handling. The
most common interactions with the DSU are explained in Chapter 3, Operation. Additional information about the
configuration of the DSU and the LEON CPUs on the target system can be listed with the command info sys.

dsu0 Aerofl ex Gaisler LEON4 Debug Support Unit

AHB: DO000000 - EO0000000

AHB trace: 64 lines, 32-bit bus

CPUW0: win 8 hwbp 2, itrace 64, V8 nmul/div, srmmu, |ddel 1, GRFPU-lite
stack pointer Ox4ffffffo
icache 2 * 8 kB, 32 B/line Irr
dcache 2 * 4 kB, 32 B/line Irr

CPUL: win 8 hwbp 2, itrace 64, V8 nmul/div, srmmu, |ddel 1, GRFPU-lite
stack pointer Ox4ffffffo
icache 2 * 8 kB, 32 B/line Irr
dcache 2 * 4 kB, 32 B/line Irr

5.3.1. Switches

Below isalist of commandline switches that affects how the DSU driver interacts with the DSU hardware.
-nb
When the -nb flag is set, the CPUs will not go into debug mode when a error trap occurs. Instead the OS
must handle the trap.

GRMON2-UM 50 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

-nswh
When the -nswb flag is set, the CPUs will not go into debug mode when a software breakpoint occur. This
option is required when a native software debugger like GDB is running on the target LEON.
- dsudel ay <nms>
Delay the DSU polling. Normally GRMON will poll the DSU asfast as possible.
-nic
Disable instruction cache
- ndc
Disable data cache
- st ack <addr >
Set addr as stack pointer for applications, overriding the auto-detected value.

- npgsz
Enable support for MMU page sizes larger then 4kB. Must be supported by hardware.

5.3.2. Commands
The driver for the debug support unit provides the commands listed in Table 5.1.

Table 5.1. DSU commands

ahb Print AHB transfer entries in the trace buffer

attach Stop execution and attach GRMON to processor again

at Print AHB transfer entries in the trace buffer

bp Add, delete or list breakpoints

bt Print backtrace

cctrl Display or set cache control register

cont Continue execution

cpu Enable, disable CPU or select current active cpu

dcache Show, enable or disable data cache

dccfg Display or set data cache configuration register

detach Resume execution with GRMON detached from processor
el Error injection

ep Set entry point

float Display FPU registers

forward Control 1VO forwarding

go Start execution without any initialization

hist Print AHB transfer or intruction entries in the trace buffer
icache Show, enable or disable instruction cache

iccfg Display or set instruction cache configuration register

inst Print intruction entries in the trace buffer

leon Print leon specific registers

mmu Print or set the SRMMU registers

perf Measure performance

profile Enable, disable or show simple profiling

reg Show or set integer registers.

run Reset and start execution

stack Set or show theintial stack-pointer

step Step one ore more instructions

tmode Select tracing mode between none, processor-only, AHB only or both.
GRMON2-UM 51 www.cobham.com/gaisler

April 2018, Version 2.0.93

COBHAM

va Tranglate a virtual address

vmemb AMBA bus 8-hit virtual memory read access, list arange of addresses
vmemh AMBA bus 16-bit virtual memory read access, list arange of addresses
vmem AMBA bus 32-hit virtual memory read access, list arange of addresses
vwmemb AMBA bus 8-hit virtual memory write access

vwmemh AMBA bus 16-bit virtual memory write access

vwmems Write astring to an AMBA bus virtual memory address

vwmem AMBA bus 32-bit virtual memory write access

walk Trandate a virtual address, print trandation

5.3.3. Tcl variables

The DSU driver exports one Tcl variable per CPU (cpuN), they allow the user to access various registers of
any CPU instead of using the standard reg, float and cpu commands. The variables are mostly intended for Tcl
scripting. See Section 3.4.12, “Multi-processor support” for more information how the c pu variable can be used.

5.4. Ethernet controller

The GRETH debug driver provides commands to configure the GRETH 10/100/1000 Mbit/s Ethernet controller
core. The driver aso enables the user to read and write Ethernet PHY registers. The info sys command displays
the core’ s configuration settings:
gretho Aerofl ex Gaisler GCR Ethernet MAC
AHB Master 2

APB: (0100100 - €0100200

IRQ 12
edcl ip 192.168.0.201, buffer 2 kbyte

If more than one GRETH core exists in the system, it is possible to specify which core the internal commands
should operate on. Thisis achieved by appending a device name parameter to the command. The device name s
formatted as gr et h# where the # isthe GRETH device index. If the device name is omitted, the command will
operate on the first device. The device name islisted in the info sys information.

ThelP address must have the numeric format when setting the EDCL | P addressusing theedcl command, i.e. edcl
192. 168. 0. 66. See command description in Appendix B, Command syntax and Ethernet debug interface in
Section 4.2, “Ethernet debug link” for more information.

5.4.1. Commands

The driver for the greth core provides the commands listed in Table 5.2.

Table 5.2. GRETH commands

edc| Print or set the EDCL ip
mdio Show PHY registers
phyaddr Set the default PHY address
wmdio Set PHY registers

5.5. GRPWM core

The GRPWM debug driver implementsfunctionsto report the available PWM modules and to query thewaveform
buffer. The info sys command will display the available PWM modules.

gr pwnD Aerof l ex Gaisler PWM generator
APB: 80010000 - 80020000
IRQ 13

cnt-pwn 3

GRMON2-UM 52 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

The GRPWM coreis accessed using the command gr pwm, see command description in Appendix B, Command
syntax for more information.

5.6. USB Host Controller

The GRUSBHC host controller consists of two host controller types. GRMON provides a debug driver for each
type. The info sys command displays the number of ports and the register setting for the enhanced host controller
or the universal host controller:

usbehci 0 Aeroflex Gaisler USB Enhanced Host Controller
AHB Master 4
APB: (C0100300 - €0100400
IRQ 6
2 ports, byte swapped registers
usbuhci 0 Aeroflex Gaisler USB Universal Host Controller
AHB Master 5
AHB: FFF00200 - FFF00300
IRQ 7

2 ports, byte swapped registers

If morethan one ECHI or UCHI coreexistsinthesystem, it ispossibleto specify which coretheinternal commands
should operate on. Thisis achieved by appending a device name parameter to the command. The device name is
formatted asusbehci #/ usbuhci # wherethe# isthe deviceindex. If the device nameisomitted, the command
will operate on the first device. The device nameislisted in the info sysinformation.

5.6.1. Switches

- housbr st
Prevent GRMON from automatically resetting the USB host controller cores.

5.6.2. Commands
The drivers for the USB host controller cores provides the commands listed in Table 5.3.

Table 5.3. GRUSBHC commands

ehci Controll the USB host ECHI core
uhci Controll the USB host UHCI core
5.7. 1°C

The I°C-master debug driver initializes the core’ s prescaler register for operation in normal mode (100 kb/s). The
driver supplies commands that allow read and write transactions on the 12C-bus. |.a. it automatically enables the
core when aread or write command is issued.

Thel2CMST coreis accessed using the command i2c¢, see command description in Appendix B, Command syntax
for more information.

5.8. /0 Memory Management Unit

The debug driver for GRIOMMU provides commands for configuring the core, reading core status information,
diagnostic cache accesses and error injection to the core’ sinternal cache (if implemented). The debug driver also
has support for building, modifying and decoding Access Protection Vectors and page table structures located in
system memory.

The GRIOMMU coreisaccessed using the command iommu, see command description in Appendix B, Command
syntax for more information.

Theinfo sys command displays information about available protection modes and cache configuration.

i ommu0 Aeroflex Gaisler 10 Menory Managenent Unit
AHB Master 4
AHB: FF840000 - FF848000

GRMON2-UM 53 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

IRQ 31

Device index: 0

Protection nodes: APV and | OWU

msts: 9, grps: 8, accsz: 128 bits

APV cache lines: 32, line size: 16 bytes
cached area: 0x00000000 - 0x80000000

|OVWU TLB entries: 32, entry size: 16 bytes
transl ati on nmask: Oxff000000

Core has nulti-bus support

5.9. Multi-processor interrupt controller

The debug driver for IRQMP provides commands for forcing interrupts and reading core status information. The
debug driver a so supports ASM P and other extension provided in the IRQ(A)MP core. The IRQMP and IRQAMP
cores are accessed using the command irq, see command description in Appendix B, Command syntax for more
information.

The info sys command displays information on the cores memory map. |.a. if extended interrupts are enabled it
shows the extended interrupt number.

i rgqnpo Aeroflex Gaisler Milti-processor Interrupt Crl.
APB: FF904000 - FF908000
EIRQ 10

5.10. L2-Cache Controller

The debug driver for L2C is accessed using the command |2cache, see command description in Appendix B,
Command syntax for moreinformation. It provides commandsfor showing status, dataand hit-rate. It al so provides
commands for enabling/disabling options and flushing or invalidating the cache lines.

If the L2C core has been configured with memory protection, then the 12cache error subcommand can be used
to inject check bit errors and to read out error detection information.

L2-Cacheis enabled by default when GRMON starts. This behavior can be disabled by giving the - nl 2¢c com-
mand line option which instead disables the cache. L 2-Cache can be enabled/disabled later by the user or by soft-
warein either case. If - ni isgiven, then L2-Cache state is not altered when GRMON starts.

When GRMON is started without - ni and - nl 2c, the L2-Cache controller will be configured with EDAC dis-
abled, LRU replacement policy, no locked ways, copy-back replacement policy and not using HPROT to determine
cachability. Pending EDAC error injection is also removed.

When connecting without - ni , if the L2-Cache is disabled, the L2-Cache contents will be invalidated to make
surethat any random power-up valueswill not affect execution. If the L2-Cache was already enabled, it isassumed
that the contents are valid and L2-Cache is flushed to backing memory and then invalidated.

When enabling L 2-Cache, the subcommand |2cache disable flushinvalidate can be used to atomically invalidate
and write back dirty lines. Theinverse operationisl2cacheinvalidatefollowed by |2cache enable. For debugging
the state of L2-Cacheiteself, it may be more appropriate to usel2cache disable asit does not have any side effects
on cache tags.

Theinfo sys command displays the cache configuration.

| 2cache0 Aeroflex Gaisler L2-Cache Controller
AHB Master O
AHB: 00000000 - 80000000
AHB: FO0000000 - F0400000
AHB: FFEO0000 - FFFO0000
IRQ 28
L2C. 4-ways, cachesize: 128 kbytes, ntrr: 16

5.10.1. Switches

-nl 2c
Disable L 2-Cache on start-up.

GRMON2-UM 54 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

5.11. Statistics Unit

Thedebug driver for LASTAT provides commandsfor reading and configuring the countersavailableinaL4STAT
core. The LASTAT core can be implemented with two APB interfaces. GRMON treats a core with dual interfaces
the same way as it would treat a system with multiple instances of LASTAT cores. If several LASTAT APB
interfaces are found the |4stat command must be followed by an interface index reported by info sys. Theinfo sys
command displays also displays information about the number of counters available and the number of processor
cores supported.

l4stat0 Aeroflex Gaisler LEOM Statistics Unit
APB: E4000100 - E4000200
cpus: 2, counters: 4, i/f index: O

| 4statl Aeroflex Gaisler LEON Statistics Unit
APB: FFA05000 - FFA05100
cpus: 2, counters: 4, i/f index: 1

The LASTAT core is accessed using the command |4stat, see command description in Appendix B, Command
syntax for more information.

If the core is connected to the DSU it is possible to count several different AHB events. In addition it is possible
to apply filter to the signals connected to the LASTAT (if the DSU supports filter), see command ahb filter
performance in Appendix B, Command syntax.

Thel4stat set command is used to set up counting for a specific event. All allowed valuesfor the event parameters
are listed with l4stat events. The number and types of events may vary between systems. Example 5.1 shows
how to set counter zero to count data cache misses on processor one and counter one to count instruction cache
MiSSEs 0N Processor zero.

Example5.1.

grnon2> | 4stat 1 events
icmss - icache miss
itmss - icache tlb mss
ichold - icache hold
ithold - icache mmu hol d
dcm ss - dcache nmiss

. nore events are listed ...

grnon2> | 4stat 1 set 0 1 dcmiss
cnt0: Enabling dcache miss on cpu/ AHB 1

grnon2> | 4stat 1 set 1 0 icmiss
cntl: Enabling icache miss on cpu/ AHB 0

grnon2> | 4stat 1 status

CPU DESCRI PTI ON VALUE
0: cpul dcache mss 0000000000
1: cpu0 icache mss 0000000000
2: cpu0 icache mss 0000000000 (di sabl ed)
3: cpu0 icache mss 0000000000 (di sabl ed)

NOTE: Some of the LASTAT events 0x40-0x7F can be counted either per AHB master or indepedent of master.
Thel4stat command will only count events generated by the AHB master specified in the 14stat set command.

TheL4STAT debug driver providestwo modesthat are used to continuously sample LASTAT counters. Thedriver
will print out the latest read value(s) together with total accumulated amount(s) of events while polling. A poll
operation can either be started directly or be deferred until the run command is issued. In both cases, counters
should first be configured with the type of event to count. When this is done, one of the two following commands
can beissued: I4stat pollst sp i nt hol d orl4stat runpollst sp i nt

The behavior of the first command, l4stat poll, depends on the hold argument. If hold is 0 or not specified, the
specified counter(s) (st - sp) will be enabled and configured to be cleared on read. These counters will then be
polled with aninterval of int seconds. After each read, the corewill print out the current and accumulated valuesfor
all counters. If the hold argument is 1, GRMON will not initialize the counters. Instead the first specified counter

GRMON2-UM 55 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

(st) will be polled. When counter st isfound to be enabled the polling operating will begin. This functionality
can be used to, for instance, let software signal when measurements should take place.

Polling ends when at least one of the following is true: User pressed CTRL+C (SIGINT) or counter st becomes
disabled. When polling stops, the debug driver will disable the selected counter(s) and also disable the automatic
clear feature.

The second command, |4stat runpoall, is used to couple the poll operation with the run command. When |4stat
runpoll st sp i nt hasbeenissued, countersst - sp will be polled after the run command isgiven. Theinterval
argument in this case does not specify the poll interval seconds but rather in terms of iterations when GRMON
polls the Debug Support Unit to monitor execution. A suitable value for the int argument in this case depends on
the speed of the host computer, debug link and target system.

Example 5.2 isatranscript from a GRMON session where a vxWorks image is loaded and statistics are collected
whileit runs.
Example 5.2.

grmon2> | 4stat 1 set 0 O icmiss O
cnt0: Configuring icache mss on cpu/ AHB 0

grmon2> | 4stat 1 set 1 0 dcnmiss O
cnt1l: Configuring dcache mss on cpu/ AHB 0

grmon2> | 4stat 1 set 2 0 load O
cnt2: Configuring |oad instructions on cpu/ AHB 0

grmon2> | 4stat 1 set 3 0 store O
cnt3: Configuring store instructions on cpu/ AHB

grmon2> | 4stat 1 status

CPU DESCRI PTI ON VALUE
0: cpu0O icache mss 0000000000 (di sabl ed)
1: cpu0 dcache mss 0000000000 (di sabl ed)
2: cpu0 load instructions 0000000000 (di sabl ed)
3: cpu0 store instructions 0000000000 (di sabl ed)

grmon2> | 4stat 1 runpoll O 3 5000
Setting up call backs so that polling will be performed during 'run’

grrmon2> | oad vxWrks

00003000 . text 1.5MB / 1.5MB 100%
0018F7A8 . i nit$00 12B 100%
0018F7B4 .init$99 8B 100%
0018F7BC . fi ni $00 12B 100%
0018F7C8 . fini $99 8B 100%
0018F7E0 .data 177.5kB / 177.5kB 100%
Total size: 1.72MB (2.03Miit/s)
Entry point 0x3000
I mage / hone/ arvi d/ reps/ GRMON2/ t est s/ t hr eads/ vxWor ks | oade
grnmon2> run
TI ME COUNTER CURRENT READ CURRENT RATE TOTAL READ TOTAL RATE
5.88 0 1973061 335783 1973061 335783
5.88 1 7174279 1220946 7174279 1220946
5.88 2 22943354 3904587 22943354 3904587
5.88 3 491916 83716 491916 83716
11. 16 0 0 0 1973061 176718
11. 16 1 11014132 2082460 18188411 1629056
11. 16 2 33072417 6253057 56015771 5017087
11. 16 3 15751 2978 507667 45470
out put renoved ...
51. 35 0 0 0 1973061 38425
51. 35 1 12113004 2079486 101754132 1981657
51. 35 2 36365101 6242936 306891414 5976697
51. 35 3 17273 2965 627067 12212

And alternative to coupling polling to the run command is to break execution, issue detach and then use the l4stat
poll command. There are afew items that may be worth considering when using poll and runpoll.
 All countersare not read in the same clock cycle. Depending on the debug link used there may be asignificant
delay between the read of the first and the last counter.
« Measurements are timed on the host computer and reads experience jitter from several sources.
A counter may overflow after 232 target clock cycles. The poll period (interval) should take thisinto account
so that counters are read (and thereby cleared) before an overflow can occur.

GRMON2-UM 56 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

» Counters are disabled when polling stops

* l4stat runpoll is only supported for uninterrupted run. Commands like bp and cont may disrupt measure-
ments.

* If the LASTAT core has two APB interfaces, initiaize it via the interface to which traffic causes the least
disturbance to other system bustraffic.

5.12. Leon2 support

A LEON2 system has a fixed set of IP cores and address mapping, and GRMON will use an internal plug and
play table that describes this configuration. The plug and play table used for LEONZ is fixed, and no automatic
detection of present coresis attempted. Only those cores that need to be initialized by GRMON are included in
the table, so the listing might not correspond to the actual target.

By default, GRMON will enablethe UART recieversand transmittersfor the AT697E/F by setting the correspond-
ing bits in the IODIR register to output. This can be disabled by providing the commandline switch - at 697-
nouart , GRMON will then reset the IODIR to inputs on al bits.

5.12.1. Switches

-at 697
-at 697e
Disable plug and play scanning and configure GRMON for a AT697E system
-at 697f
Disable plug and play scanning and configure GRMON for a AT697F system
-at 697-nouart
Disable GPIO dternate UART function. When thisis set, GRMON will reset the GPIO dir register bitsto
input. By default GRMON will setup the GPIO dir register to enable both UARTSs for the AT697E/F.
-aggad
Disable plug and play scanning and configure GRMON for a AGGA4 system
- agga4- nognss
Disable the built-in support for the GNSS core to make sure that GRMON never makes any accessesto the
core. Thisflag should be used if no clock is provided to the GNSS core.
-l eon2
Disable plug and play scanning and configure GRMON for a LEON2 system

5.13. On-chip logic analyzer driver

The LOGAN debug driver contains commands to control the LOGAN on-chip logic analyzer core. It allowsto set
various triggering conditions and to generate VCD waveform files from trace buffer data.

The LOGAN core is accessed using the command la, see command description in Appendix B, Command syntax
for more information.

The LOGAN driver can create a VCD waveform file using the la dump command. The fileset up. | ogan is
used to define which part of the trace buffer belong to which signal. Thefileis read by the debug driver before a
VCD fileisgenerated. An entry in thefile consists of asignal name followed by its size in bits separated by white-
space. Rows not having these two entries as well as rows beginning with an # are ignored. GRMON will look for
the file in the current directory. |.e. either start GRMON from the directory where set up. | ogan islocated or
use the Tcl command cd, in GRMON, to change directory.

Example 5.3.
#Name Si ze
clk 1
seq 14
edcl state 4
txdstate 5

dataout0 32
dataoutl 32
dataout2 32
dataout3 32

witem 1
witel 1
nak 1
I ock 1
GRMON2-UM 57 www.cobham.com/gaisler

April 2018, Version 2.0.93

COBHAM

The Example 5.3 has atotal of 128 traced bits, divided into twelve signals of various widths. The first signal in
the configuration file maps to the most significant bits of the vector with the traced bits. The created VCD file can
be opened by waveform viewers such as GTKWave or Dinotrace.

X _M[GTKWave - log.ved

X
W 0| 2R Q <:\ & =] @ = | From:[0sec |To:|40950ns | %’93 Marker: 0 sec | Cursor: 500 ns

= SST Signals
Time

clk=1
dataout0[31:0] =00000000
dataout1[31:0] =66660000
dataout2[31:0] =66660000
dataout3[31:0] =00000000
edclstate[3:0] =0

Type Signals lock =@
nak =@

wire dataout0[31:0] seq[13:0] =0000

wire dataout1[31:0] txdstate[4:0] =08

wire dataout2[31:0] writel=0

wire dataout3([31:0] writem=0

wire edclstate[3:0]

wire lock

wire nak

wire seq[13:0]

wire txdstate[4:0]
wire writel
wire writem

Filter: \ \

Append | | Insert | | Replace

Figure 5.1. GTKWave

5.14. Memory controllers

SRAM/SDRAM/PROM/IO memory controllers

Most of the memory controller debug drivers provides switches for timing, waitstate control and sizes. They also
probes the memory during GRMON's initialization. In addition they also enables some commands. The mcfg#
setsthe reset value of the registers. The info sys shows the timing and amount of detected memory of each type.
Supported cores: MCTRL, SRCTRL, SSRCTRL, FTMCTRL, FTSRCTRL, FTSRCTRLS8
nctrl 0 Eur opean Space Agency LEON2 Menory Controller

AHB: 00000000 - 20000000

AHB: 20000000 - 40000000

AHB: 40000000 - 80000000

APB: 80000000 - 80000100

8-bit prom @ 0x00000000

32-bit sdram 1 * 64 Myte @ 0x40000000
col 9, cas 2, ref 7.8 us

PC133 SDRAM Controller

PC133 SDRAM debug drivers provides switches for timing. It aso probes the memory during GRMON's initial -
ization. In addition it also enables the sdcfgl affects, that sets the reset val ue® of the register. Supported cores:
SDCTRL, FTSDCTRL

DDR memory controller

The DDR memory controller debug drivers provides switches for timing. It also performs the DDR initialization
sequence and probes the memory during GRMON's initialization. It does not enable any commands. Theinfo sys
shows the DDR timing and amount of detected memory. Supported cores. DDRSPA

DDR2 memory controller

The DDR2 memory controller debug driver provides switchesfor timing. It also performsthe DDR2 initialization
seguence and probes the memory during GRMON's initiaization. In addition it also enables some commands.
The ddr 2cfg# only affect the DDR2SPA, that sets the reset value! of the register. The commands ddr 2skew and
ddr2delay can be used to adjust the timing. The info sys shows the DDR timing and amount of detected memory
Supported cores: DDR2SPA

ddr2spa0 Aeroflex Gaisler Single-port DDR2 controller
AHB: 40000000 - 80000000

! The memory register reset value will be written when GRMON's resets the drivers, for example when run or load is called.

GRMON2-UM 58 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

AHB: FFE00100 - FFE00200
32-bit DDR2 : 1 * 256 MB @ 0x40000000, 8 internal banks
200 MHz, col 10, ref 7.8 us, trfc 135 ns

SPI memory controller

The SPI memory controller debug driver is affected by the common memory commands, but provides commands
spim to perform basic communi cation with the core. The driver a so providesfunctionality to read the CSD register
from SD Card and a command to reinitialize SD Cards. The debug driver has bindings to the SPI memory device
layer. These commands are accessed via spim flash. Please see Section 3.11.2, “SPI memory device” for more
information. Supported cores: SPIMCTRL

5.14.1. Switches

- edac
Enable EDAC operation (FTMCTRL)

-edac8[4| 5]
Overrides the auto-probed EDAC area size for 8-bit RAM. Valid values are 4 if the edac uses a quarter of
the memory, or 5 if the edac uses afifth. (FTMCTRL)

-rsedac
Enable Reed-Solomon EDAC operation (FTMCTRL)

-ncf gl <val >
Set the reset value for memory configuration register 1 (MCTRL, FTMCTRL, SSRCTRL)

-ncf g2 <val n>
Set the reset value for memory configuration register 2 (MCTRL, FTMCTRL)

-ncf g3 <val >
Set the reset value for memory configuration register 3 (MCTRL, FTMCTRL, SSRCTRL)

- pageb
Enable page-burst (FTMCTRL)

- nor nw
Disables read-modify-write cycles for sub-word writes to 16- bit 32-bit areas with common write strobe
(no byte write strobe). (MCTRL, FTMCTRL)

ROM switches:
-romwi dt h [8] 16| 32]
Set the rom bit width. Valid valuesare 8, 16 or 32. (MCTRL, FTMCTRL, SRCTRL, FTSRCTRL)
-ronrws <n>
Set n number of wait-states for rom reads. (MCTRL, FTMCTRL, SSRCTRL)
- romws <n>
Set n number of wait-states for rom writes. (MCTRL, FTMCTRL, SSRCTRL)
-romas <n>
Set n number of wait-states for rom reads and writes. (MCTRL, FTMCTRL, SSRCTRL)

SRAM switches:
-nosram
Disable SRAM and map SDRAM to the whole plug and play bar. (MCTRL, FTMCTRL, SSRCTRL)
- nosr anb
Disable SRAM bank 5 detection. (MCTRL, FTMCTRL)
- ram<kB>
Overrides the auto-probed amount of static ram banksize. Banksizeis given in kilobytes. (MCTRL, FTM-
CTRL)
- rambanks <n>
Overrides the auto-probed number of populated ram banks. (MCTRL, FTMCTRL)
-ramui dth [8] 16| 32]
Overrides the auto-probed ram bit width. Valid values are 8, 16 or 32. (MCTRL, FTMCTRL)
-ranrws <n>
Set n number of wait-states for ram reads. (MCTRL, FTMCTRL)
- ramms <n>
Set n number of wait-states for ram writes. (MCTRL, FTMCTRL)

GRMON2-UM 59 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

-rams <n>
Set n number of wait-states for rom reads and writes. (MCTRL, FTMCTRL)

SDRAM switches:
-cas <cycl es>
Programs SDRAM to either 2 or 3 cycles CAS latency and RAS/CAS delay. Defaultis2. (MCTRL, FTM-
CTRL, SDCTRL, FTSDCTRL)
- ddr 2cal
Run delay calibration routine on start-up before probing memory (see ddr2delay scan com-
mand).(DDR2SPA) ()
-nosdram
Disable SDRAM. (MCTRL, FTMCTRL)
-ref <us>
Set the refresh reload value. (MCTRL, FTMCTRL, SDCTRL, FTSDCTRL)
-regnmem
Enable registered memory. (DDR2SPA)
-trcd<cycl es>
Programs SDRAM to either 2 or 3 cycles RAS/CAS delay. Default is2. (DDRSPA, DDR2SPA)
-trfc<ns>
Programs the SDRAM trfc to the specified timing. (MCTRL, FTMCTRL, DDRSPA, DDR2SPA)
-trp3
Programs the SDRAM trp timing to 3. Default is2. (MCTRL, FTMCTRL, DDRSPA, DDR2SPA)
-twr
Programs the SDRAM twr to the specified timing. (DDR2SPA)
- sddel <val ue>
Set the SDCLK value. (MCTRL, FTMCTRL)
-sd2tdis
Disable SDRAM 2T signaling. By default 2T is enabled on GR740 during GRMON initiaization. (GR740
SDCTRL)

5.14.2. Commands
The driver for the Debug support unit provides the commands listed in Table 5.4.

Table5.4. MEMCTRL commands

ddr2cfgl Show or set the reset value of the memory register
ddr2cfg2 Show or set the reset value of the memory register
ddr2cfg3 Show or set the reset value of the memory register
ddr2cfg4 Show or set the reset value of the memory register
ddr2cfg5 Show or set the reset value of the memory register
ddr2delay Change read datainput delay.

ddr2skew Change read skew.

mcfgl Show or set reset value of the memory controller register 1
mcfg2 Show or set reset value of the memory controller register 2
mcfg3 Show or set reset value of the memory controller register 3
sdcfgl Show or set reset value of SDRAM controller register 1
sddel Show or set the SDCLK delay

spim Commands for the SPI memory controller

5.15. Memory scrubber

The MEM SCRUB coreisaccessed using the command scr ub, see command descriptionin Appendix B, Command
syntax for more information. It provides commands for reading the core's status, and performing some basic
operations such as clearing memory.

GRMON2-UM 60 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

Theinfo sys command displays information on the configured burst length of the scrubber.

nmenscrubO Aerofl ex Gaisler AHB Menory Scrubber
AHB Master 1
AHB: FFE01000 - FFE01100

IRQ 28
burst I|ength: 32 bytes

5.16. MIL-STD-1553B Interface

The info sys command displays the enabled parts of the core, and the configured codec clock frequency. The
GR1553B core is accessed using the command mil, see command description in Appendix B, Command syntax
for more information.

gr1553b0 Aeroflex Gaisler ML-STD 1553B Interface

APB: FFA02000 - FFA02100

IRQ 26
features: BC RT BM codec clock: 20 Mz
Devi ce index: O

Examining data structures

The mil bex and mil bmx commands prints the contents of memory interpreted as BC descriptors or BM entries,
in human readable form, as seen in Example 5.4.

Example 5.4.

grnon2> m | bcx 0x40000080
Addr ess TType RTAddr:SA WC Bus Tries SITime TO Options Result vStat BufPtr

0x40000080 BC- RT 05: 30 1 B 01:Same 0 14 s NoRes 1 0000 40000000

0x40000090 RT-BC 05: 30 1 B 01:Same 0 14 s [Not witten] 40000040
0x400000a0 BC- RT 05: 30 2 B 01: Same 0 14 s [Not written] 40000000
0x400000b0 RT-BC 05: 30 2 B O01:Sane 0 14 s [Not witten] 40000040
0x400000c0 BC- RT 05: 30 3 B 01: Same 0 14 s [Not written] 40000000
0x400000d0 RT-BC 05: 30 3 B O0l:Sane 0 14 s [Not witten] 40000040
0x400000e0 BC- RT 05: 30 4 B 01: Same 0 14 s [Not written] 40000000

Datatransfers

If the GR1553B coreis BC capable, you can perform datatransfers directly from the GRMON command line. The
commands exist in two variants: mil get and mil put that specify data directly on the command line and through
the terminal, and mil getm and mil putm that sends/receives data to an addressin RAM.

In order to perform BC datatransfers, you must have atemporary buffer in memory to store descriptors and data,
thisis set up with the mil buf command.

The datatransfer commands use the asynchronous scheduling feature of the core, which means that the command
can be performed even if aregular BC schedule is running in parallel. The core will perform the transfer while
the primary schedule is idle and will not affect the schedule. It can even be run with BC software active in the
background, as long as the software does not make use of asynchronous transfer lists.

If the primary schedule blocks the asynchronous transfer for more than two seconds, the transfer will be aborted
and an error message is printed. This can happen if the running schedule does not have any slack, or if it is stuck
in suspended state or waiting for a sync pulse with no previous slot time left. In this case, you need to stop the
ordinary processing (see mil halt) and retry the transfer.

Temporary data buffer

Many of the mil subcommands need atemporary data buffer in order to do their work. The address of this buffer
is set using the mil buf command and defaultsto the start of RAM. By default the driver will read out the existing
contents and write it back after the transfer is done, this can be changed using the mil bufmode command.

If the core is on a different bus where the RAM is at another address range, the scratch area address in the core’s
address space should be given as an additional cor eaddr argument to the mil buf command.

Halting and resuming

The mil halt command will stop and disable the RT,BC and BM parts of the core, preventing them from creating
further DMA and 1553 bus traffic during debugging. Before this is done, the current enable state is stored, which
allowsit to later berestored using mil resume. The coreishalted gracefully and the command will wait for current
ongoing transfersto finish.

GRMON2-UM 61 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

The state preserved between mil halt and mil resume are:
» BC schedules (both primary and async) states and next positions. If scheduleis not stopped, the last transfer
statusis also preserved (as explained below)
* BCIRQ ring position
< RT address, enable status, subaddress table location, mode code control register, event log size and position
« BM enable status, filter settings, ring buffer pointers, time tag setup
State that is not preserved is:

* |RQ set/clear status

» BC schedule time register and current slot time | eft.
¢ RT buswords and sync register

e RT and BM timer values

* Descriptors and other memory contents

For the BC, some extra handling is necessary asthe last transfer status is not accessible via the register interface.
In some cases, the BC must be probed for the last transfer status by running a schedule with conditional suspends
and checking which ones are taken. This requires the temporary data buffer to be setup (see mil buf).

L oop-back test

The debug driver contains aloop-back test command mil Ibtest for testing 1553 transmission on both buses be-
tween two devices. In thistest, one of the devicesis configured as RT with aloop-back subaddress 30. The other
deviceis configured as BC, sends and receives back data with increasing transfer size up to the maximum of 32
words.

Themil Ibtest command needs a 16K RAM scratch area, which is either given as extraargument or selected using
the mil buf command as described in the previous section.

Before performing the loop-back test, the routine performs a test of the core’s internal time base, by reading out
the timer value at atime interval, and displays the result. Thisisto quickly identify if the clock provided to the
core has the wrong frequency.

In the RT case, the command first configures the RT to the address given and enables subaddress 30 in loop-
back mode with logging. The RT event log is then polled and events arriving are printed out to the console. The
command exits after 60 seconds of inactivity.

In the BC case, the command sets up a descriptor list with alternating BC-to-RT and RT-to-BC transfers of in-
creasing size. After running through the list, the received and transmitted data are compared. Thisislooped twice,
for each bus.

5.17. PCI

The debug driver for the PCI cores are mainly useful for PCI host systems. It provides acommand that initializes
the host. Theinitialization sets AHB to PCI memory addresstranslationto 1:1, AHB to PCI 1/O addresstranslation
to 1.1, points BAR1 to 0x40000000 and enables PCI memory space and bus mastering, but it will not configure
target bars. To configure the target bars on the pci bus, call pci conf after the core has been initialized. Commands
for scanning the bus, disabling byte twisting and displaying information are also provided.

The PCI cores are accessed using the command pci, see command description in Appendix B, Command syntax
for more information. Supported cores are GRPCI, GRPCI2 and PCIF.

The PCI commands have been split up into several sub commands in order for the user to have full control over
what ismodified. Theinit command initializesthe host controller, which may not be wanted when the LEON target
software has set up the PCI bus. Thetypical two different use casesare, GRMON configures PCl or GRMON scan
PCI to viewing the current configuration. In the former case GRMON can be used to debug PCI hardware and
the setup, it enables the user to set up PCI so that the CPU or GRMON can access PCI boards over 1/0, Memory
and/or Configuration space and the PCI board can do DMA to the 0x40000000 AMBA address. The latter case
is often used when debugging LEON PCI software, the developer may for example want to see how Linux has
configured PCI but not to alter anything that would require Linux to reboot. Below are command sequences of
the two typical use cases on the ML510 board:

GRMON2-UM 62 www.cobham.com/gaisler
April 2018, Version 2.0.93

grnon2> pci init

grnon2> pci conf

PCl devi ces found:

Bus O Slot 1 f

unction: 0 [0x8]

Vendor id: 0x10b9 (ULi Electronics Inc.)

Devi ce id: 0x5451 (Mb451 PCl AC-Link Controller Audio Device)

I RQ I NTA# LI
BAR 0: 1201 [

NE: O
2568]

BAR 1: 82206000 [4kB]

Bus 0 Slot 2 f

unction: 0 [0x10]

Vendor id: 0x10b9 (ULi Electronics Inc.)
Device id: 0x1533 (ML533/ ML535/ ML543 PCl to | SA Bridge [Al addin |V/V/V+])

Bus 0 Slot 3 f

unction: 0 [0x18]

Vendor id: 0x10b9 (ULi El ectronics Inc.)
Device id: 0x5457 (Ms457 AC 97 Modem Control | er)

I RQ I NTA# LI

NE: O

BAR 0: 82205000 [4kB]

BAR 1: 1101 [

Bus 0 Slot 6 f

2568

unction: 0 [0x30] (BRI DGE)

Vendor id: 0x3388 (Hint Corp)

Device id: 0x21 (HB6 Universal

Primary: 0 Secondary: 1 Subordinate: 1

[WRe; BASE:
MEM O BASE:
MEM BASE:

Bus 0 Slot 9 f

0x0000f 000, LIM T: 0x00000fff (DI SABLED)
0x82800000, LIMT: 0x830fffff (ENABLED)
0x80000000, LIMT: 0x820fffff (ENABLED)

unction: 0 [0x48] (BRI DGE)

Vendor id: 0x104c (Texas |nstrunents)
Device id: Oxac23 (PCl 2250 PCl-to-PCl Bridge)
Primary: 0 Secondary: 2 Subordinate: 2

1/1G BASE:
MEM O BASE:
MEM BASE:

Bus 0 Slot ¢ f

0x00001000, LIM T: 0x00001fff (ENABLED)
0x82200000, LIMT: 0x822fffff (ENABLED)
0x82100000, LIMT: 0x821fffff (ENABLED)

unction: 0 [0x60]

Vendor id: 0x10b9 (ULi Electronics Inc.)
Devi ce id: 0x7101 (M7101 Power Managenent Controller

Bus O Slot f f

unction: 0 [0x78]

Vendor id: 0x10b9 (ULi Electronics Inc.)
Devi ce id: 0x5237 (USB 1.1 Controller)

I RQ I NTA# LI

NE: O

BAR 0: 82204000 [4kB]

Bus 1 Slot O f

unction: 0 [0x100]

Vendor id: Ox102b (Matrox El ectronics Systens Ltd.)
Device id: 0x525 (MGA G400/ (450)

I RQ I NTA# LI

NE: O

BAR 0: 80000008 [32MB]
BAR 1: 83000000 [16kB]
BAR 2: 82800000 [8MB]
ROM 82000001 [128kB] (ENABLED)

Bus 2 Slot 2 f

Vendor id: Ox10b9 (ULi El ectronics Inc.

unction: 0 [0x210]

-

Devi ce id: 0x5237 (USB 1.1 Controller)

I RQ I NTB# LI

NE: O

BAR 0: 82202000 [4kB]

Bus 2 Slot 2 f
Vendor id: Ox

unction: 1 [0x211]
10b9 (ULi Electronics Inc.

-

Devi ce id: 0x5237 (USB 1.1 Controller)

I RQ I NTC# LI

NE: O

BAR 0: 82201000 [4kB]

Bus 2 Slot 2 f
Vendor id: Ox

unction: 2 [0x212]
10b9 (ULi Electronics Inc.

-

Devi ce id: 0x5237 (USB 1.1 Controller)

I RQ I NTD# LI

NE: O

BAR 0: 82200000 [4kB]

Bus 2 Slot 2 f
Vendor id: Ox

unction: 3 [0x213]
10b9 (ULi Electronics Inc.

-

Devi ce id: 0x5239 (USB 2.0 Controller)

I RQ I NTA# LI

NE: O

BAR 0: 82203200 [256B]

PCl - PCl bridge (non-transparent node))

COBHAM

GRMON2-UM

63

April 2018, Version 2.0.93

www.cobham.com/gaisler

COBHAM

Bus 2 Slot 3 function: 0 [0x218]

Vendor id: 0x1186 (D-Link SystemInc)

Devi ce id: 0x4000 (DL2000-based G gabit Ethernet)
IRQ INTA# LINE O

BAR 0: 1001 [256B]

BAR 1: 82203000 [512B]

ROM 82100001 [64kB] (ENABLED)

When analyzing the system, the sub commands info and scan can be called without altering the hardware config-

uration:
grnon2> pci info
GRPCl initiator/target (in systemslot):
Bus nmaster: yes
Mem space en: yes

Latency timer: Ox0
Byte twisting: disabled

MVAP: 0x8

| OVAP: oxfff2
BARO: 0x00000000
PAGEO: 0x40000001
BARL: 0x40000000
PAGEL: 0x40000000

grnon2> pci scan
Warning: PCl driver has not been initialized
Warning: PCl driver has not been initialized

PCl devices found:

Bus 0 Slot 1 function: 0 [Ox8]

Vendor id: 0x10b9 (ULi Electronics Inc.)

Devi ce id: 0x5451 (Mb451 PCl AC-Link Controller Audio Device)
IRQ INTA# LINE: O

BAR 0: 1201 [256B]

BAR 1: 82206000 [4kB]

Bus 0 Slot 2 function: 0 [0x10]
Vendor id: 0x10b9 (ULi Electronics Inc.)
Device id: 0x1533 (ML533/ ML535/ M543 PCl to | SA Bridge [Al addin |'V/V/V+])

Bus 0 Slot 3 function: 0 [0x18]

Vendor id: 0x10b9 (ULi Electronics Inc.)

Device id: 0x5457 (Ms457 AC 97 Modem Control | er)
IRQ INTA# LINE O

BAR 0: 82205000 [4kB]

BAR 1: 1101 [2568]

Bus 0 Slot 6 function: 0 [0x30] (BRI DGE)
Vendor id: 0x3388 (Hint Corp)
Device id: 0x21 (HB6 Universal PCl-PCl bridge (non-transparent node))
Primary: 0 Secondary: 1 Subordinate: 1
[WAe; BASE: 0x0000f 000, LIM T: 0x00000fff (DI SABLED)
MEM O BASE: 0x82800000, LIMT: 0x830fffff (ENABLED)
MEM BASE: 0x80000000, LIMT: 0x820fffff (ENABLED)

Bus 0 Slot 9 function: 0 [0x48] (BRI DGE)
Vendor id: 0x104c (Texas |nstrunents)
Devi ce id: Oxac23 (PCl 2250 PCl-to-PCl Bridge)
Primary: 0 Secondary: 2 Subordinate: 2
[WAe; BASE: 0x00001000, LIM T: 0x00001fff (ENABLED)
MEM O BASE: 0x82200000, LIMT: 0x822fffff (ENABLED)
MVEM BASE: 0x82100000, LIMT: 0x821fffff (ENABLED)

Bus 0 Slot c¢ function: 0 [0x60]
Vendor id: 0x10b9 (ULi Electronics Inc.)
Device id: 0x7101 (M7101 Power Managenent Controller [PMJ)

Bus 0 Slot f function: 0 [0x78]
Vendor id: 0x10b9 (ULi Electronics Inc.)
Devi ce id: 0x5237 (USB 1.1 Controller)
IRQ INTA# LINE: O
BAR 0: 82204000 [4kB]

Bus 1 Slot 0 function: 0 [0x100]
Vendor id: Ox102b (Matrox El ectronics Systens Ltd.)
Device id: 0x525 (MGA G400/ (450)

GRMON2-UM 64
April 2018, Version 2.0.93

www.cobham.com/gaisler

COBHAM

IRQ I NTA# LINE: 0
BAR 0: 80000008 [32MB]
BAR 1: 83000000 [16kB]
BAR 2: 82800000 [8MB]
ROM 82000001 [128kB] (ENABLED)

Bus 2 Slot 2 function: 0 [0x210]

Vendor id: Ox10b9 (ULi El ectronics Inc.
Devi ce id: 0x5237 (USB 1.1 Controller)
IRQ INTB# LINE O

BAR 0: 82202000 [4kB]

-

Bus 2 Slot 2 function: 1 [0x211]

Vendor id: Ox10b9 (ULi El ectronics Inc.
Devi ce id: 0x5237 (USB 1.1 Controller)
IRQ INTC# LINE O

BAR 0: 82201000 [4kB]

-

Bus 2 Slot 2 function: 2 [0x212]

Vendor id: Ox10b9 (ULi El ectronics Inc.
Devi ce id: 0x5237 (USB 1.1 Controller)
IRQ INTD# LINE O

BAR 0: 82200000 [4kB]

-

Bus 2 Slot 2 function: 3 [0x213]

Vendor id: Ox10b9 (ULi El ectronics Inc.
Devi ce id: 0x5239 (USB 2.0 Controller)
IRQ INTA# LINE: O

BAR 0: 82203200 [256B]

-

Bus 2 Slot 3 function: 0 [0x218]

Vendor id: 0x1186 (D-Link SystemInc)

Devi ce id: 0x4000 (DL2000-based G gabit Ethernet)
IRQ INTA# LINE O

BAR 0: 1001 [256B]

BAR 1: 82203000 [512B]

ROM 82100001 [64kB] (ENABLED)

grnon2> pci bus reg

grnon2> info sys pdev0 pdev5 pdev10

pdev0 Bus 00 Slot 01 Func 00 [O0:1:0]
vendor: 0x10b9 ULi El ectronics Inc.
devi ce: 0x5451 Mb451 PCI AC-Link Controller Audio Device
class: 040100 (MJLTI MEDI A)
BARL: 00001200 - 00001300 I/0O 32 [2568B]
BAR2: 82206000 - 82207000 MEM O [4kB]
I RQ | NTA# -> | RQX

pdev5 Bus 00 Slot 09 Func 00 [0:9:0]
vendor: 0x104c Texas |nstruments
devi ce: Oxac23 PCl 2250 PCl-to-PCl Bridge
class: 060400 (PCl-PC BRI DCE)
Primary: 0 Secondary: 2 Subordinate: 2
I/ O W ndow: 00001000 - 00002000
MEM O W ndow. 82200000 - 82300000
MEM W ndow: 82100000 - 82200000

pdev10 Bus 02 Slot 03 Func 00 [2:3:0]
vendor: 0x1186 D-Link SystemInc
devi ce: 0x4000 DL2000- based G gabit Ethernet
class: 020000 (ETHERNET)
subvendor: 0x1186, subdevice: 0x4004
BARL: 00001000 - 00001100 I/0O 32 [2568B]
BAR2: 82203000 - 82203200 MEM O [512B]
ROM 82100000 - 82110000 MEM [64kB]
I RQ | NTA# -> | RQW

A configured PCI system can beregistered into the GRMON device handling system similar to the on-chip AMBA
busdevices, controlled using the pci buscommands. GRMON will hold acopy of the PCI configurationin memory
until anew pci conf, pci bus unreg or pci scan is issued. The user is responsible for updating GRMON's PCl
configuration if the configuration is updated in hardware. The devices can be inspected from info sys and Tcl
variables making read and writing PCI devices configuration space easier. The Tcl variablesare named in asimilar
fashion to AMBA devices, for example puts $pdev0::status printsthe STATUS register of PCI deviceO. See pci
bus reference description and Appendix C, Tcl API.

NOTE: Only the pci info command has any effect on non-host systems.

Also note that the pci conf command can fail to configure all found devicesif the PCl address space addressable
by the PCI Host controller is smaller than the amount of memory needed by the devices.

GRMON2-UM 65 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

The pci scan command may fail if the PCI buses (PCI-PCI bridges) haven't been enumerated correctly in amul-
ti-bus PCI system.

After registering the PCI bus into GRMON's device handling system commands may access device information
and Tcl may access variables (PCl configuration space registers). Accessing bad PCI regions may lead to target
deadlock where the debug-link may disconnect/hang. It isthe user'sresponsibility to make surethat GRMON's PCI
informationiscorrect. The PCI bus may need to be re-scanned/unregistered when changesto the PCI configuration
has been made by the target OS running on the LEON.

5.17.1. PCIl Trace

The pci trace commands are supported by the cores PCITRACE, GRPCI2 and GRPCI2_TB. The commands can
be used to control thetrace and viewing trace data. With the commandsit is possibleto set up trigger conditionsthat
must match to set the trigger off. When the triggering condition is matched the AHBTRACE stops the recording
of the PCI bus and the log is available for inspection using the pci trace log command. The pci trace tdelay
command can be used to delay the stop of the trace recording after atrigging match.

Theinfo sys command displays the size of the trace buffer in number of lines.

pcitrace0 Aeroflex Gaisler 32-bit PCl Trace Buffer
APB: (C0101000 - ©0200000
Trace buffer size: 128 lines
pci 0 Aerofl ex Gaisler GCRPCI2 PCl/AHB bridge
AHB Master 5
AHB: C0000000 - DO000000
AHB: FFFO0000 - FFF40000
APB: 80000600 - 80000700
IRQ 6
Trace buffer size: 1024 lines
pcitracel Aeroflex Gaisler GRPCI2 Trace buffer
APB: 80040000 - 80080000
Trace buffer size: 1024 lines

5.18. SPI

The SPICTRL debug driver provides commands to configure the SPI controller core. The driver also enables the
user to perform simple data transfers. The info sys command displays the core’s FIFO depth and the number of
available slave select signals.

spi 0 Aeroflex Gaisler SPI Controller
APB: C0100000 - ©0100100
IRQ 23

FI FO depth: 8, 2 slave select signals
Maxi mum word length: 32 bits

Supports automated transfers

Supports automatic sl ave sel ect
Controller index for use in GRMON: O

The SPICTRL coreisaccessed using the command spi, see command description in Appendix B, Command syntax
for more information.

The debug driver has bindingsto the SPI memory devicelayer. These commands are accessed viaspi flash. Please
see Section 3.11.2, “SPI memory device” for more information.

NOTE: For information about the SPI memory controller (SPIMCTRL), see Section 5.14, “Memory controllers”.

5.19. SpaceWire router

The SPWROUTER coreis accessed using the command spwrtr, see command description in Appendix B, Com-
mand syntax for more information. It provides commands to display the core’s registers. The command can also
be used to display or setup the routing table.

Theinfo reg command only displays asubset of all theregistersavailable. Add - al | to theinfo reg command to
print al registers, or specify one or moreregister to print asubset. Add - | toinforegtolist al the register names.

grnon2> info reg -all -1 spwtr0

GRMON2-UM 66 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

CGRSPW Rout er
Oxf f880004 rtpnap_1 Port 1 routing table map
Oxf f 880008 rtpnap_2 Port 2 routing table map

Oxff88000c rtpmap_3 Port 3 routing table map

grmon2> info reg spwtrO::pctrl_2 spwtrO::rtpmap_2 spwtr0::rtpmap_64

CGRSPW Rout er

Oxff880808 Port 2 control 0x1300002c
CGRSPW Rout er

Oxff880008 Port 2 routing table map 0x00000021
CGRSPW Rout er

Oxff880100 Logical addr. 64 routing table map 0x00001c38

In addition, al registers and register fields are available as variables, see Tcl API more information.

The info sys command displays how many ports are implemented in the router.

spwtr0 Cobham Gai sl er GRSPW Rout er
AHB: FF880000 - FF881000
Instance id: 67
SpWports: 8 AMBA ports: 4 FIFOports: O

5.20. SVGA frame buffer

The SVGACTRL debug driver implements functions to report the available video clocks in the SVGA frame
buffer, and to display screen patters for testing. Theinfo sys command will display the available video clocks.

svgao Aerofl ex Gaisler SVGA frame buffer
AHB Master 2
APB: (0800000 - 0800100
cl kO: 25.00 MHz clkl: 25.00 MHz «clk2: 40.00 MHz clk3: 65.00 Mz

The SVGACTRL coreis accessed using the command svga, see command description in Appendix B, Command
syntax for more information.

The svga draw test_screen command will show asimple grid in the resolution specified viathe format selection.
The color depth can be either 16 or 32 hits.

The svgadraw fi | e command will determine the resolution of the specified picture and select an appropriate
format (resolution and refresh rate) based on the video clocks available to the core. The required file format is
ASCII PPM which must have a suitable amount of pixels. For instance, to draw a screen with resolution 640x480,
aPPM file which is 640 pixels wide and 480 pixels high must be used. ASCII PPM files can be created with, for
instance, the GNU Image Manipulation Program (The GIMP).

The svga custom peri od hori zontal -active-video horizontal -front-porch horizon-
tal -sync horizontal -back-porch vertical-active-video vertical-front-porch
vertical -sync verti cal - back- por ch command can be used to specify a custom format. The custom
format will have precedence when using the svga draw command.

GRMON2-UM 67 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

6. Support
For support contact the Cobham Gaisler support team at support@gaisler.com.

When contacting support, pleaseidentify yourself in full, including company affiliation and site name and address.
Please identify exactly what product that is used, specifying if it is an IP core (with full name of the library
distribution archive file), component, software version, compiler version, operating system version, debug tool
version, simulator tool version, board version, etc.

Please also provide a GRMON log file generated with the "-log logfile.txt" command line switch at start up.

The support service is only for paying customers with a support contract.

GRMON2-UM 68 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

Appendix A. Command index

This section lists all documented commands available in GRMONZ2.

Table A.1. GRMON command oveview

Command Description

Name

ahb Print AHB transfer entries in the trace buffer
amem Asynchronous bus read

attach Stop execution and attach GRMON to processor again
at Print AHB transfer entries in the trace buffer
batch Execute batch script

bdump Dump memory to afile

bload Load abinary file

bp Add, delete or list breakpoints

bt Print backtrace

cctrl Display or set cache control register

cont Continue execution

cpu Enable, disable CPU or select current active cpu
dcache Show, enable or disable data cache

dccfg Display or set data cache configuration register
dcom Print or clear debug link statistics

ddr2cfgl Show or set the reset value of the memory register
ddr2cfg2 Show or set the reset value of the memory register
ddr2cfg3 Show or set the reset value of the memory register
ddr2cfgd Show or set the reset value of the memory register
ddr2cfgs Show or set the reset value of the memory register
ddr2delay Change read datainput delay.

ddr2skew Change read skew.

detach Resume execution with GRMON detached from processor
disassemble Disassemble memory

dump Dump memory to afile

dwarf print or lookup dwarf information

edcl Print or set the EDCL ip

ecload Load afileinto an EEPROM

ehci Controll the USB host ECHI core

e Error injection

e Set entry point

exit Exit GRMON

flash Write, erase or show information about the flash
float Display FPU registers

forward Control 1VO forwarding

gdb Controll the builtin GDB remote server
GRMON2-UM 69 www.cobham.com/gaisler

April 2018, Version 2.0.93

COBHAM

Command Description
Name
go Start execution without any initialization
gr1553b MIL-STD-1553B Interface commands
greg Control clockgating
grpwm Controll the GRPWM core
grtmtx Control GRTM devices
help Print all commands or detailed help for a specific command
hist Print AHB transfer or intruction entries in the trace buffer
i2c Commands for the 12C masters
icache Show, enable or disable instruction cache
iccfg Display or set instruction cache configuration register
info Show information
inst Print intruction entries in the trace buffer
iommu Control 10 memory management unit
irq Force interrupts or read IRQ(A)MP status information
|2cache L2 cache control
|3stat Control Leon3 statistics unit
|4stat Control Leon4 statistics unit
la Control the LOGAN core
leon Print leon specific registers
load Load afile or print filenames of uploaded files
mcfgl Show or set reset value of the memory controller register 1
mcfg2 Show or set reset value of the memory controller register 2
mcfg3 Show or set reset value of the memory controller register 3
mdio Show PHY registers
memb AMBA bus 8-bit memory read access, list arange of addresses
memh AMBA bus 16-bit memory read access, list arange of addresses
mem AMBA bus 32-bit memory read access, list arange of addresses
mil MIL-STD-1553B Interface commands
mmu Print or set the SRMMU registers
nolog Suppress stdout of a command
pCi Control the PCI bus master
perf Measure performance
phyaddr Set the default PHY address
profile Enable, disable or show simple profiling
quit Quit the GRMON console
reg Show or set integer registers.
reset Reset drivers
rtg4fddr Print initilization sequence
rtgdserdes Print initilization sequence
run Reset and start execution
GRMON2-UM 70 www.cobham.com/gaisler

April 2018, Version 2.0.93

COBHAM

Command Description

Name

scrub Control memory scrubber

sdcfgl Show or set reset value of SDRAM controller register 1

sddel Show or set the SDCLK delay

sf2mddr Print initilization sequence

sf2serdes Print initilization sequence

shell Execute shell process

silent Suppress stdout of a command

spim Commands for the SPI memory controller

Spi Commands for the SPI controller

spwrtr Spacewire router information

stack Set or show theintial stack-pointer

step Step one ore more instructions

svga Commands for the SVGA controller

symbols Load, print or lookup symbols

thread Show OS-threads information or backtrace

timer Show information about the timer devices

tmode Select tracing mode between none, processor-only, AHB only or both.
uhci Controll the USB host UHCI core

usrsh Run commands in threaded user shell

va Trandate avirtual address

verify Verify that afile has been uploaded correctly

vmemb AMBA bus 8-bit virtual memory read access, list arange of addresses
vmemh AMBA bus 16-bit virtual memory read access, list arange of addresses
vmem AMBA bus 32-bit virtual memory read access, list arange of addresses
vwmemb AMBA bus 8-hit virtual memory write access

vwmemh AMBA bus 16-bit virtual memory write access

vwmems Write astring to an AMBA bus virtual memory address

vwmem AMBA bus 32-bit virtual memory write access

walk Translate a virtual address, print trandation

wash Clear or set memory areas

wmdio Set PHY registers

wmemb AMBA bus 8-bit memory write access

wmemh AMBA bus 16-bit memory write access

wmems Write astring to an AMBA bus memory address

wmem AMBA bus 32-bit memory write access

GRMON2-UM 71 www.cobham.com/gaisler

April 2018, Version 2.0.93

COBHAM
Appendix B. Command syntax

This section lists the syntax of all documented commands available in GRMON2.

GRMON2-UM 72 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

1. ahb - syntax

NAME

ahb - Print AHB transfer entries in the trace buffer
SYNOPSIS

ahb ? engt h?
ahb subcommand ?args. .. ?

DESCRIPTION

ahb A engt h?
Print the AHB trace buffer. The A engt h? entries will be printed, default is 10.

ahb break bool ean
Enable or disable if the AHB trace buffer should break the CPU into debug mode. If disabled it will freeze
the buffer and the cpu will continue to execute. Default value of the boolean is true.

ahb force ?bool ean?
Enable or disable the AHB trace buffer even when the processor is in debug mode. Default value of the
boolean istrue.

ahb performance ?bool ean?
Enable or disable the filter on the signals connected to the performance counters, see “LEON3 Statistics
Unit (L3STAT)” and “LEON4 Statistics Unit (LASTAT)". Only available for DSU3 version 2 and above,
and DSUA4.

ahb timer ?bool ean?
Enable the timetag counter when in debug mode. Default value of the boolean is true. Only available for
DSU3 version 2 and above, and DSUA4.

ahb delay cnt
If cnt isnon-zero, the CPU will enter debug-mode after delay trace entries after an AHB watchpoint was
hit.

ahb filter reads ?bool ean?

ahb filter writes ?bool ean?

ahb filter addresses ?bool ean??addr ess nask?
Enable or disable filtering options if supported by the DSU core. When enabling the addresses filter, the
second AHB breakpoint register will be used to define the range of the filter. Default value of the boolean
istrue. If left out, then the address and mask will be ignored. They can also be set with the command ahb
filter range. (Not available in all implementations)

ahb filter rangeaddr ess mask
Set thebase addr ess and mask that the AHB trace buffer will include if the address filtering is enabled.
(Only available in some DSU4 implementations).

ahb filter bwmask nask

ahb filter dwmask nmask
Set which AHB bus/data watchpoints that the filter will affect.

ahb filter mmask mask

ahb filter smask nask
Set which AHB masters or slaves connected to the bus to exclude. (Only available in some DSU4 imple-
mentations)

ahb status
Print AHB trace buffer settings.

RETURN VALUE

Upon successful completion, ahb returnsalist of trace buffer entries. Each entry isasublist on the format format:
{AHBti nme addr datarwtrans si ze naster | ock resp bp}. The data field is a sublist of 1,2 or 4
words with M Sb first, depending on the size of AMBA bus. Detailed description about the different fields can be
found in the DSU core documentation in document grip.pdf. [http://gaisler.com/products/grlib/grip.pdf]

The other subcommands have no return value.

GRMON2-UM 73 www.cobham.com/gaisler
April 2018, Version 2.0.93

http://gaisler.com/products/grlib/grip.pdf
http://gaisler.com/products/grlib/grip.pdf

COBHAM

EXAMPLE

Print 10 rows

grnon2> ahb

TIMVE ADDRESS D[127:96] D[95:64] D[63:32] D 31:0] TYPE
266718 FF900004 00000084 00000084 00000084 00000084 read ...
266727 FF900000 0000000D 0000000D 0000000D 0000000D write ..
266760 000085C0 C2042054 80A06000 02800003 01000000 read
266781 00008500 C2260000 81C7E008 91E80008 9DE3BF98 read
266812 0000B440 00000000 00000000 00000000 00000000 read
266833 0000B450 00000000 00000000 00000000 00000000 read
266899 00002640 02800005 01000000 C216600C 82106040 read
266920 00002650 C236600C 40001CBD 90100011 1080062E read
266986 00000800 91D02000 01000000 01000000 01000000 read
267007 00000810 91D02000 01000000 01000000 01000000 read

TCL returns:

{AHB 266718 OxFF900004 {0x00000084 0x00000084 0x00000084 0x00000084} RO 2 2
0 00 0} {AHB 266727 OxFF900000 {0x0000000D 0x0000000D 0x0000000D 0x0000000D}
W0 2 2 00 0 0} {AHB 266760 0x000085C0 {0xC2042054 0x80A06000 0x02800003
0x01000000} RO 2 4 1 0 0 0} {AHB 266781 0x000085D0 ...

Print 2 rows

grmon2> ahb 2
TI ME ADDRESS [127:96] Df95:64] D[63:32] Df31:0] TYPE
266986 00000800 91D02000 01000000 01000000 01000000 read
267007 00000810 91D02000 01000000 01000000 01000000 read

TCL returns:

{AHB 266986 0x00000800 {0x91D02000 0x01000000 0x01000000 0x01000000} RO 2 4
100 0} {AHB 267007 0x00000810 {0x91D02000 0x01000000 0x01000000 0x01000000}
R0O34100 0}

SEE ALSO

Section 3.4.9, “Using the trace buffer”
tmode

GRMON2-UM 74 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

2. amem - syntax
NAME

amem - Asynchronous bus read

SYNOPSIS
amem
amem| i st

amem subcomrand ?ar g?
DESCRIPTION

The amem command is used to schedule bus read transfers for later retrieval of the result. Each transfer is asso-
ciated with a handle that has to be created before starting a transfer. Multiple concurrent transfers are supported
by using separate handles per transfer.
amem
amem list
List all amem handles and their states. An amem state isone of | DLE, RUN or DONE.

amem add nane
Create a new amem handle named named name. The name is used as an identifier for the handle when
using other amem commands.

amem delete nane
Delete the amem handle named nane.

amem eval nane address | engt h
Schedule a bus read access for the handle nane toread | engt h bytes, starting at addr ess. If atransfer
isalready in progress, then the command will fail with the error code set to EBUSY.

amem wait name
Wait for an access to finish. The command returns when handle name is no longer in the RUN state.

amem result nane
Return the result of a previous read access if finished, or raise an error if not finished.

amem prio name val ue?
Display or set debug link priority for ahandle. 0 isthe highest priority and 4 is the lowest.

amem state name
Display and return the current state of a handle.

RETURN VALUE

amem list returns alist of amem handle entries. Each entry isa sublist of the format: { nane st at e}.
amem result returns the read data.

amem prio returns the priority.

amem state returns one of the strings | DLE, RUN or DONE.
EXAMPLE

Create a handle named myhandl| e and schedule aread of 1 MiB from address O in the background.

grmon2> armem add nyhandl e
Added anem handl e: nyhandl e

grmon2> armem eval nyhandl e 0 0x100000

grmon2> set nyresult [amemresult nyhandl e]

List handles

grnon2> anem | i st

GRMON2-UM 75 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

grnon2> anem | i st

NAMVE STATE ADDRESS LENGTH PRIO NREQ BYTES ERRORS
nyhandl e IDLE - - 4 1 1048576 0
testO DONE 0x00000004 0x00000064 4 1 100 0
SEE ALSO
mem
Section 3.4.7, “ Displaying memory contents”
GRMON2-UM 76

www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

3. attach - syntax

attach - Stop execution and attach GRMON to processor again
SYNOPSIS

attach

DESCRIPTION

attach
This command will stop the execution on al CPUs that was started by the command detach and attach
GRMON again.

RETURN VALUE

Command attach has no return value.

GRMON2-UM 77 www.cobham.com/gaisler
April 2018, Version 2.0.93

4., at - syntax

NAME

at - Print ahb transfer entries in the trace buffer
SYNOPSIS

at 2 engt h?
at subcommand ?args. .. ?

DESCRIPTION
at A engt h?2devnane?

COBHAM

Print the AHB trace buffer. The A engt h? entries will be printed, default is 10.

at bpl ?opti ons??addr ess nask??2devnane?
at bp2 20pt i ons??addr ess nask??2devnane?

Sets trace buffer breakpoint to address and mask. Available optionsare-read or-wri t e.

at bsel ?bus? 2devname?
Selects bus to trace (not available in all implementations)
at delay 7cnt ? 2devnane?
Delay the stops the trace buffer recording after match.
at disable 2devname?
Stops the trace buffer recording
at enable 2devnane?
Armsthe trace buffer and starts recording.
at filter reads ?bool ean??2devnane?
at filter writes ?bool ean?2devnane?

at filter addresses ?bool ean??addr ess nmask??2devnane?
Enable or disablefiltering optionsif supported by the core. When enabling the addresses filter, the second
AHB breakpoint register will be used to define the range of thefilter. Default value of the booleanistrue. If
|eft out, then the address and mask will beignored. They can also be set with the command at filter range.
at filter range 7addr ess mask? 2devnane?
Set thebase addr ess and mask that the AHB trace buffer will include if the address filtering is enabled.

at filter mmask nask 2devnane?
at filter smask nask 2devnane?

Set which AHB masters or slaves connected to the bus to exclude. (Only available in some DSU4 imple-

mentations)
at log 2devnane?
Print the whole AHB trace buffer.

at status 2devnane?
Print AHB trace buffer settings.

RETURN VALUE

Upon successful completion, at returnsalist of trace buffer entries, on the same format asthe command ahb. Each
entry is a sublist on the format format: {AHBti ne addr datarwtrans size master lockrespirq
bp}. Thedatafield is a sublist of 1,2 or 4 words with MSh first, depending on the size of AMBA bus. Detailed
description about the different fields can be found in the DSU core documentation in document grip.pdf. [http://

gaisler.com/products/grlib/grip.pdf]
The other subcommands have no return value.
EXAMPLE

Print 10 rows

grmon2> at

TIME ADDRESS D{127:96] D[95:64] D[63:32] D[31:0] TYPE ...

266718 FF900004 00000084 00000084 00000084 00000084 read

266727 FF900000 0000000D 0000000D 0000000D 0000000D write ...

GRMON2-UM 78
April 2018, Version 2.0.93

www.cobham.com/gaisler

http://gaisler.com/products/grlib/grip.pdf
http://gaisler.com/products/grlib/grip.pdf
http://gaisler.com/products/grlib/grip.pdf

COBHAM

266760 000085C0 (C2042054 80A06000 02800003 01000000 read
266781 000085D0 (C2260000 81C7E008 91E80008 9DE3BF98 read
266812 0000B440 00000000 00000000 00000000 00000000 read
266833 0000B450 00000000 00000000 00000000 00000000 read
266899 00002640 02800005 01000000 C216600C 82106040 read
266920 00002650 (C236600C 40001CBD 90100011 1080062E read
266986 00000800 91D02000 01000000 01000000 01000000 read
267007 00000810 91D02000 01000000 01000000 01000000 read

TCL returns:

{ AHB 266718 0xFF900004 { 0x00000084 0x00000084 0x00000084 0x00000084} R0 220
0 00 0} {AHB 266727 OxFF900000 {0x0000000D 0x0000000D 0x0000000D 0x0000000D}
W0 220000 0} {AHB 266760 0x000085C0 {0xC2042054 0x80A06000 0x02800003
0x01000000} RO 2 4 1 0 0 0 0} {AHB 266781 0x000085D0 ...

Print 2 rows

grnmon2> at 2
TI ME ADDRESS [f 127:96] Df95:64] D[63:32] Df31:0] TYPE ...
266986 00000800 91D02000 01000000 01000000 01000000 read
267007 00000810 91D02000 01000000 01000000 01000000 read

TCL returns:

{ AHB 266986 0x00000800 {0x91D02000 0x01000000 0x01000000 0x01000000} RO 24 1
0 0 0 0} {at 267007 0x00000810 {0x91D02000 0x01000000 0x01000000 0x01000000}
R0O341000 0}

SEE ALSO

Section 3.4.9, “Using the trace buffer”
tmode

GRMON2-UM 79 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

5. batch - syntax

NAME

batch - Execute a batch script

SYNOPSIS

batch 2opti ons?fil enanme 7args...?

DESCRIPTION
batch
Execute a TCL script. The batch is similar to the TCL command source, except that the batch command
sets up the variables argv0, argv and argc in the global namespace. While executing the scrip, argvO will
contain the script filename, argv will contain alist of al the arguments that appear after the filename and
argc will be the length of argv.

OPTIONS

-echo
Echo al commands/procedures that the TCL interpreter calls.
-prefix ?stri ng?
Print a prefix on each row when echoing commands. Has no effect unless -echo is also set.

RETURN VALUE

Command batch has no return value.

GRMON2-UM 80 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

6. bdump - syntax

NAME

bdump - Dump memory to afile.
SYNOPSIS

bdump addr ess | engt h X i | enanme?
DESCRIPTION

The bdump command may be used to store memory contents abinary file. It'san alias for ‘dump -binary'.

bdump addr ess | engt h % i | ename?
Dumps | engt h bytes, starting at addr ess, to afilein binary format. The default name of the file is
"grmon-dump.bin"

RETURN VALUE
Command bdump has no return value.
EXAMPLE

Dump 32kB of data from address 0x40000000
grmon2> bdunp 0x40000000 32768

GRMON2-UM 81 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

7. bload - syntax

NAME

bload - Load abinary file

SYNOPSIS

bload 2opti ons. .. ?fi | enanme ?addr ess? 2cpu#?
DESCRIPTION

The bload command may be used to upload a binary file to the system. It'san alias for 'load -binary'. When afile
isloaded, GRMON will reset the memory controllers registersfirst.
bload 7opti ons. .. ?fil ename 7addr ess? 2cpu#?
The load command may be used to upload the file specified by fi | enane. If the addr ess argument
is present, then binary files will be stored at this address, if left out then they will be placed at the base
address of the detected RAM. The cpu# argument can be used to specify which CPU it belongs to. The
options is specified below.

OPTIONS

- del ay ms
The - del ay option can be used to specify a delay between each word written. If the delay is non-zero
then the maximum block size is 4 bytes.

- bsi ze bytes
The - bsi ze option may be used to specify the size blocks of datain bytes that will be written. Sizes that
are not even words may require a JTAG based debug link to work properly. See Chapter 4, Debug link
for more information.

- wpr ot
If the - wpr ot option is given then write protection on the core will be disabled

RETURN VALUE
Command bload returns a guessed entry point.
EXAMPLE

L oad and then verify abinary datafile at a 16M Bytes offset into the main memory starting at 0x40000000.

grnmon2> bl oad rel ease/ranfs. cpi 0. gz 0x41000000
grmon2> verify rel ease/ranfs. cpi 0. gz 0x41000000

SEE ALSO

Section 3.4.2, “Uploading application and data to target memory”

GRMON2-UM 82 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

8. bp - syntax

NAME

bp - Add, delete or list breakpoints
SYNOPSIS

bp ?addr ess? cpu#?

bptype ?0pti ons?addr ess 2rask? cpu#?
bp delete 7 ndex?

bp enable % ndex?

bp disable 7 ndex?

DESCRIPTION

The bp command may be used to list, add or delete all kinds of breakpoints. The addr ess parameter that is
specified when creating a breakpoint can either be an address or a symbol. The mask parameter can be used to
break on arange of addresses. If omitted, the default value is Oxfffffffc (i.e. asingle address).

Software breakpoints are inserted by replacing an instruction in the memory with abreakpoint instruction. 1.e. any
cpu in amulti-core system that encounters this breakpoint will break.

Hardware breakpoints/watchpoints will be set to asingle cpu core.

When adding a breakpoint a cpu# may optionally be specified to associate the breakpoint with a CPU. The CPU
index will be used to lookup symbols, mmu translations and for hardware breakpoints/watchpoints.

bp ?addr ess? 2cpu#?
When omitting the address parameter this command will list breakpoints. If the address parameter is spec-
ified, it will create a software breakpoint.

bp soft addr ess cpu#?
Create a software breakpoint.

bp hard addr ess 2mask? ?cpu#?
Create a hardware breakpoint.

bp watch ?2opt i ons?addr ess 2mask? 2cpu#?
Create a hardware watchpoint. The options - r ead/- wr i t e can be used to make it watch only reads or
writes, by default it will watch both reads and writes.

bp bus?opt i ons?addr ess 2mask? 2cpu#?
Create an AMBA-bus watchpoint. The options - r ead/- wr i t e can be used to make it watch only reads
or writes, by default it will watch both reads and writes.

bp data ?2opt i ons?val ue 2rask? 2cpu#?
Create an AMBA datawatchpoint. Theval ue and mask parameters may be up to 128 bits, but number of
bits used depends on width of the bus on the system. Valid options are - addr and - i nvert . If - addr
isspecified, thenalso-read or - wri t e arevalid. See below for a description of the options.

bp delete ? ndex. . ?
When omitting the index all breakpoints will be deleted. If one or more indexes are specified, then those
breakpoints will be deleted. Listing al breakpoints will show the indexes of the breakpoints.

bp enable? ndex. . ?
When omitting the index all breakpoints will be enabled. If one or more indexes are specified, then those
breakpoints will be enabled. Listing all breakpoints will show the indexes of the breakpoints.

bp disable ? ndex. . ?
When omitting the index all breakpoints will be disabled. If one or more indexes are specified, then those
breakpoints will be disabled. Listing al breakpoints will show the indexes of the breakpoints.

OPTIONS

-read
This option will enable awatchpoint to only watch loads at the specified address. The-read and-wri t e
are mutual exclusive.

GRMON2-UM 83 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

-wite
Thisoption will enable awatchpoint to only watch stores at the specified address. The-r ead and-wri t e
are mutual exclusive.

-addr address nask
This option will combine an AMBA data watchpoint with a a bus watchpoint so it will only trigger if a
valueis read accessed from a certain address range.

-invert
The AMBA data watchpoint will trigger of valueis NOT set.

End of options. This might be needed to set if value the first parameter after the optionsis negative.
RETURN VALUE
Command bp returns an breakpoint id when adding a new breakpoint.

When printing all breakpoints, a list will be returned containing one element per breakpoint. Each element has
theformat: {ID ADDR MASK TYPE ENABLED CPU SYMBOL {DATA INV DATAMASK}}. AMBA watch-
points and AMBA data watchpoints will only have associated CPUs if has a symbol. The last subelement is only
valid for AMBA data watchpoints.

EXAMPLE

Create a software breakpoint at the symbol main:
grnon2> bp soft main

Create a AMBA bus watchpoint that watches loads in the address range of 0x40000000 to 0x400000FF:
grnon2> bp bus -read 0x40000000 OxFFFFFFOO

SEE ALSO

Section 3.4.4, “Inserting breakpoints and watchpoints’

GRMON2-UM 84 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

9. bt - syntax
NAME

bt - Print backtrace
SYNOPSIS

bt 2cpu#?

DESCRIPTION

bt 2cpu#?
Print backtrace on current active CPU, optionally specify which CPU to show.

RETURN VALUE
Upon successful completion bt returns alist of tuples, where each tuple consist of a PC- and SP-register values.
EXAMPLE

Show backtrace on current active CPU
gr non2> bt

TCL returns:
{1073746404 1342177032} {1073746020 1342177136} {1073781172 1342177200}

Show backtrace on CPU 1
grnon2> bt cpul

TCL returns:
{1073746404 1342177032} {1073746020 1342177136} {1073781172 1342177200}

SEE ALSO

Section 3.4.6, “Backtracing function calls’

GRMON2-UM 85 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

10. cctrl - syntax

NAME

cctrl - Display or set cache control register
SYNOPSIS

cctrl val ue? 2cpu#?
cctrl flush 2cpu#?

DESCRIPTION
cctrl val ue? 2cpu#?
Display or set cache control register

cctrl flush 2cpu#?
Flushes both instruction and data cache

RETURN VALUE

Upon successful completion cctrl will return the value of the cache control register.

SEE ALSO
- ni ¢ and - ndc switches described in Section 5.3.1, “ Switches’
SEE ALSO

Section 3.4.15, “ CPU cache support”

GRMON2-UM 86
April 2018, Version 2.0.93

www.cobham.com/gaisler

COBHAM

11. cont - syntax
NAME

cont - Continue execution
SYNOPSIS

cont 2opt i ons?2count ?

DESCRIPTION

cont 2opti ons??count ?
Continue execution. If 2count ?is set, then only execute the specified number of instructions (only sup-
ported by DSU4).

OPTIONS

- nor et
Do not evaluate the return value. Then this optionsis set, no return value will be set.

RETURN VALUE

Upon successful completion run returns alist of signals, one per CPU. Possible signal values are SIGBUS, SIGF-
PE, SIGILL, SIGINT, SIGSEGV, SIGTERM or SIGTRAP. If a CPU is disabled, then a empty string will be
returned instead of asignal value.

EXAMPLE

Continue execution from current PC
grnon2> cont

SEE ALSO

Section 3.4.3, “Running applications’

GRMON2-UM 87 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

12. cpu - syntax
cpu - Enable, disable CPU or select current active CPU
SYNOPSIS

cpu
cpu enablecpui d
cpu enablecpui d
cpu activecpui d

DESCRIPTION

Control processorsin LEON3 multi-processor (MP) systems.
cpu
Without parameters, the cpu command prints the processor status.
cpu enablecpui d
cpu disablecpui d
Enable/disable the specified CPU.
cpu activecpui d
Set current active CPU

RETURN VALUE

Upon successful completion cpu returns the active CPU and a list of booleans, one per CPU, describing if they
are enabled or disabled.

The sub commands has no return value.
EXAMPLE

Set current activeto CPU 1
grnon2> cpu active 1

Print processor statusin atwo-processor system when CPU 1 is active and disabled.
grnon2> cpu

TCL returns:
1 {1 0}

SEE ALSO

Section 3.4.12, “Multi-processor support”

GRMON2-UM 88 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

13. dcache - syntax

NAME

dcache - Show, enable or disable data cache
SYNOPSIS

dcache ?bool ean? 2cpu#?

dcachediag i ndex?? i ndex? 2cpu#?

dcacheflush 2cpu#?

dcacheway wi ndex 2 i ndex? 2cpu#?

dcachetagwi ndex | i ndex wval ue? 2 brmask? cpu#?

DESCRIPTION

In all forms of the dcache command, the optional parameter ?cpu#? specifies which CPU to operate on. The
active CPU will be used if parameter is omitted.
dcache ?bool ean? 2cpu#?
If 2bool ean?is not given then show the content of all ways. If 2bool ean?is present, then enable or
disable the data cache.
dcachediag i ndex?? i ndex? 2cpu#?
Check if the data cache is consistent with the memory. Optionally a specific way or line can be checked.
dcache flush 2cpu#?
Flushes the data cache
dcacheway wi ndex 2 i ndex? 2cpu#?
Show the contents of specified way wi ndex or optionally a specificline? i ndex?.
dcachetagw ndex | i ndex val ue?? bmask? 2cpu#?
Read or write a raw data cache tag value. Way and line is selected with wi ndex and | i ndex. The pa-
rameter val ue, if given, iswritten to thetag. The optional parameter t brrask is xored with the test check
bits generated by the cache controller during the write.

RETURN VALUE

Command dcache diag returns alist of all inconsistent entries. Each element of the list contains CPU id, way id,
lineid, word id, physical address, cached data and the data from the memory.

Command dcachetag returns the tag value on read.
The other dcache commands have no return value.
SEE ALSO

Section 3.4.15, “ CPU cache support”
icache

GRMON2-UM 89 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

14. dccfg - syntax

NAME

dccfg - Display or set data cache configuration register
SYNOPSIS

dccfg val ue? cpu#?

DESCRIPTION
dccfg val ue? cpu#?

Display or set data cache configuration register for the active CPU. GRMON will not keep track of this
register value and will not reinitialize the register when starting or resuming software execution.
RETURN VALUE
Upon successful completion decfg will return the value of the data cache configuration register.
SEE ALSO
- ni ¢ and - ndc switches described in Section 5.3.1, “ Switches”
SEE ALSO

Section 3.4.15, “CPU cache support”

GRMON2-UM 90 www.cobham.com/gaisler
April 2018, Version 2.0.93

15. dcom - syntax

NAME

dcom - Print or clear debug link statistics
SYNOPSIS

dcom
dcom clear

DESCRIPTION
dcom
dcom clear
Print debug link statistics.
Clear debug link statistics.

RETURN VALUE

Upon successful completion dcom has no return value.

COBHAM

GRMON2-UM
April 2018, Version 2.0.93

91

www.cobham.com/gaisler

COBHAM

16. ddr2cfgl - syntax

ddr2cfgl - Show or set the reset value of the memory register
SYNOPSIS

ddr2cfgl ?val ue?

DESCRIPTION

ddr2cfgl val ue?
Set the reset value of the memory register. If value is |eft out, then the reset value will be printed.

RETURN VALUE

Upon successful completion ddr cfgl returns athe value of the register.
SEE ALSO

Section 5.14, “Memory controllers”

GRMON2-UM 92 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

17. ddr2cfg2 - syntax

ddr2cfg2 - Show or set the reset value of the memory register
SYNOPSIS

ddr2cfg2 val ue?

DESCRIPTION

ddr2cfg2 val ue?
Set the reset value of the memory register. If value is |eft out, then the reset value will be printed.

RETURN VALUE

Upon successful completion ddr cfg2 returns athe value of the register.
SEE ALSO

Section 5.14, “Memory controllers”

GRMON2-UM 93 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

18. ddr2cfg3 - syntax

ddr2cfg3 - Show or set the reset value of the memory register
SYNOPSIS

ddr2cfg3 ?val ue?

DESCRIPTION

ddr2cfg3 val ue?
Set the reset value of the memory register. If value is |eft out, then the reset value will be printed.

RETURN VALUE

Upon successful completion ddr cfg3 returns athe value of the register.
SEE ALSO

Section 5.14, “Memory controllers”

GRMON2-UM 94 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

19. ddr2cfg4 - syntax

ddr2cfg4 - Show or set the reset value of the memory register
SYNOPSIS

ddr2cfgd val ue?

DESCRIPTION

ddr2cfg4 val ue?
Set the reset value of the memory register. If value is |eft out, then the reset value will be printed.

RETURN VALUE

Upon successful completion ddr cfg4 returns athe value of the register.
SEE ALSO

Section 5.14, “Memory controllers”

GRMON2-UM 95 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

20. ddr2cfg5h - syntax

ddr2cfg5 - Show or set the reset value of the memory register
SYNOPSIS

ddr2cfgs val ue?

DESCRIPTION

ddr2cfg5 val ue?
Set the reset value of the memory register. If value is |eft out, then the reset value will be printed.

RETURN VALUE
Upon successful completion ddr cfg5 returns athe value of the register.
SEE ALSO

Section 5.14, “Memory controllers”

GRMON2-UM 96 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

21. ddr2delay - syntax
ddr2delay - Change read data input delay
SYNOPSIS

ddr2delay ?subcommand? ?args...?

DESCRIPTION

ddr2delay inc ?st eps?

ddr2delay dec ?st eps?

ddr2delay val ue?
Use inc to increment the delay with one tap-delay for all data bytes. Use dec to decrement all delays. A
val ue can be specified to calibrate each data byte separately. Theval ue iswritten to the 16 LSB of the
DDR2 control register 3.

ddr2delay reset
Set the delay to the default value.

ddr2delay scan
The scan subcommand will run a calibration routine that searches over all tap delays and read delay values
to find working settings. Supports only Xilinx Virtex currently

NOTE: The scan may overwrite beginning of memory.

RETURN VALUE
Command ddr2delay has no return value.
SEE ALSO

Section 5.14, “Memory controllers”

GRMON2-UM 97 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

22. ddr2skew - syntax
ddr2skew - Change read skew.
SYNOPSIS

ddr2skew ?subcommand? ?args...?

DESCRIPTION

ddr2skew inc ?st eps?

ddr2skew dec 7st eps?
Increment/decrement the delay with one step. Commands inc and dec can optionally be given the number
of steps to increment/decrement as an argument.

ddr2skew reset
Set the skew to the default value.

RETURN VALUE
Command ddr 2skew has no return value.
SEE ALSO

Section 5.14, “Memory controllers”

GRMON2-UM 98 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

GRMON2-UM 99 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

23. detach - syntax

detach - Resume execution with GRMON detached from processor
SYNOPSIS

detach

DESCRIPTION

detach
This command will detach GRMON and resume execution on enabled CPUs.

RETURN VALUE

Command detach has no return value.

GRMON2-UM 100 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

24. disassemble - syntax
disassemble - Disassemble memory
SYNOPSIS

disassemble ?addr ess? ?l engt h? ?cpu#?
disassemble-r st art st op ?cpu#?

DESCRIPTION

disassemble ?addr ess? ?l engt h? ?cpu#?
Disassemble memory. If length is left out it defaults to 16 and the address defaults to current PC value.
Symbols may be used as address.

disassemble-r st art st op ?cpu#?
Disassemble arange of instructions between address start and stop, including start and excluding stop.

RETURN VALUE
Command disassemble has no return value.
SEE ALSO

Section 3.4.7, “Displaying memory contents’

GRMON2-UM 101 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

25. dump - syntax

NAME

dump - Dump memory to afile.

SYNOPSIS

dump ?options...?address | ength il enane?

DESCRIPTION

dump ?options...?address | ength il enane?
Dumps| engt h bytes, starting at addr ess, to afile in Motorola SREC format. The default name of the
fileis"grmon-dump.srec"

OPTIONS
- bi nary
The - bi nar y option can be used to store data to a binary file
- bsi ze
The - bsi ze option may be used to specify the size blocks of data in bytes that will be read. Sizes that

are not even words may require a JTAG based debug link to work properly. See Chapter 4, Debug link
more information.

- append
Set the - append option to append the dumped data to the end of the file. The default is to truncate the
file to zero length before storing the datainto thefile.

RETURN VALUE
Command dump has no return value.
EXAMPLE

Dump 32kB of data from address 0x40000000
gr non2> dunp 0x40000000 32768

GRMON2-UM 102 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

26. dwarf - syntax

NAME

dwarf - print or lookup DWARF debug information
SYNOPSIS

dwarf subconmand ?ar g?

DESCRIPTION

The dwarf command can be used to retrieve line information of afile.

dwarf addr2line addr ?cpu#?

This command will lookup the filename and line number for a given address.
dwarf clear 2cpu#?

Remove all dwarf debug information to the active CPU or a specific CPU.

RETURN VALUE

Upon successful completion dwarf addr2line will return a list where the first element is the filename and the
second element is the line number.

EXAMPLE

Retrieve the line information for address Oxf 0014000.
grmon2> dwarf addr 2l i ne 0xf 0014000

SEE ALSO
load

GRMON2-UM 103 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

27. edcl - syntax
NAME

edcl - Print or set the EDCL ip
SYNOPSIS

edcl 7 p? 2gr et h#?

DESCRIPTION

edcl 7 p? 2gr et h#?
If an ip-addressis supplied then it will be set, otherwise the command will print the current EDCL ip. The
EDCL will be disabled if the ip-address is set to zero and enabled if set to a normal address. If more than
one device exists in the system, the dev# can be used to select device, default is devO.

RETURN VALUE
Command edcl has no return value.
EXAMPLE

Set ip-address 192.168.0.123
grnon2> edcl 192.168.0. 123

SEE ALSO

Section 5.4, “ Ethernet controller”

GRMON2-UM 104 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

28. eeload - syntax

NAME

ecload - Load afileinto an EEPROM
SYNOPSIS

ecload ?opti ons. .. ?fil ename cpu#?

DESCRIPTION

The eeload command may be used to upload afile to a EEPROM. It's an alias for 'load -delay 1 -bsize 4 -wprot'.
When afileisloaded, GRMON will reset the memory controllers registersfirst.

ecdload ?opti ons. .. ?fi |l ename ?addr ess? 2cpu#?
The load command may be used to upload the file specified by f i | enane. It will also try to disable write
protection on the memory core. If theaddr ess argument is present, then binary fileswill be stored at this
address, if left out then they will be placed at the base address of the detected RAM. The cpu# argument
can be used to specify which CPU it belongs to. The optionsis specified below.

OPTIONS
- bi nary
The - bi nary option can be used to force GRMON to interpret the file asabinary file.
- bsi ze bytes
The - bsi ze option may be used to specify the size blocks of data in bytes that will be written. Valid
valueare 1, 2 or 4. Sizes 1 and 2 may require a JTAG based debug link to work properly See Chapter 4,
Debug link more information.

- debug
If the - debug option is given the DWARF debug information isread in.

RETURN VALUE
Command eeload returns the entry point.
EXAMPLE

Load and then verify ahello_world application

grmon2> eeload ../hello_world/hello_world
grmon2> verify ../hello_world/hello_world

SEE ALSO

Section 3.4.2, “Uploading application and data to target memory”

GRMON2-UM 105 www.cobham.com/gaisler
April 2018, Version 2.0.93

29. ehci - syntax

NAME

ehci - Control the USB host's ECHI core
SYNOPSIS

ehci subcommand ?args. .. ?

DESCRIPTION

ehci endian 2devnane?

Displays the endian conversion setting
ehci capregs 2devnane?

Displays contents of the capability registers
ehci opregs 2devnane?

Displays contents of the operational registers
ehci reset 27devnane?

Performs aHost Controller Reset

RETURN VALUE

Upon successful completion, ehci have no return value.

SEE ALSO

Section 5.6, “USB Host Controller”

COBHAM

GRMON2-UM 106

April 2018, Version 2.0.93

www.cobham.com/gaisler

COBHAM

30. ei - syntax

NAME

€ - Inject errorsin CPU cache and register files
SYNOPSIS

el subcomuand 7args. .. ?
DESCRIPTION

Errorswill beinjected according to the CPU configuration. Injection of errorsin I TAG, IDATA, DTAG, DDATA,
STAG, IU register file and FP register file is supported.

eunnrt?
Enable error injection, uniform error distribution mode. nr errors are inserted during the time period of t
minutes. Errors are uniformly distributed over the time period.

eava?
Enableerror injection, average error rate mode. Errorswill beinserted during the whol e program execution.
Average error rateisr errors per second.

ei disable
Disable error injection.

e log il enanme?

e logdi sabl e
Enable/disable error injection log. The error injection log is saved in filelog_file.

e stat

e stat ?enabl e?

e stat 2di sabl e?
Show, enable or disable error injection statistics. When enabled, the SEU correction counters are modified.
This option should not be used with software which itself monitors SEU error counters.

e prob

e prob itag dtag idata ddata stag iurf fprf 2cpu#?
Show or set probability of each error injection target. Each injection target has an associated probability
valuefrom 0.0 to 1.0. The value 0.0 means that no errors will be injected in the target. A value higher than
0.0 means that the error will be injected with the specified probability.

When no parameter is given to el praob, then the currently configured values are listed. The second form
configures the probabilities from user supplied decimal numbers. Target CPU is selected with the cpu#
parameter. If no CPU parameter is given, then the current CPU is used.

RETURN VALUE

Command &i has no return value.

EXAMPLE

Configure el to inject errors only in the data cache tags and instruction cache tags (DTAG and ITAG) of cpuO:
grnon2> ei prob 1.0 1.0 0.0 0.0 0.0 0.0 0.0 cpuO

grnmon2> ei prob 0.0 0.0 0.0 0.0 0.0 0.0 0.0 cpul

List the currently configured target probabilities:
grnon2> ei prob

SEE ALSO

Section 3.10.2, “LEONS-FT error injection”
icache

GRMON2-UM 107 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

dcache

GRMON2-UM 108 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

31. ep - syntax
NAME

ep - Set entry point
SYNOPSIS

ep Cpu#?
ep ?- - ?val ue cpu#?
ep disable 2cpu#?

DESCRIPTION

ep cpu#?
Show current active CPUs entry point, or the CPU specified by cpu#.

ep ?- - ?val ue cpu#?
Set the current active CPUs entry point, or the CPU specified by cpu#. The only option availableis'--' and
it marks the end of options. It should be used if a symbol name is in conflict with a subcommand (i.e. a
symbol called "disable").

ep disable 2cpu#?
Remove the entry point from the current active CPU or the the CPU specified by cpu#.

RETURN VALUE

Upon successful completion ep returns alist of entry points, one for each CPU. If cpu# is specified, then only the
entry point for that CPU will be returned.

EXAMPLE

Set current active CPUs entry point to 0x40000000
grnmon2> ep 0x40000000

SEE ALSO

Section 3.4.12, “Multi-processor support”

GRMON2-UM 109 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

32. exit - syntax

NAME

exit - Exit the GRMONZ2 application
SYNOPSIS

exit 2code?

DESCRIPTION

exit code?
Exit the GRMON2 application. GRMON will return O or the code specified.

RETURN VALUE
Command exit has no return value.
EXAMPLE

Exit the GRMONZ2 application with return code 1.
grmon2> exit 1

GRMON2-UM 110 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

33. flash - syntax

NAME

flash - Write, erase or show information about the flash
SYNOPSIS

flash

flash blank all

flash blank st art ?st op?
flash burst ?bool ean?

flash erase dll

flash erasest art ?st op?
flash load 2opti ons. .. ?fi | enane ?addr ess? 2cpu#?
flash lock all

flash lock st art ?st op?
flash lockdown all

flash lockdown st art ?st op?
flash query

flash scan ?addr ?

flash status

flash unlock all

flash unlock st art ?st op?
flash wbuf | engt h

flash writeaddr ess dat a

DESCRIPTION

GRMON supports programming of CFl compatible flash PROM attached to the external memory bus of LEON2
and LEON3 systems. Flash programming is only supported if the target system contains one of the following
memory controllers MCTRL, FTMCTRL, FTSRCTRL or SSRCTRL. The PROM buswidth can be 8-, 16- or 32-
bit. It isimperative that the prom width inthe MCFGL1 register correctly reflects the width of the external prom. To
program 8-hit and 16-bit PROMSs, the target system must also have at least one working SRAM or SDRAM bank.

When one of the flash commands are issued GRMON will probe for a CFl compatible memory at the beginning
of the PROM area. GRMON will only control one flash memory at the time. If there are multiple CFl compatible
flash memories connected to the PROM area, then it is possible to switch device using the command flash scan
addr . If the PROM width or banksize is changed in the memory controller registers are changed, then GRMON
will discard any probed CFl inforatation, and anew flash scan command have to be issued.

There are many different suppliers of CFl devices, and some implements their own command set. The command
set is specified by the CFI query register 14 (MSB) and 13 (LSB). The value for these register can in most cases
be found in the datasheset of the CFl device. GRMON supports the command sets that are listed in Table 3.3,
“Supported CFI command set” in section Section 3.11.1, “ CFl compatible Flash PROM”.

The sub commands erase, lock, lockdown and unlock works on memory blocks (the subcommand blank have
the same parameters, but operates on addresses). These commands operate on the block that the st ar t address
belong. If the st op parameter is also given the commands will operate on all the blocks between and including
the blocks that the st art and st op belongs to. |.a the keyword 'al' can be given instead of the start address,
then the command will operate on the whole memory.

flash
Print the flash memory configuration.

flash blank all

flash blank st art ?st op?
Check that the flash memory is blank, i.e. can be re-programmed. See description above about the param-
eters.

GRMON2-UM 111 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

flash burst ?bool ean?
Enable or disable flash burst write. Disabling the burst will decrease performance and requires either that
acpuisavailablein the system or that a JTAG debuglink is used. This feature is only has effect when a 8-
bit or 16-bit Intel style flash memory that is connected to a memory controller that supports bursting.

flash erase al

flash erasest art ?st op?
Erase aflash block. See description above about the parameters.

flash load ?opti ons. .. ?fi | ename ?addr ess? 2cpu#?
Program the flash memory with the contentsfile. Theload command may be used to upload thefile specified
by fil ename. If theaddr ess argument is present, then binary fileswill be stored at this address, if |eft
out then they will be placed at the base address of the detected ROM. The cpu# argument can be used
to specify which CPU it belongs to.

The - bi nar y option can be used to force GRMON to interpret the file as a binary file.

The- nol ock option can be used to prevent GRMON from checking the protection bitsto seeiif the block
islocked before trying to load data to the block.

flash lock all

flash lock st art ?st op?
Lock aflash block. See description above about the parameters.

flash lockdown all

flash lockdown st art ?st op?
Lockdown aflash block. Work only on Intel-style deviceswhich supportslock-down. See description above
about the parameters.

flash query
Print the flash query registers

flash scan ?addr ?
Probe the address for a CFl flash. If the addr parameter is set, then GRMON will probe for a new memory
at the address. If the addr parameter is unset, GRMON will probe for a new memory att the beginning of
the PROM area. If the addr parameter is unset, and a memory has adready been probed, then GRMON
will only return the address of the last probed memory.

flash status
Print the flash lock status register

flash unlock all

flash unlock st art ?st op?
Unlock aflash block. See description above about the parameters.

flash wbuf | engt h
Limit the CFI auto-detected write buffer length. Zero disables the write buffer command and will perform
single-word access only. -1 will reset to auto-detected value.

flash writeaddr ess dat a
Write a 32-bit data word to the flash at address addr.

RETURN VALUE

Command flash scan returns the base address of the CFI compatible memory.
The other flash commands has no return value.

EXAMPLE

A typical command sequence to erase and re-program a flash memory could be:

grnon2> flash unl ock all
grnon2> flash erase all
grnon2> flash load file.prom
grnon2> flash | ock all

SEE ALSO
Section 3.11.1, “ CFl compatible Flash PROM”

GRMON2-UM 112 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

34. float - syntax
NAME

float - Display FPU registers
SYNOPSIS

float

DESCRIPTION

float
Display FPU registers

RETURN VALUE

Upon successful completion float returns 2 lists. The first list contains the values when the registers represents
floats, and the second list contain the double-values.

SEE ALSO

Section 3.4.5, “Displaying processor registers’

GRMON2-UM 113 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

35. forward - syntax
NAME

forward - Control /O forwarding
SYNOPSIS

forward

forward list

forward enabledevnane ?channel ?
forward disabledevnane

forward modedevnane val ue

DESCRIPTION
forward
forward list
List all enabled devicesisthe current shell.
forward enable devnane ?channel ?
Enable I/0O forwarding for adevice. If acustom channdl is not specified, then the default channel for the
shell will be enabled. The I/O forwarding configuration is stored per shell.
forward disable devname
Disable I/0 forwarding for adevice.
forward modedevnane val ue
Set forwarding mode. Valid values are "loopback”, "debug” or "none".

RETURN VALUE
Upon successful completion forwar d has no return value.
EXAMPLE

Enable 1/0O forwarding
grnon2> forward enable uartO

Enable /O forwarding to afile
grnon2> forward enable uartO [open "grnon2. out" w

GRMON2-UM 114 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

36. gdb - syntax

NAME

gdb - Control the built in GDB remote server
SYNOPSIS

gdb ?port ?
gdb stop
gdb status

DESCRIPTION
gdb ?port ?
Start the built in GDB remote server, optionally listen to the specified port. Default port is 2222.
gdb stop
Stop the built in GDB remote server.
gdb status
Print status

RETURN VALUE

Only the command 'gdb status' has areturn value. Upon successful completion gdb statusreturns atuple, where
the first value represents the status (O stopped, 1 connected, 2 waiting for connection) and the second value is
the port number.

SEE ALSO

Section 3.7, “GDB interface”
Section 3.2, “ Starting GRMON”

GRMON2-UM 115 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

37. go - syntax

go - Start execution without any initialization
SYNOPSIS

go ?opt i ons??addr ess? 2count ?

DESCRIPTION

go ?opti ons??addr ess??count ?
This command will start the executing instruction on the active CPU, without resetting any drivers. When
omitting the address parameter this command will start execution at the entry point from the last loaded
application. If thecount parameter is set then the CPU will run the specified number of instructions. Note
that the count parameter is only supported by the DSU4.

OPTIONS

- nor et
Do not evauate the return value. Then this optionsis set, no return value will be set.

RETURN VALUE

Upon successful completion run returns alist of signals, one per CPU. Possible signal values are SIGBUS, SIGF-
PE, SIGILL, SIGINT, SIGSEGV, SIGTERM or SIGTRAP. If a CPU is disabled, then a empty string will be
returned instead of asignal value.

EXAMPLE

Execute instructions starting at 0x40000000.
grnmon2> go 0x40000000

SEE ALSO

Section 3.4.3, “Running applications’

GRMON2-UM 116 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

38. gr1553b - syntax
gr1553b - MIL-STD-1553B |nterface commands

SYNOPSIS

gr 1553b ?subcommand? ?args...?

DESCRIPTION

The gr 1553b command is an alias for the mil> command. See help of command mil> for more information.

GRMON2-UM 117 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

39. grcg - syntax
NAME

grcg - Control clock gating
SYNOPSIS

grcg subconmand ?ar gs?
grcgi ndex subcomand ?ar gs?

DESCRIPTION

This command provides functions to control the GRCLKGATE core. If more than one core exists in the system,
then the index of the core to control should be specified after the grcg command (before the subcommand). The
i nf o sys'command lists the controller indexes.
grcg clkinfo
Show register values.
grcg enable nunber
grecg disable nunber
Enable or disable aclock gate. Argument nunber may be replaced by the keyword al | .

RETURN VALUE

Upon successful completion gr cg clkinfo returns three masks, where each bit of the masks represents aclock gate.
The first mask shows unlock-bits, the second enabled-bits and the third reset-bits.

The other sub commands has no return value.
EXAMPLE

Enable all clock gates
grnon2> grcg enable all

Enable all clock gates on the core with index 1
grnon2> grcg 1 enable all

GRMON2-UM 118 www.cobham.com/gaisler
April 2018, Version 2.0.93

40. grpwm - syntax

NAME

grpwm - Control GRPWM core
SYNOPSIS

grpwm subcommand ?ar gs. . . ?

DESCRIPTION

grpwm info 2devnane?

Displays information about the GRPWM core
grpwm wave 2devnane?

Displays the waveform table

RETURN VALUE
Command gr pwm wave returns alist of wave data.

The other gr pwm commands have no return value.

COBHAM

GRMON2-UM
April 2018, Version 2.0.93

119

www.cobham.com/gaisler

41. grtmtx - syntax
grtmtx - Control GRTM devices
SYNOPSIS

grtmtx ?subcommand? ?args...?

DESCRIPTION

grtmtx
Display status
grtmtx reset
Reset DMA and TM encoder
grtmtx release
Release TM encoder
grtmtxrater at e
Set rate register
grtmtx len nbyt es
Set frame length (actual number of bytes)
grtmtx limit nbyt es
Set limit length (actual number of bytes)
grtmtx on
grtmtx off
Enable/disable the TM encoder
grtmtx reg
List register contents
grtmtx conf
List design options

RETURN VALUE

Command grtmtx has no return value.

COBHAM

GRMON2-UM
April 2018, Version 2.0.93

120

www.cobham.com/gaisler

COBHAM

42. help - syntax

NAME

help - Print all GRMON commands or detailed help for a specific command
SYNOPSIS

help ?2command?

DESCRIPTION

help 2conmand?
When omitting the command parameter this command will list commands. If the command parameter is
specified, it will print along detailed description of the command.

RETURN VALUE
Command help has no return value.
EXAMPLE

List all commands:
grnon2> hel p

Show detailed help of command 'mem’:
grnon2> hel p mem

GRMON2-UM 121 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

43. hist - syntax

NAME

hist - Print AHB transfers or instruction entries in the trace buffer
SYNOPSIS

hist A engt h? 2cpu#?

DESCRIPTION

hist 2 engt h?
Print the hist trace buffer. The A engt h? entries will be printed, default is 10. Use cpu# to select cpul.

RETURN VALUE

Upon successful completion, inst returns a list of mixed AHB and instruction trace buffer entries, sorted after
time. Thefirst value in each entry is either the literal string AHB or | NST indicating the type of entry. For more
information about the entry values, see return values described for commands ahb and inst.

EXAMPLE

Print 10 rows

grmon2> hi st

TI ME ADDRESS | NSTRUCTI ONS/ AHB SI GNALS RESULT/ DATA

266951 000021D4 restore %0, %0 [0000000D]
266954 000019E4 nmov 0, %1 [00000000]
266955 O000019E8 nov %gl, %0 [00000000]
266956 O000019EC ret [000019EC]
266957 O000019F0 restore [00000000]
266960 0000106C call 0x00009904 [0000106C]
266961 00001070 nop [00000000]
266962 00009904 nmov 1, %1l [00000001]
266963 00009908 ta O0x0 [TRAP]
266986 00000800 AHB read mst=0 size=4 [91D02000 01000000 01000000 0100]

TCL returns:

{I NST 266951 0x000021D4 0x91E80008 0x0000000D O 0 0} {INST 266954 Ox000019E4
0x82102000 0x00000000 0 O 0} {INST 266955 0x000019E8 0xB0100001 0x00000000
0 0 0} {INST 266956 0x000019EC ...

Print 2 rows
grnon2> hist 2

TIMVE ADDRESS | NSTRUCTI ONS/ AHB S| GNALS RESULT/ DATA

266963 00009908 ta O0x0 [TRAP]

266986 00000800 AHB read nst=0 size=4 [91D02000 01000000 01000000 0100]
TCL returns:

{I NST 266963 0x00009908 0x91D02000 0x00000000 0 1 0} {AHB 266986 0x00000800
{0x91D02000 0x01000000 0x01000000 0x01000000} RO 2 4 1 0 0 0}

SEE ALSO

Section 3.4.9, “Using the trace buffer”

GRMON2-UM 122 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

44.12c - syntax

NAME

i2c - Commands for the 12C masters
SYNOPSIS

i2c subcomand ?args...?
i2ci ndex subconmmand ?args. .. ?

DESCRIPTION

This command provides functions to control the SPICTRL core. If more than one core exists in the system, then
the index of the core to control should be specified after the i2c command (before the subcommand). The'i nf o
sys' command lists the device indexes.
i2c bitrater at e
Initializesthe prescaler register. Valid keywordsfor the parameter r at e arenor nal , f ast orhi speed.
i2c disable
i2c enable
Enable/Disable the core
i2cread i 2caddr ?addr ??cnt ?
Performscnt sequential reads starting at memory locationaddr fromslavewithi 2caddr . Default value
of cnt isl. If only i 2caddr is specified, then asimple read will be performed.
i2c scan
Scans the bus for devices.
i2c status
Displays some status information about the core and the bus.
i2cwritei 2caddr ?addr ?dat a
Writes dat a to memory location addr on slave with addressi 2caddr . If only i 2caddr and dat a is
specified, then a simple write will be performed.

Commands to interact with DVI transmitters:

i2c dvi devices
List supported devices.
i2c dvi delay di recti on
Change delay applied to clock before latching data. Valid keywords for di r ect i on arei nc or dec.
i2c dvi init_l4itx_dvi 2 df ?
i2c dvi init_l4itx_vga 7 df ?
Initializes Chrontel CH7301C DVI transmitter with values that are appropriate for the GR-LEON4-ITX
board with DVI/VGA output. The optional i df value selects the multiplexed data input format, default
isIDF 2.
i2c dvi init_mI50x_dvi 7 df ?
i2c dvi init_mlI50x_vga 7 df ?
Initializes Chrontel CH7301C DV transmitter with values that are appropriate for aML50x board with a"
standard LEON/GRLIB template design for DVI/VGA output. The optional i df value selects the multi-
plexed data input format, default is IDF 2.
i2c dvi setdev devnr
Set DVI transmitter type. See command i2c dvi devicesto list valid values of the parameter devnr .
i2c dvi showreg
Show DVI transmitter registers

RETURN VALUE

Upon successful completion i2c read returns a list of values read. The i2c dvi showreg return a list of tuples,
where the first element is the register address and the second element is the value.

The other sub commands has no return value.

GRMON2-UM 123 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

45. icache - syntax

NAME

icache - Show, enable or disable instruction cache
SYNOPSIS

icache ?bool ean? 2cpu#?

icachediag i ndex?? i ndex? 2cpu#?

icache flush ?cpu#?

icacheway wi ndex 2 i ndex? 2cpu#?

icachetagwi ndex | i ndex val ue?? bmask? 2cpu#?

DESCRIPTION

Inall formsof theicache command, the optional parameter ?c pu#? specifieswhich CPU to operate on. Theactive
CPU will be used if parameter is omitted.
icache ?bool ean? 2cpu#?
If 2bool ean?is not given then show the content of all ways. If 2bool ean?is present, then enable or
disable the instruction cache.
icachediag Wi ndex?? i ndex? 2cpu#?
Check if the instruction cache is consistent with the memory. Optionally a specific way or line can be
checked.
icache flush 2cpu#?
Flushes the instruction cache
icacheway wi ndex 2 i ndex? 2cpu#?
Show the contents of specified way wi ndex or optionally a specificline? i ndex?.
icachetagwi ndex | i ndex ?val ue?? brmask? 2cpu#?
Read or write araw instruction cache tag value. Way and line is selected withwi ndex and| i ndex. The
parameter val ue, if given, is written to the tag. The optional parameter t brrask is xored with the test
check bits generated by the cache controller during the write.

RETURN VALUE

Command icache diag returns alist of all inconsistent entries. Each element of the list contains CPU id, way id,
lineid, word id, physical address, cached data and the data from the memory.

Command icachetag returns the tag value on read.
The other icache commands have no return value.
SEE ALSO

Section 3.4.15, “ CPU cache support”
dcache

GRMON2-UM 124 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

46. iccfg - syntax

NAME

iccfg - Display or set instruction cache configuration register
SYNOPSIS

iccfg val ue? cpu#?

DESCRIPTION
iccfg val ue? 2cpu#?

Display or set instruction cache configuration register for the active CPU. GRMON will not keep track of
this register value and will not reinitialize the register when starting or resuming software execution.
RETURN VALUE
Upon successful completion iccfg will return the value of the instruction cache configuration register.
SEE ALSO
- ni ¢ and - ndc switches described in Section 5.3.1, “ Switches”
SEE ALSO

Section 3.4.15, “CPU cache support”

GRMON2-UM 125 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

47. info - syntax

NAME

info - GRMON2 extends the TCL command info with some subcommands to show information about the system.
SYNOPSIS

info subcommand ?ar gs. .. ?

DESCRIPTION

infodrivers
List all available device-drivers

info mkprom2
List the most basic mkprom2 commandline switches. GRMON will print flags to use the first GPTIMER
and IRQMP controller and it will usethe same UART for output as GRMON (see Section 3.9, “ Forwarding
application console 1/0”). l.a. it will produce switches for all memory controllers found. In case that there
exist more the one controller it's up to the user make sure that only switches belonging to one controller
are used.

inforeg ?opti ons??dev?
Show system registers. If a device name is passed to the command, then only the registers belonging to
that device is printed. The device name can be suffixed with colon and a register name to only print the
specified register.

If option - v is specified, then GRMON will print the field names and values of each registers. If a debug
driver doesn't support this feature, then the register valueis printed instead.

Setting - | will print the name of the registers, that can be used to access the registers via TCL variables.
It also returns alist of all the register names. No registers values will be read.

Setting - a will also return the address in the list of all the register names. Will only have an effect if -
| isalso set.

Setting - d will also return the description in the list of all the register names. Will only have an effect if
-l isalso set.

Enabling - al | will print al registers. Normally only a subset is printed. This option may print a lot of
registers. | could also cause read accesses to FIFOs.

infosys?opti ons??dev ...?
Show system configuration. If one or more device names are passed to the command, then only the infor-
mation about those devices are printed.

If option - v is specified, then GRMON will print verbose information about the devices.

Theoption-xm <fi | e> can beused to print axml description of the system to afileinstead of printing
information on the screen.

RETURN VALUE
info drivers has no return value.
info mkprom2 returns alist of switches.

The command info reg returns a list of all registersiif the - | is specified. If both options -1 and - v have been
entered it returns a list where each element is a list of the register name and the name of the registers fields.
Otherwiseit has no return value.

Upon successful completion info sysreturnsalist of al device names.

For other info subcommands, see TCL documentation.

GRMON2-UM 126 www.cobham.com/gaisler
April 2018, Version 2.0.93

EXAMPLE

Show all devicesin the system

grmon2> info sys

ahbjtag0 Aeroflex Gaisler JTAG Debug Link

AHB Master O
adevl Aerofl ex Gaisler EDCL naster interface
AHB Master 2
Show only the DSU

grmon2> info sys dsu0

dsu0 Aerofl ex Gaisler LEON4 Debug Support Unit
AHB: E0000000 - E4000000
AHB trace: 256 lines, 128-bit bus
CPUO: wn 8, hwop 2, itrace 256, V8 mul/div,

stack pointer Ox07fffff0
icache 4 * 4 kB, 32 B/line lru
dcache 4 * 4 kB, 32 B/line lru

win 8 hwbp 2, itrace 256, V8 nul/div,
stack pointer Ox07fffff0
icache 4 * 4 kB, 32 B/line lru
dcache 4 * 4 kB, 32 B/line lru

CPUL:

Show detailed information on st at us register of uar t 0.

grmon2> info reg -v uartO::status
Generic UART
Oxff900004 UART Status register

31:26 recnt 0x0 Rx FI FO count

25:20 tecent 0x0 Tx FI FO count

10 rf 0x0 Rx FI FO full
SEE ALSO

Section 3.4.1, “Examining the hardware configuration”

srmmu, | ddel 1,
srmmu, | ddel 1,
0x00000086

COBHAM

GRFPU

GRFPU

GRMON2-UM
April 2018, Version 2.0.93

127

www.cobham.com/gaisler

COBHAM

48. inst - syntax

NAME

inst - Print AHB transfer or instruction entries in the trace buffer

SYNOPSIS

inst A engt h?
inst subcommand ?ar gs. .. ?

DESCRIPTION

inst 2 engt h? 2cpu#?
Print theinst trace buffer. The 2 engt h?entrieswill be printed, default is10. Use cpu# to sel ect single cpu.

inst filter 2cpu#?
Print the instruction trace buffer filter.

inst filter 2f | t ? 2cpu#?
Set the instruction trace buffer filter. See DSU manual for values of f | t . (Only available in some DSU4
implementations). Use cpu# to set filter select asingle cpu.

inst filter asildigit val . . . ? 2cpu#?
Set which last digits that should be filtered. Only valid if filter is set to OE. (Only available in some DSU
implementations)

inst filter range 7 ndex? ?addr ? 2mask? ?2excl ? 2cpu#?
Setup atrace filter to include or exclude instructions that is within the range. Up to four range filtersis
supported. (Only available in some DSU implementations)

RETURN VALUE

Upon successful completion, inst returnsalist of trace buffer entries. Each entry isa sublist on the format format:
{INSTtineaddr inst result trapemnt}. Detailed description about the different fields can be found
in the DSU core documentation in document grip.pdf [http://gaisler.com/products/grlib/grip.pdf]

The other subcommands have no return value.

EXAMPLE
Print 10 rows
grnmon2> inst
TI ME ADDRESS I NSTRUCTI ON RESULT
266951 000021D4 restore %0, %0 [0000000D]
266954 000019E4 nov 0, %l [00000000]
266955 000019E8 nmov %gl, %0 [00000000]
266956 000019EC ret [000019EC]
266957 000019F0 restore [00000000]
266960 0000106C call 0x00009904 [0000106C]
266961 00001070 nop [00000000]
266962 00009904 nov 1, %l [00000001]
266963 00009908 ta 0x0 [TRAP]
267009 00000800 ta O0x0 [TRAP]
TCL returns:

{I'NST 266951 0x000021D4 0x91E80008 0x0000000D O 0 0} {I NST 266954 0x000019E4
0x82102000 0x00000000 0 O 0O} {INST 266955 0x000019E8 0xB0100001 0x00000000
0 0 0} {INST 266956 0x000019EC ...

Print 2 rows
grnon2> inst 2
TI MVE ADDRESS I NSTRUCTI ON RESULT

266951 000021D4 restore %0, %0 [0000000D]
266954 000019E4 nov 0, %1 [00000000]

TCL returns:

GRMON2-UM 128 www.cobham.com/gaisler
April 2018, Version 2.0.93

http://gaisler.com/products/grlib/grip.pdf
http://gaisler.com/products/grlib/grip.pdf

COBHAM

{I NST 266951 0x000021D4 0x91E80008 0x0000000D O 0 0} {INST 266954 0x000019E4
0x82102000 0x00000000 0 O 0}

SEE ALSO

Section 3.4.9, “Using the trace buffer”

GRMON2-UM 129 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

49. iommu - syntax

NAME

iommu - Control 10 memory management unit
SYNOPSIS

iommu subconmmand ?ar gs?
iommu i ndex subcommand ?ar gs?

DESCRIPTION

This command provides functionsto control the GRIOMMU core. If morethan one core existsin the system, then
the index of the core to control should be specified after the iommu command (before the subcommand). The
i nf o sys'command lists the controller indexes.

iommu apv allow base st art st op
Modify existing APV at base allowing accessto the addressrangest art - st op

iommu apv build base pr ot
Create APV dtarting at base with default bit value pr ot

iommu apv decode base
Decode APV starting at base

iommu apv deny base start stop
Modify existing APV at base denying accessto the addressrangest art - st op

iommu cache addr addr grp
Displays cached information for 1/0 address addr ingroup gr p

iommu cacheerrinj addr dt ?byt e?
Inject dataltag parity error at set address addr , data byte byt e. The parameter dt should be either 'tag’
or 'data

iommu cache flush
Invalidate all entriesin cache

iommu cache show | i ne ?count ?
Shows information about count linestarting at | i ne

iommu cachewriteaddr data0 ... dataNtag
Write full cache lineincluding tag at set address addr , i.e. the number of data words depends on the size
of the cache line. See example below.

iommu disable

iommu enable
Disables/enable the core

iommu group gr p? ?base passt hrough active?
Show/set information about group(s). When no parameters are given, information about all groups will be
shown. If theindex gr p isgiven then only that group will be shown. When all parameters are set, thefields
will be assigned to the group.

iommu info
Displays information about IOMMU configuration

iommu mstbmap ?nst ? 2gr p?
Show/set information about master->group assignments. When no parameters are given, information about
all masterswill be shown. If theindex st is given then only that master will be shown. When all param-
eters are set, master mst will be assigned to group gr p

iommu mstbmap ?nst ? 7ahb?
Show/set information about master->AHB interface assignments. When no parameters are given, informa-
tion about all masterswill be shown. If theindex st is given then only that master will be shown. When
all parameters are set, master mst will be assigned to AHB interface ahb

iommu pagetable build base wri t eabl eval i d
Create page table starting at base with all writable fields set towr i t eabl e and al valid fields set to
val i d. 1:1 map starting at physical address 0.

iommu pagetable lookup base i oaddr
L ookup specified |O address in page table starting at base.

GRMON2-UM 130 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

iommu pagetable modify base i oaddr phyaddr witeablevalid

Modify existing PT at base, translatei oaddr tophyaddr,witeabl e,valid
iommu status

Displays core status information

RETURN VALUE

Upon successful completion iommu apv docode returns a list of triples, where each triple contains start, stop
and protection bit.

Command iommu cache addr returns atuple, containing valid and protection bits.

Command iommu cache show returns alist of entries. Each entry contains line address, tag and the cached data
words.

The other subcommands have no return value.
EXAMPLE

Show info on a system with one core
grnon2> i ommu info

Show info of the second core in a system with multiple cores
grnon2> iomu 1 info

Writes set address 0x23 with the 128-hit cache line 0x000000008F000000FFFFFFFF00000000 and tag Ox1 (valid
line)
grnon2> i ommu cache wite 0x23 0x0 Ox8F000000 OxFFFFFFFF 0x0 Ox1

GRMON2-UM 131 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

50. irq - syntax

NAME

irg - Force interrupts or read IRQ(A)MP status information
SYNOPSIS

irqsubcommand ar gs. . .

DESCRIPTION

This command provides functions to force interrupts and reading IRQM P status information. The command also
support the ASMP extension provided in the IRQ(A)MP core.
irg boot 2mask?
Boot CPUs specified by mask (for IRQ(A)MP)
irqctrl 2 ndex?
Show/select controller register interface to use (for IRQ(A)MP)
irqforceirq
Forceinterrupti rq
irqreg
Display some of the core registers
irq routing
Decode controller routing (for IRQ(A)MP)
irq tstamp
Show time stamp registers (for IRQ(A)MP)
irq wdog
Decode Watchdog control register (for IRQ(A)MP)

RETURN VALUE

Command irq has no return value.

GRMON2-UM 132 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

51. 12cache - syntax
NAME

[2cache - L2 cache control
SYNOPSIS

[2cache subcommand ?ar gs?

DESCRIPTION

|2cache lookup addr
Prints the data and status of acachelineif addr generates a cache hit.
|2cache show data 2way? ?count ? 2st art ?
Prints the data of count cacheline starting at cachelinest art .
|2cache show tag ?count ? ?start ?
Prints the tag of count cacheline starting at cachelinest art .
|2cache enable
Enable the cache.
|2cache disable
|2cache disable flushinvalidate
Disable the cache. If f | ushi nval i dat e isgiven, al dirty cache lines are invalidated and written back
to memory as an atomic operation.
|2cacheft ?bool ean?
Enable or disable the EDAC. If boolean is not set, then the command will show if the EDAC is enabled
or disabled.
|2cache flush
|2cacheflush all nrode?
Perform a cache flush to all cache lines using aflush mode.
|2cache flush mem addr ess ?node?
Perform a cache flush to the cache lines with a cache hit for addr using aflush node.
|2cache flush direct addr ess ?node?
Perform a cache flush to the cache lines addressed with addr using a flush mode.
|2cache invalidate
Invalidate al cache lines
|2cache flushinvalidate
Flush and invalidate al cache lines (copy-back)
|2cache hit
Prints the hit rate statistics.
|2cachewt ?bool ean?
Enable or disable the write-through. If boolean is not set, then the command will show if write-through
is enabled or disabled.
|2cache hprot ?bool ean?
Enable or disable the HPROT. If boolean is not set, then the command will show if HPROT is enabled
or disabled.
|2cache smode ?node?
Set the statistics mode. If the node is not set, then the command will show the current statistics mode.
|2cache error
|2cache error inject
|2cache error reset
|2cache error dcb val ue?
|2cacheerror tcb 2val ue?
Thel2cacheerror used to show information about an error in the L 2-cache and the information is cleared
with 12cache error reset. |.a. thel2cache error inject can be used to create an error. The I2cache error
dcb and |2cache error tcb can be used to read or write the dataltag check bits.
|2cache mtrr i ndex? wval ue?
Show all or aspecific memory type rangeregister. If valueis present, then the specified register will be set.

GRMON2-UM 133 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

|2cache split bool ean
Enable or disable AHB SPLIT response support for the L2 cache controller.

RETURN VALUE

Upon successful completion 12cache lookup returnsalist of addr, way, tag, index, offset, valid bit, dirty bit and
LRU hit.

Commands |2cache show data and 12cache show tags returns a list of entries. For data each entry contains an
address and 8 data words. The entry for tag contains index, address, LRU and list of valid bit, dirty bit and tag
for each way.

Upon successful completion |2cache ft, I2cache hprot, I2cache smode and [2cache wt returns a bool ean.
Command I2cache hit returns hit-rate and front bus usage-rate.

Command |2cache status returns control and status register values.

Upon successful completion 12cache dcb and |2cache tcb return check bits for data or tags.

Command I2cache mtrr returns alist of values.

SEE ALSO

Section 3.4.15, “CPU cache support”

GRMON2-UM 134 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

52. I3stat - syntax

NAME

[3stat - Control Leon3 statistics unit
SYNOPSIS

[3stat subconmand ?args. .. ?
[3stat i ndex subconmand ?args. .. ?

DESCRIPTION

This command provides functionsto control the L3STAT core. If more than one core existsin the system, then the
index of the core to control should be specified after the I3stat command (before the subcommand). The i nf o
sys' command lists the device indexes.

|3stat events
Show all events that can be selected/counted

|3stat status
Display status of al available counters.

|3stat clear cnt
Clear the counter cnt .

|3stat set cnt cpu event ?enabl e? | ear onr ead?
Count the event using counter cnt on processor cpu. The optional enabl e parameter defaultsto 1 if
left out. The optional ¢l ear onr ead parameter defaultsto O if |eft out.

I3stat duration cnt enabl e A vl ?
Enable the counter cnt to save maximum time the selected event has been at Ivl. When enabling the lvi
parameter must be present, but when disabling it be left out.

I3stat poll start stopinterval hold
Continuously poll countersbetweenst art andst op. Thei nt er val parameter setshow many seconds
between each iteration. If hold isset to 1, then it will block until the first counter is enabled by other means
(i.e. software). The polling stops when the first counter is disabled or a SIGINT signal (Ctrl-C) is sent to
GRMON.

I3stat runpoll st art stopi nterval
Setup counters between st art and st op to be polled while running an application (i.e. 'run, 'go’ or ‘cont’
commands). Thei nt er val argument in this case does not specify the poll interval seconds but rather in
terms of iterations when GRMON polls the Debug Support Unit to monitor execution. A suitable value for
the int argument in this case depends on the speed of the host computer, debug link and target system.

EXAMPLE
Enable maximum time count, on counter 1, when no instruction cache misses has occurred.

grnon2> | 3stat set 1 0 icmss
grnon2> | 3stat duration 1 1 0

Disable maximum time count on counter 1.
grnmon2> | 3stat duration 1 0

Poll for cache misses when running.

grnon2> | 3stat set 0 O dcmiss
grnon2> | 3stat set 1 0 icmss
grnon2> | 3stat runpoll 0 1 5000
grnon2> run

GRMON2-UM 135 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

53. l4stat - syntax

NAME

[4stat - Control Leon4 statistics unit
SYNOPSIS

l4stat subconmand ?args. .. ?
l4stat i ndex subconmand ?args. .. ?

DESCRIPTION

This command provides functionsto control the LASTAT core. If more than one core existsin the system, then the
index of the core to control should be specified after the l4stat command (before the subcommand). The'i nf o
sys' command lists the device indexes.

|4stat events
Show all events that can be selected/counted

|4stat status
Display status of al available counters.

|4stat clear cnt
Clear the counter cnt .

|4stat set cnt cpu event ?enabl e? | ear onr ead?
Count the event using counter cnt on processor cpu. The optional enabl e parameter defaultsto 1 if
left out. The optional ¢l ear onr ead parameter defaultsto O if |eft out.

|4stat duration cnt enabl e A vl ?
Enable the counter cnt to save maximum time the selected event has been at Ivl. When enabling the lvi
parameter must be present, but when disabling it be left out.

l4stat poll start stopinterval hold
Continuously poll countersbetweenst art andst op. Thei nt er val parameter setshow many seconds
between each iteration. If hold isset to 1, then it will block until the first counter is enabled by other means
(i.e. software). The polling stops when the first counter is disabled or a SIGINT signal (Ctrl-C) is sent to
GRMON.

l4stat runpoll st art stopi nterval
Setup counters between st art and st op to be polled while running an application (i.e. 'run, 'go’ or ‘cont’
commands). Thei nt er val argument in this case does not specify the poll interval seconds but rather in
terms of iterations when GRMON polls the Debug Support Unit to monitor execution. A suitable value for
the int argument in this case depends on the speed of the host computer, debug link and target system.

EXAMPLE
Enable maximum time count, on counter 1, when no instruction cache misses has occurred.

grnon2> | 4stat set 1 0 icmss
grnon2> | 4stat duration 1 1 0

Disable maximum time count on counter 1.
grrmon2> | 4stat duration 1 0O

Poll for cache misses when running.

grnon2> | 4stat set 0 O dcmiss
grnon2> | 4stat set 1 0 icmss
grnon2> | 4stat runpoll 0 1 5000
grnon2> run

GRMON2-UM 136 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

54. la - syntax

NAME

la- Control the LOGAN core
SYNOPSIS

la
lasubconmand 7args. .. ?

DESCRIPTION

The LOGAN debug driver contains commands to control the LOGAN on-chip logic analyzer core. It allows to
set various triggering conditions, and to generate VCD waveform files from trace buffer data. All logic analyzer
commands are prefixed with la.

If more than one device exists in the system, the | ogan# can be used to select device, default isloganO.

la

lastatus 2 ogan#?
Reports status of LOGAN.

laarm A ogan#?
Armsthe LOGAN. Begins the operation of the analyzer and sampling starts.

laconfigfil enane 2 ogan#?

laconfig”ane bits...?? ogan#?
Set the configuration of the LOGAN device. Either afilename or an array of name and bits pairs.

lacount val ue?? ogan#?
Set/displays the trigger counter. The val ue should be between zero and depth-1 and specifies how many
samples that should be taken after the triggering event.

ladiv val ue?? ogan#?
Sets/displays the sample frequency divider register. If you specify e.g. “ladiv 5" the logic analyzer will
only sample avalue every 5th clock cycle.

ladump 7 i | ename?? ogan#?
This dumps the trace buffer in VCD format to the file specified (default is logan.ved).

lamasktrigl bit val ue?? ogan#?
Setg/displays the specified bit in the mask of the specified trig level to 0/1.

lapage val ue? 2 ogan#?
Setg/prints the page register of the LOGAN. Normally the user doesn’'t have to be concerned with this
because dump and view sets the page automatically. Only useful if accessing the trace buffer manually via
the GRMON mem command.

lapattrigl bit val ue?? ogan#?
Setg/displays the specified hit in the pattern of the specified trig level to 0/1.

lapm 2tri gl ??patternmsk?? ogan#?
Setg/displays the complete pattern and mask of the specified trig level. If not fully specified the input is
zero-padded from the left. Decimal notation only possible for widths less than or equal to 64 bits.

laqual ?it val ue?? ogan#?
Sets/displays which bit in the sampled pattern that will be used as qualifier and what value it shall have
for a sample to be stored.

lareset A ogan#?
Stop the operation of the LOGAN. Logic Analyzer returnsto idle state.

latrigetrl 2 ri gl ?2count cond?? ogan#?
Sets/displays the match counter and the trigger condition (1 = trig on equal, O = trig on not equal) for the
specified trig level.

laviewstart stop il ename?? ogan#?
Prints the specified range of the trace buffer in list format. If no filenameis specified the commands prints
to the screen.

GRMON2-UM 137 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

SEE ALSO

Section 5.13, “On-chip logic analyzer driver”

GRMON2-UM 138 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

55. leon - syntax

NAME

leon - Print leon specific registers
SYNOPSIS

leon

DESCRIPTION

leon
Print leon specific registers

GRMON2-UM 139 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

56. load - syntax

NAME
load - Load afile or print filenames of uploaded files.

SYNOPSIS

load ?opti ons. .. ?fil ename 7addr ess? 2cpu#?
load subconmand ?ar g?

DESCRIPTION

The load command may be used to upload a file to the system. It can also be used to list al files that have been
loaded. When afileisloaded, GRMON will reset the memory controllers registers first.

To avoid overwriting theimagefileloaded, one must must make surethat DMA isnot activeto the addressrange(s)
of theimage. Drivers can be reset using the reset command prior to loading.

load 20pti ons. .. ?fil enane ?addr ess?2cpu#?
The load command may be used to upload the file specified by fi | enane. If the addr ess argument
is present, then binary files will be stored at this address, if left out then they will be placed at the base
address of the detected RAM. The cpu# argument can be used to specify which CPU it belongs to. The
options is specified below.

load clear 7cpu#?
This command will clear the information about the files that have been loaded to the CPU:s. If the cpu#
argument is specified, then only that CPU will be listed.

load show 2cpu#?
This command will list which files that have been loaded to the CPU:s. If the cpu# argument is specified,
then only that CPU will be listed.

OPTIONS

- bi nary
The - bi nar y option can be used to force GRMON to interpret the file as a binary file.

- del ay ms
The - del ay option can be used to specify a delay between each word written. If the delay is non-zero
then the defualt block size will be 4 bytes, but can be changed using the - bsi ze option.

- bsi ze bytes
The - bsi ze option may be used to specify the size blocks of datain bytes that will be written. Sizes that
are not even words may require a JTAG based debug link to work properly. See Chapter 4, Debug link
more information.

- debug
If the - debug option is given the DWARF debug information isread in.

- nner
If the - nncr (No Memory Controller Reinitialize) option is given then the memory controller(s) are not
reinitialized. Without the option set all memory controllers that datais loaded to are reinitialized.

- wpr ot
If the - wpr ot option is given then write protection on the core will be disabled
RETURN VALUE
Command load returns the entry point.

EXAMPLE

Load and then verify ahello_world application

grmon2> load ../hello_world/hello_world
grmon2> verify ../hello_world/hello_world
GRMON2-UM 140 www.cobham.com/gaisler

April 2018, Version 2.0.93

COBHAM

SEE ALSO

Section 3.4.2, “Uploading application and data to target memory”

GRMON2-UM 141 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

57. mcfgl - syntax

mcfgl - Show or set reset value of the memory controller register 1
SYNOPSIS

mcfgl val ue?

DESCRIPTION

mcfgl val ue?
Set the reset value of the memory register. If value is |eft out, then the reset value will be printed.

SEE ALSO

Section 5.14, “Memory controllers”

GRMON2-UM 142 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

58. mcfg2 - syntax

mcfg2 - Show or set reset value of the memory controller register 2
SYNOPSIS

mcfg2 val ue?

DESCRIPTION

mcfg2 val ue?
Set the reset value of the memory register. If value is |eft out, then the reset value will be printed.

SEE ALSO

Section 5.14, “Memory controllers”

GRMON2-UM 143 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

59. mcfg3 - syntax

mcfg3 - Show or set reset value of the memory controller register 3
SYNOPSIS

mcfg3 val ue?

DESCRIPTION

mcfg3 val ue?
Set the reset value of the memory register. If value is |eft out, then the reset value will be printed.

SEE ALSO

Section 5.14, “Memory controllers”

GRMON2-UM 144 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

60. mdio - syntax

NAME

mdio - Show PHY registers
SYNOPSIS

mdio paddr raddr ?gr et h#?

DESCRIPTION

mdio paddr raddr ?gr et h#?
Show value of PHY address paddr and register r addr . If more than one device exists in the system,
the gr et h# can be used to select device, default is dev0. The command tries to disable the EDCL duplex
detection if enabled.

SEE ALSO

Section 5.4, “Ethernet controller”

GRMON2-UM 145 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

61. memb - syntax

NAME

memb - AMBA bus 8-bit memory read access, list arange of addresses
SYNOPSIS

memb ?opt i ons?addr ess 2 engt h?

DESCRIPTION

memb ?opt i ons?addr ess 2 engt h?
Do an AMBA bus 8-hit read access at addr ess and print the the data. The optional length parameter
should specified in bytes and the default sizeis 64 bytes.

NOTE: Only JTAG debug links supports byte accesses. Other debug links will do a 32-bit read and then
parse out the unaligned data.

OPTIONS
-ascii
If the-asci i flag hasbeen given, then asingle ASCII string is returned instead of alist of values.
-cstr
If the - cstr flag has been given, then a single ASCII string, up to the first null character, is returned
instead of alist of values.

RETURN VALUE

Upon successful completion memb returns a list of the requested 8-bit words. Some options changes the result
value, see options for more information.

EXAMPLE

Read 4 bytes from address 0x40000000:
grnon2> nmenb 0x40000000 4

TCL returns:
64 0 00

SEE ALSO

Section 3.4.7, “ Displaying memory contents”

GRMON2-UM 146 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

62. memh - syntax

NAME

memh - AMBA bus 16-bit memory read access, list arange of addresses
SYNOPSIS

memh ?2opt i ons?addr ess 2 engt h?

DESCRIPTION

memh ?opt i ons?addr ess 2 engt h?
Do an AMBA bus 16-bit read access at addr ess and print the the data. The optiona length parameter
should specified in bytes and the default size is 64bytes (32 words).

NOTE: Only JTAG debug links supports byte accesses. Other debug links will do a 32-bit read and then
parse out the unaligned data.

OPTIONS
-ascii
If the-asci i flag hasbeen given, then asingle ASCII string is returned instead of alist of values.
-cstr
If the - cstr flag has been given, then a single ASCII string, up to the first null character, is returned
instead of alist of values.

RETURN VALUE

Upon successful completion memh returns alist of the requested 16-bit words. Some options changes the result
value, see options for more information.

EXAMPLE

Read 4 words (8 bytes) from address 0x40000000:
grnon2> nmenh 0x40000000 8

TCL returns:
16384 0 0 O

SEE ALSO

Section 3.4.7, “ Displaying memory contents”

GRMON2-UM 147 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

63. mem - syntax

NAME

mem - AMBA bus 32-bit memory read access, list arange of addresses
SYNOPSIS

mem ?- opt i ons?addr ess A engt h?

DESCRIPTION

mem ?- opt i ons?addr ess A engt h?
Do an AMBA bus 32-bit read access at addr ess and print the the data. The optiona length parameter
should specified in bytes and the default sizeis 64 bytes (16 words).

OPTIONS

- bsi ze bytes
The - bsi ze option can be used to specify the size blocks of datain bytes that will be read between each
print to the screen. Setting a high value may increase performance but cause a less smooth printout when
using aslow debug link.
-ascii
If the-asci i flag hasbeen given, then asingle ASCII string is returned instead of alist of values.
-cstr
If the - cstr flag has been given, then a single ASCII string, up to the first null character, is returned
instead of alist of values.
- hex
Givethe - hex flag to make the Tcl return values hex strings. The numbers are always 2, 4 or 8 characters
wide strings regardless of the actual integer value.
- X
Give the - x flag to make the Tcl return values hex strings. The numbers are always 2, 4 or 8 characters
wide strings regardless of the actual integer value. The return values are prefixed with Ox.

RETURN VALUE

Upon successful completion mem returns a list of the requested 32-bit words. Some options changes the result
value, see options for more information.

EXAMPLE

Read 4 words from address 0x40000000:
grnmon2> mem 0x40000000 16

TCL returns:
1073741824 0 0 O

SEE ALSO

Section 3.4.7, “ Displaying memory contents”

GRMON2-UM 148 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

64. mil - syntax

mil - MIL-STD-1553B Interface commands
SYNOPSIS

mil ?subcommand? ?args...?

DESCRIPTION

mil activebus devi ce
Select which device to control and which bus to use for mil put and mil get.
mil status
Display core status
mil bex addr 2count ?
Print BC descriptor contents and result values
mil bmx addr ?count ?
Print BM log entries from the given memory address
mil bmlog ?count ? A ogaddr ?
Print the latest entries from the currently running BM log
mil buf ?buf addr ? 2cor eaddr ?
Set address of temporary buffer for transfer commands
mil bufmode 2node?
Select if the temporary buffer should be kept or restored. Valid node-values are 'keep' or 'restore’
mil get rt addr subaddr count
Perform an RT-to-BC transfer and display the result
mil getm r t addr subaddr count nmenmaddr
Perform an RT-to-BC transfer and store resulting data at memaddr
mil put rt addr subaddr count word0 ?... word31?
Perform an BC-to-RT transfer
mil putm r t addr subaddr count nermaddr
Perform an BC-to-RT transfer of datalocated at nerraddr
mil halt
Stop the core and store the state for resuming later.
mil resume
Resume operation with state stored earlier by the mil halt command.
mil Ibtest rt
mil Ibtest bc
Runs RT- or BC-part of loopback test

GRMON2-UM 149 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

65. mmu - syntax

NAME

mmu - Print or set the SRMMU registers
SYNOPSIS

mmu 2cpu#?
mmu subcommand ?ar gs. . . ? Cpu#?

DESCRIPTION

mmu ?cpu#?
Print the SRMMU registers

mmu mctrl 2val ue? 2cpu#?
Set the MMU control register

mmu ctxptr val ue? 2cpu#?
Set the context pointer register

mmu ctx val ue? 2cpu#?
Set the context register

mmu vact x? 2cpu#?
Trandate a virtual address. The command will use the MMU from the current active CPU and the cpu#
can be used to select adifferent CPU.

mmu walk ct x? 2cpu#?
Trandate avirtual address and print translation. The command will use the MMU from the current active
CPU and the cpu# can be used to select a different CPU.

mmu table ct X? 2cpu#?
Print table, optionally specify context. The command will use the MMU from the current active CPU and
the cpu# can be used to select a different CPU.

RETURN VALUE
The commands mmu returns alist of the MMU registers.
The commands mmu va and mmu walk returns the translated address.

The command mmu table returns alist of ranges, where each range has the following format: {vaddr _st art
vaddr _end paddr _start paddr_end access pages

EXAMPLE

Print MMU registers

grmon2> mu
nctrl: 00904001 ctx: 00000001 ctxptr: 00622000 fsr: 000002DC far: 9CFB9000

TCL returns:
9453569 1 401920 732 -1661235200

Print MMU table

grnon2> puts [mmu tabl e]
MW Tabl e for CTX1 for CPUO
0x00000000- 0x00000f ff -> 0x00000000- 0x00000f ff crwxrwx [1 page]

\

0x00001000- 0x0061f fff -> 0x00001000- 0x0061ffff crwx--- [1567 pages]

0x00620000- 0x00620f f f -> 0x00620000- 0x00620f ff -r-xr-x [1 page]

0x00621000- 0x00621f f f -> 0x00621000- 0x00621f ff crwx--- [1 page]
TCL returns:
{0x00000000 0x00000fff O0x00000000 Ox00000fff crwxrwx 1} {0x00001000
0x0061ffff Ox00001000 Ox0061ffff crwx--- 1567} {0x00620000 0x00620fff
GRMON2-UM 150 www.cobham.com/gaisler

April 2018, Version 2.0.93

COBHAM

0x00620000 0x00620f ff -r-xr-x 1} {0x00621000 0x00621fff 0x00621000 0x00621f f f
crwx--- 1}

SEE ALSO

Section 3.4.14, “Memory Management Unit (MMU) support”

GRMON2-UM 151 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

66. nolog - syntax

NAME

nolog - Suppress logging of stdout of a command
SYNOPSIS

nolog command ?args. .. ?

DESCRIPTION

nolog comand ?args. .. ?
The nolog command be put in front of other GRMON commands to suppress the logging of the output.
This can be useful to remove unnecessary output when scripting.

EXAMPLE

Suppress the memory print.
gr ron2>nol og mem 0x40000000

GRMON2-UM 152 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

67. pci - syntax

NAME

pci - Control the PCI bus master
SYNOPSIS

pci subcommand ?args. .. ?
DESCRIPTION

The PCI debug drivers are mainly useful for PCI host systems. The pci init command initializes the host's target
BARZ1topointto RAM (PCI address 0x40000000 -> AHB address 0x4000000) and enables PCI memory space and
bus mastering. Commands are provided for initializing the bus, scanning the bus, configuring the found resources,
disabling byte twisting and displaying information. Note that on non-host systems only the info command has
any effect.

The pci scan command can be used to print the current configuration of the PCI bus. If a OS has initialized the
PCI core and the PCI bus (at least enumerated all PCI buses) the scan utility can be used to see how the OS has
configured the PCI address space. Note that scanning a multi-bus system that has not been enumerated will fail.

The pci conf command can fail to configure all found devices if the PCl address space addressable by the host
controller is smaller than the amount of memory needed by the devices.

A configured PCI system can beregistered into the GRMON device handling system similar to the on-chip AMBA
busdevices, controlled using the pci bus commands. GRMON will hold acopy of the PCI configurationin memory
until a new pci conf, pci bus unreg or pci scan isissued. The user is responsible for updating GRMON's PCI
configuration if the configuration is updated in hardware. The devices can be inspected from info sys and Tcl
variables making read and writing PCI devices configuration space easier. The Tcl variablesare named in asimilar
fashion to AMBA devices, for example puts $pdev0::status prints the STATUS register of PCI device0. See pci
bus reference description below and the Tcl API description in the manual.

pci bt ?bool ean?
Enable/Disable the byte twisting (if supported by host controller)

pci busreg
Register apreviously configured PCI bus into the GRMON device handling system. If the PCI bus has not
been configured previously the pci conf is automatically called first (similar to pci conf -reg).

pci busunreg
Unregister (remove) a previoudy registered PCI bus from the GRMON device handling system.

pci cfg8 devi cei d of f set

pci cfgl6 devi cei d of f set

pci cfg32 devi cei d of f set
Read a 8-, 16- or 32-bit value from configuration space. The device ID selects which PCI device/function
is address during the configuration access. The offset must must be located with the device's space and
be aligned to access type. Three formats are allowed to specify the devi cei d: 1. bus: sl ot : f unc,
2. device name (pdev#), 3. host. It's allowed to skip the bus index, i.e. only specifying sl ot : f unc, it
will then default to bus index 0. The ID numbers are specified in hex. If "host" is given the Host Bridge
Controller itself will be queried (if supported by Host Bridge). A device name (for example "pdev0") may
also be used to identify a device found from the info sys command output.

pci conf ?-reg?
Enumerate all PCI buses, configuresthe BARs of al devices and enables PCI-PCI bridges where needed.
If -reg is given the configured PCI bus is registered into GRMON device handling system similar to pci
busreg, see above.

pci init
Initializes the host controller as described above

pci info
Displays information about the host controller

GRMON2-UM 153 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

pci io8 addr val ue

pci iol6 addr val ue

pci io32 addr val ue
Write a 8-, 16- or 32-bit value to 1/0O space.

pci scan ?-r eg?
Scansall PCI slotsfor available devicesand their current configuration are printed on theterminal . The scan
does not ater the values, however during probing some registers modified by rewritten with the original
value. This command is typically used to look at the reset values (after pci init is called) or for inspecting
how the Operating System has set PCI up (pci init not needed). Note that PCI buses are not enumerated
during scanning, in multi-bus systems secondary buses may therefore not be accessible. If -reg isgiven the
configured PCI busis registered into GRMON device handling system similar to pci busreg, see above.

pci wefg8 devi cei d of f set val ue

pci wefglé devi cei d of f set val ue

pci wefg32 devi cei d of f set val ue
Write a 8-, 16- or 32-hit value to configuration space. The device ID selects which PCI device/function
is address during the configuration access. The offset must must be located with the device's space and
be aligned to access type. Three formats are allowed to specify the devi cei d: 1. bus: sl ot : f unc,
2. device name (pdev#), 3. host. It's allowed to skip the bus index, i.e. only specifying sl ot : f unc, it
will then default to bus index 0. The ID numbers are specified in hex. If "host" is given the Host Bridge
Controller itself will be queried (if supported by Host Bridge). A device name (for example "pdev0") may
also be used to identify a device found from the info sys command output.

pci wio8 addr val ue

pci wiol6 addr val ue

pci wio32 addr val ue
Write a 8-, 16- or 32-bit value to 1/0O space.

PCI Trace commands:

pci trace
Reports current trace buffer settings and status
pci traceaddresspat t ern
Get/set the address pattern register.
pci traceamask pattern
Get/set the address mask register.
pci tracearm
Armsthe trace buffer and starts sampling.
pci tracelog 2 engt h? ?of f set ?
Prints the trace buffer data. Offset isrelative the trigger point.
pci tracesigpattern
Get/set the signal pattern register.
pci trace smask patt ern
Get/set the signal mask register.
pci trace start
Armsthe trace buffer and starts sampling.
pci trace state
Prints the state of the PCI bus.
pci trace stop
Stops the trace buffer sampling.
pci trace tcount val ue
Get/set the number of matching trigger patterns before disarm
pci tracetdelay val ue
Get/set number of extra cyclesto sample after disarm.

RETURN VALUE
Upon successful completion most pci commands have no return value.

The read commands return the read value. The write commands have no return value.

GRMON2-UM 154 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

When the commands pci trace address, pci trace amask, pci trace sig, pci trace smask, pci trace tcount and
pci tracetdelay are used to read values, they return their values.

The pci trace log command returns a list of triples, where the triple contains the address, a list of signals and
buffer index.

Command pci trace state returns a tuple of the address and alist of signals.
EXAMPLE
Initialize host controller and configure the PCI bus

grnon2> pci init
grnon2> pci conf

Inspect a PCI bus that has already been setup
grnon2> pci scan

SEE ALSO

Section 5.17, “PCI”

GRMON2-UM 155 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

68. perf - syntax
perf - Measure performance
SYNOPSIS

perf
perf 2subconmand??args. .. ?

DESCRIPTION

The performance command is only available when a DSU4 exists in the system.
perf
Display result
perf 2di sabl e?
perf 2enabl e?
Enable or disable the performance measure.

GRMON2-UM 156 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

69. phyaddr - syntax

NAME

phyaddr - Set the default PHY address
SYNOPSIS

phyaddr adr ess ?gr et h#?

DESCRIPTION

phyaddr adr ess ?gr et h#?
Set the default PHY addressto addr ess. If more than one device existsin the system, the gr et h# can
be used to select device, default is grethO.

EXAMPLE

Set PHY addressto 1
gr non2> phyaddr 1

SEE ALSO

Section 5.4, “ Ethernet controller”

GRMON2-UM 157 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

70. profile - syntax

NAME

profile - Enable, disable or show simple profiling
SYNOPSIS

profile ?2cpu#?
profile clear ?cpu#?
profileon ?cpu#?
profile off ?2cpu#?

DESCRIPTION

If profiling is enabled then GRMON will profile the application being executed on the system.
profile

Show profiling information for all CPUs or specified CPU. When printing the information for all the CPUs,
only asingle table with the sum of al CPUswill be printed.

profile clear

Clear collected information on all CPUs or specified CPU.
profileon

Turn on profiling al CPUs or asingle CPU.
profile of

Turn off profiling for all CPUs or asingle CPU.
SEE ALSO

Section 3.4.10, “Profiling”

GRMON2-UM 158 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

71. quit - syntax

NAME

quit - Exit the GRMON2 console
SYNOPSIS

quit

DESCRIPTION

quit
When using the command line version (cli) of GRMON2, this command will be the same as 'exit 0'. In
the GUI version it will close down a single console window. Use 'exit' to close down the entire application
when using the GUI version of GRMON2.

EXAMPLE

Exit the GRMON2 console.
grnon2> quit

GRMON2-UM 159 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

72.reg - syntax

reg - Show or set integer registers
SYNOPSIS

reg 7nane ...? 7nane val ue ...?

DESCRIPTION

reg name ...? 7nane val ue ...? 2cpu#?
Show or set integer registers of the current CPU, or the CPU specified by cpu#. If no register arguments
are given then the command will print the current window and the special purpose registers. The register
arguments can to both set and show each individual register. If aregister name is followed by a value, it
will be set else it will only be shown.

Valid window register names are:
Registers
r0, r1, r2,r3,r4, 15,16, r7,r8, 19, ri10, r1l, ri12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, 123, r24,
25, r26, r27, r28, r29, r30, r31
Globa registers
g0, g1, g2, g3, g4, g5, g6, g7
Current window in registers
i0,i1,i2,i3,i4,i5,i6,i7
Current window local registers
10,11,12,13, 14, 15,16, 17
Current window out registers
00, 01, 02, 03, 04, 05, 06, 07
Specia purpose registers
sp. fp
Windows (N is the number of implemented windows)
wO, wl ... wN
Single register from awindow
w13 wlo3 w2i5 etc.
In addition the following non-window related registers are also valid:
Floating point registers
fo, f1, f2, 3, f4, f5, 16, f7, £8, 9, 10, f11, f12, f13, f14, f15, f16, 17, 18, f19, 20, 121, {22, {23, {24,
25, 26, {27, 28, 129, 130, f31
Floating point registers (double precision)
do, di, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, d13, d14, d15,
Specia purpose registers
psr, tbr, wim, y, pc, npc, fsr
Application specific registers
asrl6, asrl7, asrl8

RETURN VALUE

Upon successful completion, command reg returns alist of the requested register values. When register windows
are requested, then nested list of all registers will be returned. If afloat/double is requested, then atuple of the
decimal and the binary valueis returned.

EXAMPLE

Display the current window and special purpose registers
grnon2> reg

TCL returns:
{0000000000000D0D0D0O0D0D0O0D0OD0O0D0ODO0D0OD0OD0OD0OD0O0D0ODO0OO0 0 0} -213905184
2 1073741824 0 1073741824 1073741828

GRMON2-UM 160 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

Display the g0, 13 in window 2, f1, pc and w1.
grnon2> reg g0 w213 f1 pc wl

TCL returns:
0 0 {0.0 0} 1073741824 {0 0O 0 OO OOOOOO0ODODODODODODODOODOOO
00000O0O0O0OO0}

Set register gl to the value 2 and display register g2
grnmon2> reg gl 2 g2

TCL returns:
20

SEE ALSO

Section 3.4.5, “Displaying processor registers’

GRMON2-UM 161 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

73. reset - syntax
NAME

reset - Reset drivers
SYNOPSIS

reset
DESCRIPTION

The reset will give al core drivers an opportunity to reset themselves into a known state. For example will the
memory controllers reset it's registers to their default value and some drivers will turn off DMA. It isin many
cases crucial to disable DMA before loading anew binary image since DMA can overwrite the |loaded image and
destroy the loaded Operating System.

EXAMPLE

Reset drivers
grnon2> reset

GRMON2-UM 162 www.cobham.com/gaisler
April 2018, Version 2.0.93

74. rtg4fddr - syntax
NAME

rtg4fddr - Print initilization sequence
SYNOPSIS

rtgafddr show? ddr #?

DESCRIPTION

rtgafddr show ?f ddr #?
Print initilization sequence

COBHAM

The RTG4 FDDR initcode is loaded into a procedure in the system shell. The procedure is executed in init
level 6, therefore it is possible to override the script in level 5 by redefining the the ::fdir#:init procdure

using the init# hook.
EXAMPLE

Override the default initialization

proc MInit5 {} {
proc ::fddrO::init {} {
Add custominitialization code here

}
proc ::fddrl::init {} {
Add custominitialization code here

}
}
| append ::hooks::init5 MyInit5

SEE ALSO

Section 3, “User defined hooks”

GRMON2-UM
April 2018, Version 2.0.93

163

www.cobham.com/gaisler

COBHAM

75. rtg4serdes - syntax
NAME

rtgdserdes - Print initilization sequence
SYNOPSIS

rtgdserdesshow?ser des#?

DESCRIPTION

rtgdserdesshow ?ser des#?
Print initilization sequence

The RTG4 SERDES initcode is loaded into a procedure in the system shell. The procedure is executed
ininit level 6, therefore it is possible to override the script in level 5 by redefining the the ::serdes#::init
procdure using the init# hook.

EXAMPLE

Override the default initialization
proc MInit5 {} {
proc ::serdesO::init {} {
Add custominitialization code here
}
}
| append ::hooks::init5 MyInit5

SEE ALSO

Section 3, “User defined hooks”

GRMON2-UM 164 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

76. run - syntax

run - Reset and start execution
SYNOPSIS

run 2opti ons??addr ess??count ?

DESCRIPTION

run ?opti ons??addr ess??count ?
Thiscommand will reset all drivers (seereset for moreinformation) and start the executing instructionson
the active CPU. When omitting the address parameter this command will start execution at the entry point
of the last loaded application. If the count parameter is set then the CPU will run the specified number of
instructions. Note that the count parameter is only supported by the DSU4.

OPTIONS

- nor et
Do not evaluate the return value. When this optionsis set, no return value will be set.

RETURN VALUE

Upon successful completion run returns alist of signals, one per CPU. Possible signal values are SIGBUS, SIGF-
PE, SIGILL, SIGINT, SIGSEGV, SIGTERM or SIGTRAP. If a CPU is disabled, then an empty string will be
returned instead of asignal value.

EXAMPLE

Execute instructions starting at the entry point of the last |oaded file.
grnon2> run

SEE ALSO

Section 3.4.3, “Running applications’
reset

GRMON2-UM 165 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

77. scrub - syntax

scrub - Control memory scrubber
SYNOPSIS

scrub ?subcommand? ?args...?

DESCRIPTION

scrub
scrub status
Display status and configuration
scrub ack
Clear error and done status and display status
scrub clear start st op 2val ue?
Set scrubber to clear memory areafrom addressst art up to st op. The parameter val ue defaultsto O.
scrub patttern wor d1 2word2 ... ?
Write pattern words into the scrubbers initialization register. If the number of words specified are larger
then the size if the burst length, then the remaining words be ignored. If the number of words are less then
the burst length, the pattern will be repeated up to a complete burst.
scrubinit start stop
Initialize the memory areafrom addressst art upto st op.
scrub rst
Clear status and reset configuration.

EXAMPLE
Write pattern 0 1 to the memory 0x0000000 to 0x0000003F

grnon2> scrub pattern 0 1
grnon2> scrub init 0 63

Clear amemory area
grnmon2> scrub clear 0 63

GRMON2-UM 166 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

78. sdcfgl - syntax

sdcfgl - Show or set reset value of SDRAM controller register 1
SYNOPSIS

sdcfgl val ue?

DESCRIPTION

sdcfgl val ue?
Set the reset value of the memory register. If value is |eft out, then the reset value will be printed.

SEE ALSO

Section 5.14, “Memory controllers”

GRMON2-UM 167 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

79. sddel - syntax

sddel - Show or set the SDCLK delay
SYNOPSIS

sddel val ue?

DESCRIPTION

sddel wval ue?
Set the SDCLK delay value.

SEE ALSO

Section 5.14, “Memory controllers”

GRMON2-UM 168 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

80. sf2mddr - syntax
NAME

sf2mddr - Print initilization sequence
SYNOPSIS

sf2mddr show 2nddr #?

DESCRIPTION

sf2mddr show ?nddr #?
Print initilization sequence

The IGLOO2/SmartFusion2 DDR initcode is loaded into a procedure in the system shell. The proce-
dure is executed in init level 6, therefore it is possible to override the script in level 5 by redefining the
the ::mddr#::init procdure using the init# hook.

EXAMPLE

Override the default initialization

proc MInit5 {} {
proc ::nddrO::init {} {
Add custominitialization code here

}
}
| append ::hooks::init5 MyInit5

SEE ALSO

Section 3, “User defined hooks”

GRMON2-UM 169 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

81. sf2serdes - syntax
NAME

sf2serdes - Print initilization sequence
SYNOPSIS

sf2serdesshow ?ser des#?

DESCRIPTION

sf2serdesshow ?ser des#?
Print initilization sequence

The IGLOO2/SmartFusion2 SERDES initcode is loaded into a procedure in the system shell. The proce-
dure is executed in init level 6, therefore it is possible to override the script in level 5 by redefining the
the ::serdes#::init procdure using the init# hook.

EXAMPLE

Override the default initialization

proc MInit5 {} {
proc ::serdesO::init {} {
Add custominitialization code here

}
}
| append ::hooks::init5 MyInit5

SEE ALSO

Section 3, “User defined hooks”

GRMON2-UM 170 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

82. shell - syntax
NAME

shell - Execute a shell command

SYNOPSIS
shell
DESCRIPTION
shell
Execute a command in the host system shell. The grmon shell command is just an alias for the TCL com-
mand exec, wrapped with puts, i.e. itsequivalenttoput s [exec .. .].For moreinformation see doc-

umentation about the exec command (http://www.tcl.tk/man/tcl 8.5/TclCmd/exec.htm).
EXAMPLE

List all filesin the current working directory (Linux)
grnmon2> shell 1|s

List all filesin the current working directory (Windows)
grnon2> shel | dir

GRMON2-UM 171 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

83. silent - syntax

NAME

silent - Suppress stdout of a command
SYNOPSIS

silent command ?args. .. ?

DESCRIPTION

silent command ?args. .. ?
The silent command be put in front of other GRMON commands to suppress their output and it will not be
logged. This can be useful to remove unnecessary output when scripting.

EXAMPLE

Suppress the memory print and print the TCL result instead.
grnon2> puts [silent mem 0x40000000]

SEE ALSO

Section 2, “Variables’

GRMON2-UM 172 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

84. spim - syntax

NAME

spim - Commands for the SPI memory controller
SYNOPSIS

spim subconmand ?args. .. ?
spim i ndex subcommand ?args. .. ?

DESCRIPTION

This command provides functions to control the SPICTRL core. If more than one core exists in the system, then
theindex of the core to control should be specified after the spim command (before the subcommand). The'i nf o
sys' command lists the device indexes.
spim altscaler
Toggle the usage of alternate scaler to enable or disable.
spim reset
Core reset
spim status
Displays core status information
spim tx dat a
Shift a byte to the memory device

D Card specific commands:

spim sd csd

Displays and decodes CSD register
spim sd reinit

Reinitiaize card

SPI Flash commands:

spim flash
Prints alist of available commands
spim flash help
Displays command list or additional information about a specific command.
spim flash detect
Try to detect type of memory device
spim flash dump addr ess | engt h 7 i | enane?
Dumps | engt h bytes, starting at addr ess of the SPI-device (i.e. not AMBA address), to afile. The
default name of the file is "grmon-spiflash-dump.srec"
spim flash erase
Erase performs a bulk erase clearing the whole device.
spim flash fast
Enables or disables FAST READ command (memory device may not support this).
spim flash load ?opti ons. .. ?fi | enane ?addr ess? cpu#?
Loadsthe contentsinthefilef i | enane tothememory device. If theaddr ess ispresent, then binary files
will be stored at the addr ess of the SPI-device (i.e. not AMBA address), otherwise binary files will be
written to the beginning of the device. The c pu# argument can be used to specify which CPU it belongsto.

The only available option is'-binary’, which forces GRMON to interpret the file as binary file.
spim flash select 2 ndex?
Select memory device. If i ndex isnot specified, alist of the supported devices is displayed.
spim flash set pagesi ze address_bytes wenwdi rdsr wsr read fast_readpp se be
Sets a custom memory device configuration. Issue flash set to see alist of the required parameters.
spim flash show
Shows current memory device configuration

GRMON2-UM 173 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

spim flash ssval val ue?
Sets slave value to be used with the SPICTRL core. When GRMON wants to select the memory device
it will write this value to the slave select register. When the device is deselected, GRMON will write all
ones to the slave select register. Example: Set slave select line 0 to low, al other lines high when selecting
adevice
grmon2> spi flash ssval Oxfffffffe

Note: Thisvalueisnot used when communicating viathe SPIMCTRL core, i.e. itisonly valid for spi flash.
spim flash status
Displays device specific information
spim flash strict ?bool ean?
Enable/Disable strict communication mode. Enableif programming fails. Strict communication mode may
be necessary when using very fast debug links or for SPI implementations with aslow SPI clock
spim flash verify 2opti ons. .. ?fi |l enane ?addr ess?
Verifiesthat datain thefilef i | ename matches datain memory device. If the addr ess is present, then
binary files will be compared with data at the addr ess of the SPI-device (i.e. not AMBA address), oth-
erwise binary fileswill be compared against data at the beginning of the device.

The - bi nar y options forces GRMON to interpret the file as binary file.
The - max option can be used to force GRMON to stop verifying when num errors have been found.

When the - er r or s option is specified, the verify returns alist of all errorsinstead of number of errors.
Each element of the list is a sublist whose format depends on the first item if the sublist. Possible errors
can be detected are memory verify error (MEM), read error (READ) or an unknown error (UNKNOWN).
The formats of the sublistsare: MEM addr ess r ead- val ue expect ed- val ue , READ addr ess
num f ai | ed- addr esses , UNKNOWN addr ess

Upon successful completion verify returns the number of error detected. If the - er r or s has been given,
it returnsalist of errors instead.

spim flash wrdi

spim flash wren
Issue write disable/enable instruction to the device.

SEE ALSO

Section 3.11.2, “SPI memory device”
Section 5.14, “Memory controllers”

GRMON2-UM 174 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

85. spi - syntax

NAME

spi - Commands for the SPI controller
SYNOPSIS

spi subcommand 7args. .. ?
spi i ndex subcommand ?args. .. ?

DESCRIPTION

This command provides functions to control the SPICTRL core. If more than one core exists in the system, then
the index of the core to control should be specified after the spi command (before the subcommand). The'i nf o
sys' command lists the device indexes.
spi aslvsel val ue
Set automatic slave select register
spi disable
spi enable
Enable/Disable core
spi rx
Read receive register
Spi selftest
Test core in loop mode
spisatAield ...?
Sets specified field(s) in Mode register.

Available fields: cpol, cpha, divl6, len val ue, amen, loop, ms, pm val ue, tw, asdl, fact, od, tac, rev,
aselddl val ue, tto, igsdl, cite
spi dlvsel val ue
Set slave select register
spi status
Displays core status information
spi tx dat a
Writes data to transmit register. GRMON automatically aligns the data

spiunset ield ...?
Sets specified field(s) in Mode register.

Availablefields: cpol, cpha, div16, amen, loop, ms, tw, asdl, fact, od, tac, rev, tto, igsel, cite

Commands for automated transfers:

spi am cfg ?option ...?
Set AM configuration register.

Availablefields: seq, strict, ovtb, ovdb
spi am per val ue
Set AM period register toval ue.
spi am act
spi am deact
Start/stop automated transfers.
spi am extact
Enable external activation of AM transfers
spi am poll count
Poll for count transfers

SPI Flash commands;

spi flash
Prints alist of available commands

GRMON2-UM 175 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

spi flash help
Displays command list or additional information about a specific command.

spi flash detect
Try to detect type of memory device

spi flash dump addr ess | engt h X i | enane?
Dumps | engt h bytes, starting at addr ess of the SPI-device (i.e. not AMBA address), to afile. The
default name of the file is "grmon-spiflash-dump.srec”

spi flash erase
Erase performs a bulk erase clearing the whole device.

spi flash fast
Enables or disables FAST READ command (memory device may not support this).

spi flash load ?opti ons. .. ?fi | enanme ?addr ess? 2cpu#?
Loadsthe contentsinthefilef i | enane tothememory device. If theaddr ess ispresent, thenbinary files
will be stored at the addr ess of the SPI-device (i.e. not AMBA address), otherwise binary files will be
written to the beginning of the device. The c pu# argument can be used to specify which CPU it belongsto.

The only available option is'-binary', which forces GRMON to interpret the file as binary file.

spi flash select 2 ndex?
Select memory device. If i ndex isnot specified, alist of the supported devicesis displayed.

spi flash set pagesi ze address_bytes wenwdi rdsr wsr read fast_read pp se be
Sets a custom memory device configuration. Issue flash set to see alist of the required parameters.

spi flash show
Shows current memory device configuration

spi flash ssval val ue?
Sets slave value to be used with the SPICTRL core. When GRMON wants to select the memory device
it will write this value to the slave select register. When the device is deselected, GRMON will write al
onesto the dave select register. Example: Set slave select line 0 to low, all other lines high when selecting
adevice
grmon2> spi flash ssval Oxfffffffe

Note: Thisvaueisnot used when communicating viathe SPIMCTRL core, i.e.itisonly valid for spi flash.
spi flash status
Displays device specific information
spi flash strict ?bool ean?
Enable/Disable strict communication mode. Enableif programming fails. Strict communication mode may
be necessary when using very fast debug links or for SPI implementations with aslow SPI clock
spi flash verify 2opti ons. .. ?fi | enane ?addr ess?
Verifiesthat datain thefilef i | ename matches datain memory device. If the addr ess is present, then
binary files will be compared with data at the addr ess of the SPI-device (i.e. not AMBA address), oth-
erwise binary fileswill be compared against data at the beginning of the device.

The - bi nary option forces GRMON to interpret the file as binary file.
The - max option can be used to force GRMON to stop verifying when num errors have been found.

When the - er r or s option is specified, the verify returns alist of all errors instead of number of errors.
Each element of the list is a sublist whose format depends on the first item if the sublist. Possible errors
can be detected are memory verify error (MEM), read error (READ) or an unknown error (UNKNOWN).
Theformats of the sublistsaree MEM addr ess r ead- val ue expect ed- val ue , READ addr ess
num f ai | ed- addr esses , UNKNOWN addr ess

Upon successful completion verify returns the number of error detected. If the - er r or s has been given,
it returnsalist of errorsinstead.

spi flash wrdi

spi flash wren
I ssue write disable/enable instruction to the device.

GRMON2-UM 176 www.cobham.com/gaisler
April 2018, Version 2.0.93

EXAMPLE

Set AM configuration register
grnon2> spi amcfg strict ovdb

Set AM period register
grnon2> spi am per 1000

Poll queue 10 times
grnon2> spi ampoll 10

Set fieldsin Mode register
grnon2> spi set ms cpha len 7 rev

Unset fieldsin Mode register
grnon2> spi unset nms cpha rev

SEE ALSO

Section 3.11.2, “SPI memory device”
Section 5.14, “Memory controllers”

COBHAM

GRMON2-UM
April 2018, Version 2.0.93

177

www.cobham.com/gaisler

COBHAM

86. spwrtr - syntax

NAME

spwrtr - Spacewire router information
SYNOPSIS

spwrtr info Pport ? 2spwrt r #?

spwrtr rt 2opti ons? ?port ?%endport ??2spwtr#?
spwrtr rt add 2opti ons?port 2dst. .. ??2%spwtr#?
spwrtr rt remove 2opti ons?port 2dst...??2spwrtr#?

DESCRIPTION

spwrtr info Pport ? 2spwrt r #?
Print register information for the router or asingle port.
spwrtr rt 2opti ons? ?port ??2endport ??2spwtr#?
Print the routing table. A single port or arange of ports can be specified, otherwise all portswill be printed.

Options - physi cal or-1 ogi cal canbeused to filter out ports.

Options - nh can be used to suppress the printing of the header.
spwrtr rt add ?opti ons?port 2dst. .. ??2spwtr#?
Enable one more destination ports to the routing table.

Options- en, - hd, - pr, - sr and - pd can be used to set the corresponding hits. If no destination port has
been specified, the option flags will still set the corrsponding bits.

spwrtr rt remove 2opt i ons?port 2dst...?2spwrtr#?
Disable one more destination portsto the routing table.

Options - en, - hd, - pr, - sr and - pd can be used to unset the corresponding bits. If no destination port
has been specified, the option flags will still unset the corrsponding bits.

RETURN VALUE
Command spwrtr has no return value.
SEE ALSO

Section 5.19, “ SpaceWire router”

GRMON2-UM 178 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

87. stack - syntax

NAME

stack - Set or show theinitial stack-pointer.
SYNOPSIS

stack 2cpu#?
stack addr ess cpu#?

DESCRIPTION

stack 2cpu#?

Show current active CPUs initial stack-pointer, or the CPU specified by cpu#.
stack addr ess ?cpu#?

Set the current active CPUs initial stack-pointer, or the CPU specified by cpu#.

RETURN VALUE
Upon successful completion stack returnsalist of initial stack-pointer addresses, one per CPU.
EXAMPLE

Set current active CPUs initial stack-pointer to Ox4FFFFFFO
grnon2> stack Ox4FFFFFFO

SEE ALSO

Section 5.3.1, “ Switches”
Section 3.4.12, “Multi-processor support”

GRMON2-UM 179 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

88. step - syntax

step - Step one ore more instructions
SYNOPSIS

step st eps? cpu#?
DESCRIPTION

step st eps? Tpu#?
Step one or more instructions on al CPU:s. If cpu# is set, then only the specified CPU index will be
stepped.
When single-stepping over a conditional or unconditional branch with the annul bit set, and if the delay
instruction is effectively annulled, the delay instruction itself and the instruction thereafter are stepped
over in the same go. That means that three instructions are executed by one single step command in this
particular case.

EXAMPLE

Step 10 instructions
grnmon2> step 10

GRMON2-UM 180 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

89. svga - syntax

NAME

svga - Commands for the SVGA controller
SYNOPSIS

svgasubconmand ?args. .. ?
svgai ndex subconmmand 7args. .. ?

DESCRIPTION

This command provides functions to control the SYVGACTRL core. If more than one core exists in the system,
then the index of the core to control should be specified after the svga command (before the subcommand). The
i nfo sys'command lists the device indexes.

svga custom ?peri od hori zontal _active_video hori zontal _front_porch
hori zont al _sync hori zont al _back_porch vertical _active_video
vertical _front_porchvertical _syncvertical back _porch?
The svga custom command can be used to specify a custom format. The custom format will have prece-
dence when using the svga draw command. If no parameters are given, theniswill print the current custom
format.
svgadrawfil e bi tdepth
The svga draw command will determine the resolution of the specified picture and select an appropriate
format (resolution and refresh rate) based on the video clocks avail able to the core. Therequired file format
isASCII PPM which must have a suitable amount of pixels. For instance, to draw a screen with resolution
640x480, a PPM file which is 640 pixels wide and 480 pixels high must be used. ASCII PPM files can
be created with, for instance, the GNU Image Manipulation Program (The GIMP). The color depth can
be either 16 or 32 hits.
svgadraw test_screenfnt bitdepth
The svga draw test_screen command will show a simple grid in the resolution specified via the format
f mt selection (see svga formatsto list all available formats). The color depth can be either 16 or 32 bits.
svga frame ?adr ess?
Show or set start address of framebuffer memory
svga formats
Show available display formats
svga formatsdetailed
Show detailed view of available display formats

EXAMPLE

Draw a 1024x768, 60Hz test image
grnon2> svga draw test_screen 12 32

GRMON2-UM 181 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

90. symbols - syntax

NAME

symbols - Load, print or lookup symbols
SYNOPSIS

symbols?opti ons? X i | enane? 2cpu#?
symbols subcommand ?ar g?

DESCRIPTION

The symbols command is used to load symbols from an object file. It can also be used to print all loaded symbols
or to lookup the address of a specified symbol.
symbols?opt i ons? X i | enane? 2cpu#?

Load the symbolsfromf i | enane. If cpu# argument is omitted, then the symbolswill be associated with
the active CPU.

Options:
- debug Read in DWARF debug information

symbolsclear 2cpu#?
Remove all symbols associated with the active CPU or a specific CPU.

symbolslist ?o0pt i ons? 2cpu#?
This command lists loaded symbols. If no options are given, then all local and global functions and objects
arelisted. The optional argument cpu# can be used to limit the listing for a specific CPU.

Options:

- gl obal List global symbols
-1 ocal List local symbols
-func List functions

- obj ect List objects

-all List all symbols

symbolslookup symbol ?cpu#?
L ookup the address of the specified symbol using the symbol table of the active CPU. If cpu# is specified,
then it will only look in the symbol table associated with that CPU.

symbolslookup addr ess ?cpu#?
Lookup symbol for the specified address using the symbol table of the active CPU. If cpu# is specified,
then it will only look in the symbol table associated with that CPU. At most one symbol is looked up.

RETURN VALUE

Upon successful completion symbolslist will return alist of all symbols and their attributes.
Nothing will be returned when loading or clearing.

Command symbolslookup will return the corresponding address or symbol.

EXAMPLE

Load the symbolsin thefilehel | o.
grmon2> synbol s hello

List symboals.
grnmon2> synbols |i st

List all loaded symboals.

GRMON2-UM 182 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

grnmon2> synbols list -all

List all function symbols.
grnon2> synbols list -func -local -gl obal

List all symbols that begins with the letter m
grnmon2> puts [l search -index {3} -subindices -all -inline [symbols list] nt]

SEE ALSO

Section 3.6, “ Symbolic debug information”

GRMON2-UM 183 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

91. thread - syntax
NAME

thread - Show OS-threads information or backtrace
SYNOPSIS

thread info 2cpu#?
thread bt i d 2cpu#?

DESCRIPTION

The thread command may be used to list all threads or to show backtrace of a specified thread. Note that the only
OS:s supported by GRMON2 are RTEMS, eCos and VxWorks.
thread info 7cpu#?
List information about the threads. This should be used to get theid:sfor the thread bt command.

thread bti d 2cpu#?
Show backtrace of the thread specified by i d. Thecommandthread info can be used findtheavailableid:s.

RETURN VALUE

Upon successful completion, thread info returns alist of threads. Each entry is a sublist on the format format:
{idnane current pc sp}. Seetable below for adetailed description.

Name Description

id OS specific identification number

name Name of the thread

current Boolean describing if the thread is the current running thread.

pc Program counter

sp Stack pointer

cpu Value greater or equal to 0 meansthat the thread is executing on CPU. Negative value indicates

that the thread isidle.

Thethread current command returns information about the current thread only, using the format described for
the return value of the command thread info above.

The other subcommands have no return value.

EXAMPLE

List all threads

grmon2> thread info
NAME TYPE ID PRIO TIME (h:ms) ENTRY PO NT PC .

* Int. internal 0x09010001 255 0:0:0. 000000000 0x4000a5b4 <+OxFFF. ..

TAL classic 0x0a010002 1 0:0:0.064709999 Test_task 0x40016ab8 <_Threa.. .
TA2 classic 0x0a010003 1 0:0:0.061212000 Test_task 0x40016ab8 <_Threa.. .
TA3 classic 0x0a010004 1 0:0:0.060206998 Test_task 0x40016ab8 <_Threa. ..

TCL returns:

{151060481 Int. 1 1073784244 0} {167837698 {TAl } 0 1073834680 0} {167837699
{TA2 } 0 1073834680 0} {167837700 {TA3 } 0 1073834680 0}

SEE ALSO

Section 3.8, “Thread support”
Section 3.7.6, “GDB Thread support”

GRMON2-UM 184 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

92. timer - syntax
timer - Show information about the timer devices
SYNOPSIS

timer 2devnane?
timer reg 2devnane?

DESCRIPTION

timer 2devnane?
This command will show information about the timer device. Optionally which device to show information
about can be specified. Device names arelisted in 'info sys.

timer reg 2devnane?
This command will get the timers register. Optionally which device to get can be specified. Device names
arelisted in‘info sys.

EXAMPLE

Execute instructions starting at 0x40000000.
grnmon2> timer 0x40000000

GRMON2-UM 185 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

93. tmode - syntax
tmode - Select tracing mode between none, processor-only, AHB only or both.
SYNOPSIS

tmode

tmode none

tmode both

tmode ahb bool ean

tmode proc ?bool ean? ?cpu#?

DESCRIPTION

tmode
Print the current tracing mode
tmode none
Disable tracing
tmode both
Enable both AHB and instruction tracing

tmode ahb ?bool ean?
Enable or disable AHB transfer tracing

tmode proc ?bool ean? 2cpu#?
Enable or disable instruction tracing. Use cpu# to toggle a single cpu.

EXAMPLE

Disable AHB transfer tracing
grnon2> tnode ahb di sabl e

SEE ALSO

Section 3.4.9, “Using the trace buffer”

GRMON2-UM 186 www.cobham.com/gaisler
April 2018, Version 2.0.93

94. uhci - syntax

NAME

uhci - Control the USB host's UHCI core
SYNOPSIS

uhci subcommand ?ar gs. . . ?

DESCRIPTION
uhci endian ?devnane?
Displays the endian conversion setting
uhci opregs 2devnane?
Displays contents of the I/O registers
uhci reset 2devnane?
Performs a Host Controller Reset

RETURN VALUE

Upon successful completion, uhci have no return value.

SEE ALSO

Section 5.6, “USB Host Controller”

COBHAM

GRMON2-UM 187

April 2018, Version 2.0.93

www.cobham.com/gaisler

COBHAM

95. usrsh - syntax

NAME

usrsh - Run commands in threaded user shell

SYNOPSIS

usrsh
usrsh subconmmand ?ar g?

DESCRIPTION

The usrsh command is used to create custom user shells. Each custom shell has an associated Tcl interpreter
running in a separate thread. Log output from a custom user shell is prefix with its name (see description of the
- | og option in Section 3.2.3, “General options”).
usrsh
usrsh list
List all custom user shells.

usrsh add nane
Create a user shell named nane. The name is used as an identifier for the shell when using other usrsh

commands.
usrsh delete name
Delete user shell nane.
usrsheval - bg??std?nanmearg ?arg ...?
Evaluate command ar g in the user shell identified asnane. If a script is running, then the command will
fail with the error code set to EBUSY .

If the option - bg is set, then the script will be evaluated in the background, and GRMON will return to
the prompt.

If the option - st d, in combination with option - bg, then output from the backround operation will be
forwarded to the current shells stdout.

usrsh result nane
Retrieve the result from the last evaluation. If a script is running, then the command will fail with the error

code set to EBUSY.

RETURN VALUE
Upon successful completion usrsh list will return alist of all custom user shells.

usrsh eval will return the result from the script. If the option - bg then nothing will be returned. Instead the usrsh
result will return the result when the script is finished.

EXAMPLE

Create auser shell named myshel | and evaluate acommand in it.

grnon2> usrsh add nyshel |
Added user shell: nyshell

grnon2> usrsh eval nyshell puts "Hello Wrld!"
Hell o World!

Evaluate command in user shell named nyshel | in the background and wait for it to finish.

grmon2> usrsh eval -bg nmyshell {after 2000; expr 1+1}

grmon2> while {[catch {usrsh result nyshell}] && $errorCode == "EBUSY"} {puts "waiting"; after 1000}
wai ting
wai ting

grmon2> puts [usrsh result myshell]
2

GRMON2-UM 188 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

SEE ALSO

Section 3.5, “Tcl integration”

GRMON2-UM 189 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

96. va - syntax

NAME

va- Translate avirtual address
SYNOPSIS

vaaddr ess cpu#?

DESCRIPTION
va addr ess 2cpu#?

Trandate a virtual address. The command will use the MMU from the current active CPU and the cpu#
can be used to select a different CPU.

RETURN VALUE

Command va returns the translated address.

SEE ALSO

Section 3.4.14, “Memory Management Unit (MMU) support”

GRMON2-UM 190 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

97. verify - syntax

NAME

verify - Verify that afile has been uploaded correctly.
SYNOPSIS

verify 2opti ons. .. ?fil ename ?addr ess?

DESCRIPTION

verify 2opti ons. .. ?fil enanme ?addr ess?
Verify that the file f i | ename has been uploaded correctly. If the addr ess argument is present, then
binary files will be compared against data at this address, if |eft out then they will be compared to data at
the base address of the detected RAM.

RETURN VALUE

Upon successful completion ver ify returnsthe number of error detected. If the- er r or s hasbeen given, it returns
alist of errorsinstead.

OPTIONS

- bi nary
The - bi nar y option can be used to force GRMON to interpret the file as a binary file.

- max num
The - max option can be used to force GRMON to stop verifying when num errors have been found.

-errors
When the - er r or s option is specified, the verify returns alist of al errors instead of number of errors.
Each element of the list is a sublist whose format depends on the first item if the sublist. Possible errors
can be detected are memory verify error (MEM), read error (READ) or an unknown error (UNKNOWN).
Theformats of the sublistsare: MEM addr ess r ead- val ue expect ed- val ue , READ addr ess
num f ai | ed- addr esses , UNKNOWN addr ess

EXAMPLE

Load and then verify ahello_world application

grnon2> | oad ../ hello_world/ hello_world
grnon2> verify ../hello_world/hello_world

SEE ALSO

Section 3.4.2, “Uploading application and data to target memory”
bload

ecload

load

GRMON2-UM 191 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

98. vmemb - syntax

NAME

vmemb - AMBA bus 8-bit virtual memory read access, list arange of addresses
SYNOPSIS

vmemb ?- asci i ?addr ess A engt h?

DESCRIPTION

vmemb ?- asci i ?addr ess A engt h?
GRMON will trandate addr ess to a physical address, do an AMBA bus read 8-bit read access and print
the data. The optional length parameter should specified in bytes and the default size is 64 bytes. If no
MMU existsor if it isturned off, this command will behave like the command vwmemb

NOTE: Only JTAG debug links supports byte accesses. Other debug links will do a 32-bit read and then
parse out the unaligned data.

OPTIONS
-ascii
If the-asci i flag hasbeen given, then asingle ASCII string is returned instead of alist of values.
-cstr
If the - cstr flag has been given, then a single ASCII string, up to the first null character, is returned
instead of alist of values.

RETURN VALUE

Upon successful completion vmemb returns alist of the requested 8-bit words. Some options changes the result
value, see options for more information.

EXAMPLE

Read 4 bytes from address 0x40000000:
grnon2> vnenb 0x40000000 4

TCL returns:
64 0 00

SEE ALSO

Section 3.4.7, “ Displaying memory contents”
Section 3.4.14, “Memory Management Unit (MMU) support”

GRMON2-UM 192 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

99. vmemh - syntax

NAME

vmemh - AMBA bus 16-bit virtual memory read access, list arange of addresses
SYNOPSIS

vmemh ?- asci i ?addr ess A engt h?

DESCRIPTION
vmemh ?- asci i ?addr ess A engt h?
GRMON will translateaddr ess to aphysical address, do an AMBA busread 16-hit read access and print
the data. The optional length parameter should specified in bytes and the default sizeis 64 bytes (32 words).
If no MMU exists or if it isturned off, this command will behave like the command vwmemh

NOTE: Only JTAG debug links supports byte accesses. Other debug links will do a 32-bit read and then
parse out the unaligned data.

OPTIONS
-ascii
If the-asci i flag hasbeen given, then asingle ASCII string is returned instead of alist of values.
-cstr
If the - cstr flag has been given, then a single ASCII string, up to the first null character, is returned
instead of alist of values.

RETURN VALUE

Upon successful completion vmemh returns alist of the requested 16-bit words. Some options changes the result
value, see options for more information.

EXAMPLE

Read 4 words (8 bytes) from address 0x40000000:
grnon2> vnermrh 0x40000000 8

TCL returns:
16384 0 0 O

SEE ALSO

Section 3.4.7, “ Displaying memory contents”
Section 3.4.14, “Memory Management Unit (MMU) support”

GRMON2-UM 193 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

100. vmem - syntax

NAME

vmem - AMBA bus 32-bit virtual memory read access, list arange of addresses
SYNOPSIS

vmem ?- asci i ?address 2 engt h?

DESCRIPTION

vmem ?- asci i ?address A engt h?
GRMON will translateaddr ess to aphysical address, do an AMBA busread 32-hit read access and print
the data. The optional length parameter should specified in bytes and the default sizeis 64 bytes (16 words).
If no MMU exists or if it isturned off, this command will behave like the command vwmem

OPTIONS
-ascii
If the-asci i flag hasbeen given, then asingle ASCII string is returned instead of alist of values.

-cstr
If the - cstr flag has been given, then a single ASCII string, up to the first null character, is returned
instead of alist of values.

RETURN VALUE

Upon successful completion vmem returns a list of the requested 32-bit words. Some options changes the result
value, see options for more information.

EXAMPLE

Read 4 words from address 0x40000000:
gr non2> vimem 0x40000000 16

TCL returns:
1073741824 0 0 O

SEE ALSO

Section 3.4.7, “Displaying memory contents”
Section 3.4.14, “Memory Management Unit (MMU) support”

GRMON2-UM 194 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

101. vwmemb - syntax

NAME

vwmemb - AMBA bus 8-bit virtual memory write access
SYNOPSIS

vwmemb ?opti ons. .. ?addressdata? ..?

DESCRIPTION

vwmemb ?options...?addressdata? ..?
Do an AMBA write access. GRMON will trandate addr ess to a physical address and write the 8-bit
value specified by dat a. If more than one data word has been specified, they will be stored at consecutive
physical addresses. If no MMU exists or if it is turned off, this command will behave like the command
vwmemb

NOTE: Only JTAG debug links supports byte accesses. Other debug links will do a 32-bit read-modi-
fy-write when writing unaligned data.

OPTIONS

- bsi ze bytes
The - bsi ze option may be used to specify the size blocks of datain bytes that will be written.

- wpr ot
Disable memory controller write protection during the write.

RETURN VALUE
vwmemb has no return value.
EXAMPLE

Write OXAB to address 0x40000000 and OxCD to 0x40000004:
gr non2> vwrenb 0x40000000 O0xAB 0xCD

SEE ALSO

Section 3.4.7, “ Displaying memory contents”
Section 3.4.14, “Memory Management Unit (MMU) support”

GRMON2-UM 195 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

102. vwmembh - syntax

NAME

vwmemh - AMBA bus 16-bit virtual memory write access
SYNOPSIS

vwmemh ?o0pti ons. .. ?addressdata? ..?

DESCRIPTION

vwmemh ?options...?addressdata? ..?
Do an AMBA write access. GRMON will translate addr ess to a physical address and write the 16-bit
value specified by dat a. If more than one data word has been specified, they will be stored at consecutive
physical addresses. If no MMU exists or if it is turned off, this command will behave like the command
vwmemh

NOTE: Only JTAG debug links supports byte accesses. Other debug links will do a 32-bit read-modi-
fy-write when writing unaligned data.

OPTIONS

- bsi ze bytes
The - bsi ze option may be used to specify the size blocks of datain bytes that will be written.

- wpr ot
Disable memory controller write protection during the write.

RETURN VALUE
vwmemh has no return value.
EXAMPLE

Write OXABCD to address 0x40000000 and 0x1234 to 0x40000004:
gr non2> vwrenh 0x40000000 OxABCD 0x1234

SEE ALSO

Section 3.4.7, “ Displaying memory contents”
Section 3.4.14, “Memory Management Unit (MMU) support”

GRMON2-UM 196 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

103. vwmems - syntax

NAME

vwmems - Write a string to an AMBA bus virtual memory address
SYNOPSIS

vwmems addr ess dat a

DESCRIPTION
vwmemsaddr ess dat a
Do an AMBA write access. GRMON will trandate addr ess to a physical address and write the string
value specified by dat a, including the terminating NUL L-character. If no MMU exists or if it is turned
off, this command will behave like the command vwmems

NOTE: Only JTAG debug links supports byte accesses. Other debug links will do a 32-bit read-modi-
fy-write when writing unaligned data.

RETURN VALUE
vwmems has no return value.
EXAMPLE

Write "Hello World" to address 0x40000000-0x4000000C:
grnon2> vwnrens 0x40000000 "Hell o Worl d"

SEE ALSO

Section 3.4.7, “ Displaying memory contents”
Section 3.4.14, “Memory Management Unit (MMU) support”

GRMON2-UM 197 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

104. vwmem - syntax

NAME

vwmem - AMBA bus 32-bit virtual memory write access
SYNOPSIS

vwmem ?options...?addressdata? ..?

DESCRIPTION

vwmem ?options. .. ?addressdata? ..?
Do an AMBA write access. GRMON will translate addr ess to a physical address and write the 32-bit
value specified by dat a. If more than one data word has been specified, they will be stored at consecutive
physical addresses. If no MMU exists or if it is turned off, this command will behave like the command
vwmem

OPTIONS

- bsi ze bytes
The - bsi ze option may be used to specify the size blocks of datain bytes that will be written.

- wpr ot
Disable memory controller write protection during the write.

RETURN VALUE
vwmem has no return value.
EXAMPLE

Write 0OXABCD1234 to address 0x40000000 and to 0x40000004:
gr nron2> vwrem 0x40000000 OxABCD1234 0OxABCD1234

SEE ALSO

Section 3.4.7, “ Displaying memory contents”
Section 3.4.14, “Memory Management Unit (MMU) support”

GRMON2-UM 198 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

105. walk - syntax

NAME

walk - Trandlate a virtual address, print trandation
SYNOPSIS

walk addr ess 2cpu#?

DESCRIPTION

walk addr ess 2cpu#?
Trandate avirtual address and print translation. The command will use the MMU from the current active
CPU and the cpu# can be used to select a different CPU.

RETURN VALUE

Command walk returns the translated address.
SEE ALSO

Section 3.4.14, “Memory Management Unit (MMU) support”

GRMON2-UM 199 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

106. wash - syntax
wash - Clear memory or set all words in amemory range to avalue.

SYNOPSIS

wash 2options...?7tart stop??val ue?

DESCRIPTION

wash ?options...?
Clear all memories.

wash 2opti ons. .. ?start stop ?val ue?
Wash the memory area from st art up to st op and set each word to val ue. The parameter val ue
defaultsto O.

OPTIONS

-del ay ms

The - del ay option can be used to specify a delay between each word written.
-nic

Disable the instruction cache while washing the memory
-nocpu

Do not use the CPU to increase performance.

- Wpr ot
If the- wpr ot option is given then write protection on the memory will be disabled

EXAMPLE

Clear all memories
gr non2> wash

Set amemory areato 1
gr non2> wash 0x40000000 0x40000FFF 1

SEE ALSO

Section 3.10.1, “Using EDAC protected memory”

GRMON2-UM 200 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

107. wmdio - syntax

NAME

wmdio - Set PHY registers

SYNOPSIS

wmdio paddr raddr val ue ?gr et h#?

DESCRIPTION

wmdio paddr raddr val ue ?2gr et h#?
Set val ue of PHY addresspaddr and register r addr . If more than one device existsin the system, the
gr et h# can be used to select device, default is grethO. The command tries to disable the EDCL duplex
detection if enabled.

SEE ALSO

Section 5.4, “Ethernet controller”

GRMON2-UM 201 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

108. wmemb - syntax

NAME

wmemb - AMBA bus 8-bit memory write access
SYNOPSIS

wmemb ?options...?addressdata? ..?

DESCRIPTION

wmemb ?opti ons. .. ?addressdata? ..?
Do an AMBA write access. The 8-bit value specified by dat a will be written to addr ess. If more than
one dataword has been specified, they will be stored at consecutive addresses.

NOTE: Only JTAG debug links supports byte accesses. Other debug links will do a 32-bit read-modi-
fy-write when writing unaligned data.

OPTIONS

- bsi ze bytes
The - bsi ze option may be used to specify the size blocks of datain bytes that will be written.

- wpr ot
Disable memory controller write protection during the write.

RETURN VALUE
wmemb has no return value.
EXAMPLE

Write OxAB to address 0x40000000 and OxBC to 0x40000001:
gr non2> wnenb 0x40000000 OxAB 0xBC

SEE ALSO

Section 3.4.7, “ Displaying memory contents”

GRMON2-UM 202 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

109. wmemh - syntax

NAME

wmemh - AMBA bus 16-bit memory write access
SYNOPSIS

wmemh ?options...?addressdata? ..?

DESCRIPTION

wmemh ?opti ons. .. ?addressdata? ..?
Do an AMBA write access. The 16-bit value specified by dat a will bewrittento addr ess. If morethan
one dataword has been specified, they will be stored at consecutive addresses.

NOTE: Only JTAG debug links supports byte accesses. Other debug links will do a 32-bit read-modi-
fy-write when writing unaligned data.

OPTIONS

- bsi ze bytes
The - bsi ze option may be used to specify the size blocks of datain bytes that will be written.

- wpr ot
Disable memory controller write protection during the write.

RETURN VALUE
wmemh has no return value.
EXAMPLE

Write OXABCD to address 0x40000000 and 0x1234 to 0x40000002:
gr non2> whem 0x40000000 OxABCD 0x1234

SEE ALSO

Section 3.4.7, “ Displaying memory contents”

GRMON2-UM 203 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

110. wmems - syntax

NAME

wmems - Write a string to an AMBA bus memory address
SYNOPSIS

wmemsaddr ess dat a

DESCRIPTION

wmemsaddr ess dat a
Write the string value specified by dat a, including the terminating NUL L-character, to addr ess.

NOTE: Only JTAG debug links supports byte accesses. Other debug links will do a 32-bit read-modi-
fy-write when writing unaligned data.

RETURN VALUE
wmems has no return value.
EXAMPLE

Write "Hello World" to address 0x40000000-0x4000000C:
grnon2> wrens 0x40000000 "Hello World"

SEE ALSO

Section 3.4.7, “ Displaying memory contents”

GRMON2-UM 204 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

111. wmem - syntax

NAME

wmem - AMBA bus 32-bit memory write access
SYNOPSIS

wmem ?options...?addressdata? ..?

DESCRIPTION

wmem ?options...?addressdata? ..?
Do an AMBA write access. The 32-bit value specified by dat a will bewrittento addr ess. If morethan
one dataword has been specified, they will be stored at consecutive addresses.

OPTIONS

- bsi ze bytes
The - bsi ze option may be used to specify the size blocks of datain bytes that will be written.

- wpr ot
Disable memory controller write protection during the write.

RETURN VALUE
wmem has no return value.
EXAMPLE

Write 0OXABCD1234 to address 0x40000000 and to 0x40000004:
gr nron2> wrem 0x40000000 OxABCD1234 OxABCD1234

SEE ALSO

Section 3.4.7, “ Displaying memory contents”

GRMON2-UM 205 www.cobham.com/gaisler
April 2018, Version 2.0.93

COoOBHAM
Appendix C. Tcl API

GRMON will automatically load the scripts in GRMON appdat a folder. On Linux the appdat a folder is
located in ~/ . gr mon- 2. 0/ and on Windows it's typically located at C: \ User s\ %user nanme% AppDa-
t a\ Roani ng\ Cobham Gai sl er\ GRMON\ 2. 0. Inthefolder there are two different sub fol derswhere scripts
may be found, <appdat a>/ scri pt s/ sys and <appdat a>/ scri pt s/ user . Scripts located in the sys-
folder will be loaded into the system shell only, before the Plug and Play areais scanned, i.e. drivers and fix-ups
should be defined here. The scripts found in the user-folder will be loaded into all shells (including the system
shell), i.e. all user defined commands and hooks should be defined there.

In addition there are two commandline switches- udr v <f i | ename>and- ucnd <f i | enane> toload scripts
into the system shell or all shells.

TCL API switches:

-udrv<fil ename>
Load script specified by filename into system shell. This option is mainly used for user defined drivers.
-ucmd<fi | ename>
L oad script specified by filenameinto al shells, including the system shell. This option is mainly used for
user defined procedures and hooks.

Also the TCL command sour ce or GRMON command batch can be used to load a script into a single shell.
1. Device names

All GRLIB cores are assigned a unique adev N name, where N is a unique number. The debug driver controlling
the core also provides an aliaswhich is easier to remember. For example the name nct r | 0 will point to the first
MCTRL regardlessin which order the AMBA Plug and Play is assigned, thus the name will be consistent between
different chips. The names of the cores are listed in the output of the GRMON command info sys.

PCI devices can also be registered into GRMON's device handling system using one of the pci conf -reg, pci
scan -reg or pci busreg commands. The devices are handled similar to GRLIB devices, however their base name
ispdevN.

It is possible to specify one or more device names as an argument to the GRMON commands info sys and info
r eg to show information about those devices only. For info reg aregister name can also be specified by appending
the register name to the device name separated by colon. Register names are the same as described in Section 2,
“Variables’.

For each device in a GRLIB system, a namespace will be created. The name of the namespace will be the same
as the name of the device. Inside the namespace Plug and Play information is available as variables. Most debug
drivers also provide direct access to APB or AHB registers through variables in the namespace. See Section 2,
“Variables” for more details about variables.

Below is an example of how the first MCTRL is named and how the APB register base address is found using
Plug and Play information from the GRMON ntct r | 0 variable. The eleventh PCI device (anetwork card) isalso
listed using the unique name pdev 10.

grnon2> info sys nctrl0
nctrl 0 Aerofl ex Gaisler Menory controller with EDAC
AHB: 00000000 - 20000000
AHB: 20000000 - 40000000
AHB: 40000000 - 80000000
APB: 80000000 - 80000100
8-bit prom @ 0x00000000
32-bit static ram 1 * 8192 kbyte @ 0x40000000
32-bit sdram 2 * 128 Miyte @ 0x60000000
col 10, cas 2, ref 7.8 us
grnon2> info sys pdev10
pdev10 Bus 02 Slot 03 Func 00 [2:3:0]
vendor: 0x1186 D-Link SystemInc
devi ce: 0x4000 DL2000-based G gabit Ethernet
class: 020000 (ETHERNET)
subvendor: 0x1186, subdevice: 0x4004

GRMON2-UM 206 www.cobham.com/gaisler
April 2018, Version 2.0.93

BAR1: 00001000 -
BAR2: 82203000 -
ROM 82100000 -

00001100 I/ 0O 32 [256B]
82203200 MEM O [512B]
82110000 MEM

I RQ | NTA# -> | RQW

2. Variables

[64kB]

COBHAM

GRMON provides variables that can be used in scripts. A list of the variables can be found below.

grnon_ver si on
The version number of GRMON
grnon_shel |
The name of the shell
grnon: :settings::suppress_out put
The variableis a bitmask to controll GRMON output.

bit 0 Block al output from GRMON commands to the terminal
bit 1 Block al output from TCL commands (i.e. puts) to the terminal
bit 2 Block al output to thelog

grnon: :settings::echo_result
If setting thisto one, then the result of a command will aways be printed in the terminal.
grlib_device
The device ID of the system, read from the plug and play area.
grnon: ;i nterrupt
Thisvariablewill be set to 1 when auser issuesan interrupt (i.e. pressing Ctrl-C from the commandline), it's
aways set to zero before a commands sequenceisissued. It can be used to abort user defined commands.

It is also possible to write this variable from inside hooks and procedures. E.g. writing a 1 from aexec
hook will abort the execution
grlib_build
The build ID of the system, read from the plug and play area.
grlib_system
The name of the system. Only valid on known systems.
grlib_freq
The frequency of the systemin Hz.
<devnane#>L: : pnp: : devi ce
<devname#>': : pnp: : vendor

<devname#> : pnp: : mst : : cust oD
<devnane#>L: : pnp: : nst : : cust onl
<devnane#>L: : pnp: : nst : : cust on®

<devnanme#>L: : pnp: :nst::irq

<devnanme#>L: : pnp: : mst: ;i dx

<devnane#>L : pnp: : ahb: : 0: : start

<devnane#>L: : pnp: : ahb: : 0: : mask

<devnane#>L: : pnp: : ahb: : 0: : type

<devnane#>L: : pnp: : ahb: : cust ond

<devnane#>L: : pnp: : ahb: : cust onl

<devnane#>L: : pnp: : ahb: : cust on®2

<devnane#>L: : pnp: :ahb::irq

<devnane#>L: : pnp: : ahb: : i dx

<devnane#>L: : pnp: : apb: : start

<devname#>l: D pnp: :apb: : mask

<devnane#>L: : pnp: :apb::irq

<devnane#>L: : pnp: : apb: : i dx
The AMBA Plug and Play information is available for each AMBA device. If adevice hasan AHB Master
(mst), AHB Slave (ahb) or APB slave (apb) interface, then the corresponding variables will be created.

Replace with device name.

GRMON2-UM
April 2018, Version 2.0.93

207

www.cobham.com/gaisler

<devnanme#>1:
<devnanme#>1:
<devnanme#>1:
<devnanme#>1:
<devnane#>1: :
<devnanme#>1:
<devnanme#>1:
<devnanme#>L:
<devnane#>1: :
<devnane#>1: :
<devnane#>1: :
<devnane#>1: :
<devnane#>t: :
<devnane#>t: :
<devnane#>t: :
<devnane#>t: :
<devnanme#>L:
<devnanme#>L:
<devnanme#>L:
<devnane#>t: :
<devnane#>t: :
<devnanme#>L:
<devnanme#>L:
<devnanme#>L:
<devnanme#>L:
<devnane#>1: :
<devnanme#>L:
<devnanme#>L:
<devnane#>1: :
<devnane#>1: :
<devnanme#>L:
<devnane#>1: :
<devnane#>1: :
<devnanme#>L:
<devnane#>t: :
<devnanme#>L:
<devnane#>t: :
<devnane#>t: :
<devnane#>t: :
<devnane#>t: :
<devnane#>t: :
<devnane#>t: :
<devnanme#>L:
<devnane#>t: :

If the PCI bus

not generate PCI configuration accesses.
<devnane#>': : <r egnane>?

<devnama#>l::<regnane>2::<fldnane>3

:vendor
: devi ce
: conmand
:status

revi sion

:ccode
:csize
(tlat

ht ype
bi st
bar 0
bar 1
bar 2
bar 3
bar 4
bar 5

:cardbus
: subven
: subdev

r onbar
pri

:sec
:sord

:sec_tlat
;i 0_base

io lim

. secsts
:mem o_base

memo_lim
nmem base

cmemlim

mem base_up
mem.|imup

11 0_base_up

io_limup

:capptr

reso
resl
ronbar
iline
i pin
m n_gnt

:max_| at

bridge_ctrl

COBHAM

has been registered into the GRMON's device handling system the PCI Plug and Play con-
figuration space registers will be accessible from the Tcl variables listed above. Depending on the PCI
header layout (standard or bridge) some of the variables list will not be available. Some of the read-only
registers such as DEVICE and VENDOR are stored in GRMON's memory, accessing such variables will

Many devices exposes their registers, and register fields, as variables. When writing these variables, the
registers on the target system will aso be written.

grmon2> info sys

°Replace with aregister name
3Replace with aregister field name

GRMON2-UM
April 2018, Version 2.0.93

208 www.cobham.com/gaisler

COBHAM

nctrl 0 Aerofl ex Gaisler Menory controller with EDAC
AHB: 00000000 - 20000000
AHB: 20000000 - 40000000
AHB: 40000000 - 80000000
APB: 80000000 - 80000100
8-bit prom @ 0x00000000
32-bit static ram 1 * 8192 kbyte @ 0x40000000
32-bit sdram 2 * 128 Miyte @ 0x60000000
col 10, cas 2, ref 7.8 us

grmon2> puts [format Ox% $nctrlO:: [TAB- COVPLETI ON]
nctrl 0:: nefgl nctrl 0::nefg2 nctrl 0:: nef g3 nctrl 0::pnp::
nctrl O::nefgl:: nectrlO::nefg2:: netrlO::nefg3::

grnon2> puts [format Ox% $ncttrlO::pnp:: [TAB- COVPLETI ON]
nctrl 0:: pnp: : ahb:: nctrl O::pnp::device nttrlO::pnp::ver

nctrl 0:: pnp: : apb:: nctrl 0:: pnp:: vendor

grnon2> puts [format Ox% $ncttrlO::pnp::apb:: [TAB- COVPLETI ON]

nctrl O::pnp::apb::irq nctrl 0:: pnp: : apb: : mask nctrl 0:: pnp::apb::start
grmon2> puts [format Ox% $nctrl O::pnp::apb::start]
0x80000000

3. User defined hooks

GRMON supports user implemented hooks using Tcl procedures. Each hook is variable containing alist of pro-
cedure names. GRMON will call all the proceduresin thelist.

Likenormal proceduresin TCL, each hook can return acode and aresult value using the TCL command return. If
ahook returnsacodethat isnot equal to zero, then the GRMON will skip therest of the hooksthat areregisteredin
that list. Some hooks will change GRM ONSs behavior depending on the return code, see hook descriptions below.

To uninstall hooks, either remove the procedure name from the list using the Tcl Ireplace or delete the variable
using unset to uninstall all hooks. Hooks in the system shell can only be uninstalled in the startup script or by
letting the hook uninstall itself. Always use Ireplace when uninstalling hooks in the system shell, otherwise it's
possible to delete hooks the GRMON has installed that may lead to undefined behavior.
preinit
The preinit hooks is called after GRMON has connected to the board and before any driver initialization
is done. It is also called before the plug and play areais scanned. The hook may only be defined in the
system shell.
postinit
The post init hook is called after al drivers have been initialized. The hook may only be defined in the
system shell.
init#
During GRMON's startup, 9 hooks are executed. These hooks are calledi nit 1,1 ni t 2, etc. Each hook
is called before the corresponding init function in a user defined driver is caled. In additioninit 1 is
called after the plug and play area is scanned, but before any initialization. The i ni t # hooks may only
be defined in the system shell.
deinit
Called when GRMON is closing down. Thedei ni t hooks may only be defined in the system shell.
cl osedown
Called when a TCL is closing down.
pr eexec
These hooks are called before the CPU:s are started, when issuing arun, cont or go command. They must
be defined in the shell that calls the command.
exec
Theexec hooksare called once each iteration of the polling loop, whenissuing arun, cont or go command.
They must be defined in the shell that calls the command.
post exec
These hooks are called after the CPU:s have stopped, when issuing arun, cont or go command. They must
be defined in the shell that calls the command.
| oad
This hook is called before each block of data is written to the target. See tables below for argument de-
scription and return code definitions for the hook procedure.

GRMON2-UM 209 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

Argument Type Description
addr integer Destination addr
byt es integer Number of bytes
Return
Code Value Description
0 - The hook was successful, but let GRMON continue asusual. This can be used

-1 Integer value

1 Error text

pci cfg

to do extra configuration or fix-ups. Any return value will be ignored.

The hook overrides GRMON and the access was successful. Any return value
will be ignored.

The hook overrides GRMON and the access failed. Any return value will be
ignored.

This hook is called when a PCI configuration read access is issued. It can be used to override GRMON's
PCI configuration space access routines. See tables bel ow for argument descriptions and return codes/value
definitions for the hook procedure.

Argument Type Description
bus integer Busindex
sl ot integer Slot index
func integer Function index
of s integer Offset into the device's configuration space
si ze integer Size in hits of the access (8, 16 or 32)
Return
Code Value Description
0 - The hook was successful, but let GRMON continue as usual. This can be used

-1 Integer value

1 Error text

pci wef g

to do extra configuration or fix-ups. Any return value will be ignored.

The hook overrides GRMON and the access was successful. Return the value
read.

The hook overrides GRMON and the access failed. Return an error descrip-
tion.

This hook is called when a PCI configuration write access is issued. It can be used to override GRMON's
PCI configuration space access routines. See tables bel ow for argument descriptions and return codes/value
definitions the hook procedure.

Argument Type Description
bus integer Bus index
sl ot integer Slot index
func integer Function index
of s integer Offset into the device's configuration space
si ze integer Size in bits of the access (8, 16 or 32)
val ue integer The value to be written
Return
Code Value Description
0 - The hook was successful. GRMON continue doing the access. This can be
used to do extra configuration or fix-ups. Any return value will be ignored.
GRMON2-UM

April 2018, Version 2.0.93

210 www.cobham.com/gaisler

COBHAM

Return
Code Value Description
-1 - The hook overrides GRMON and the access was successful. Any return value
will be ignored.
1 Error text The hook overrides GRMON and the access failed. Return an error descrip-
tion.
reset
The reset hook is called after GRMON has connected to the board and when a command reset or run is
issued.

Example C.1. Using hooks

Define hook procedures

proc nyhookl {} {puts "Hello World"}

proc nyhook2 {} {puts "Hello again"; return -code 1 "Bl ocking next hook"}
proc nyhook3 {} {puts "WII never run"}

| append ::hooks:: preexec ::nmyhookl ::nyhook2 ::nyhook3 ;# Add hooks
run
unset ::hooks::preexec ;# Renove all hooks

proc nypcicfg {bus slot func ofs size} {
if {$size == 32} {
return -code -1 0x01234567
} elseif {$size == 16} {
return -code -1 Ox89AB
} elseif {$size == 8} {
return -code -1 0xCD

}

return -code 1 "Unknown size"

}
| append ::hooks::pcicfg ::nypcicfg ;# Add hooks
puts [format Ox% [pci cfgl6é 0:1:0 0]]

4. User defined driver

It is possible to extend GRMON with user defined drivers by implementing certain hooks and variablesin Tcl.
GRMON scans the namespace : : dri ver s for user defined drivers. Each driver must be located in the sub-
namespace with the name of the driver. Only thevariablesvendor ,devi ce,ver si on_m n,ver si on_nax
and descri pti on are required to be implemented, the other variables and procedures are optional. The script
must be loaded into the system shell.

Cores that GRMON finds while scanning the plug and play area, will be matched against the defined vendor,
device and version_min/max variables. If it matches, then the core will be paired with the driver. If a driver is
called 'mydrv', then the first found core will be named 'mydrv0', the second 'mydrv1',etc. Thisnamewill be passed
to the to all the procedures defined in the driver, and can be used to identify the core.

NOTE: The name of the driver may not end with a number.

variablevendor
The plug and play vendor identification number.

variabledevi ce
The plug and play device identification number.

variablever si on_mi n

variablever si on_mi n
Minimum and maximum version of the core that this driver supports

variabledescri pti on
A short description of the device

variabler egs (optional)
If implemented, the regs variable contains information used to parse the registers and present them to
the user, i.e. they will be printed in 'info reg' and Tcl-variables will be created in each shell. All register
descriptions must be put in the regs variable. Each register consists of a name, description and an optional
list of fields. Thefield entries are a quadruple on the format { name pos bits description} .

GRMON2-UM 211 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

proc info devnane (optional)
Optional procedure that may be used to present parsed information when 'info sys' is called. Returns a
newline separated string.

proc init {devname | evel } (optional)
Optional procedurethat will be called during initialization. The procedure will be called ninetimesfor each
device, with level argument set to 1-9. Thisway drivers that depend on another driver can be initialized in
asafeway. Normally initialization of devicesisdonein level 7.

proc restart devnane (optional)
Procedureto reinitialize the deviceto aknown state. Thisiscalled when GRMON starts (after initialization)
and when commands 'run’ or 'reset’ is issued.

proc regaddr {devnane r eghane} (optional)
Required only if registers have been defined. It returns the address of the requested register. It's required
to beimplemented if the variable regs isimplemented.

NOTE: If the variable regsisimplemented, then the procedure regaddr is required.

nanespace eval drivers::nydrv {
These variables are required
vari abl e vendor 0Ox1
vari abl e devi ce 0x16
variable version_mn O
variabl e version_nmax 0
vari abl e description "My device desciption”

Proc init

Args devnane: Device nanme

level : Which stage of initialization

Return -

#
Optional procedure that will be called during initialization. The procedure
will be called with I evel argnuent set to 1-9, this way drivers that depend
on another driver can be initialized in a safe way. Normally
initialization is done in level 7.
#
Commands wnem and mem can be used to access the registers. Use the driver procedure
regaddr to cal cul ate addresses or use static addresses.

proc init {devname |level} {
puts "init $devnane $level"
if {$level == 7} {
puts "Hell o $devnane!"
puts "Regl = nem [regaddr $devnane regl] 4"

}
}
Proc restart
Args devnane: Device nane
Return -
#

Optional procedure to reinit the device. This is called when GRMON start,
when commands 'run' or 'reset' is issued.

proc restart devname {

puts "restart $devnane"

}

Proc info

Args devnane: Device nanme

Return A new ine-separated string
#

Optional procedure that may be used to present parsed information when
'info sys' is called.

proc info devnane {

set str "Some extra information about $devnane"

append str "\nSonme nore information about $devnane"

return $str

}

Proc regaddr

Args devnane: Device nane,

regname: Register nane

Return Address of requested register
#

Required only if any registers have been defined.

This is a suggestion how the procedure coul d be inplenented
proc regaddr {devnane regnane} {
array set offsets { myregl Ox0 myreg2 Ox4}

GRMON2-UM 212 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

return [format Ox%08x [expr ([set ::[set devnane]::pnp::apb::start] + $offsets($regnane)) & OxFFFFFFFF]]
}

Regi ster descriptions

#

Al description nust be put in the regs-nanmespace. Each register concist
of a name, description and an optional |ist of fields.

The fields are quadruple of the format {name pos bits description}

Regi sters and fields can be added, renpbved or changed up to initalization
level 8. After level 8 TCL variables are created and the regs variable
shoul d be considered to a constant.
variable regs {
{"nmyregl" "Registerl description”
{"nyfld3" 4 8 "Field3 descpription"}
{"myfld2" 1 1 "Field2 descpription"}
{"myfldl" 0 1 "Fieldl descpription"}
}
{"nyreg2" "Register2 description"

B W HHH W

}
}; # End of nydrv
5. User defined commands

User defined commands can be implemented as Tcl procedures, and then loaded into all shells. See the docu-
mentation of the proc command [http://www.tcl.tk/man/tcl8.5/TclCmd/proc.htm] on the Tcl website for more in-
formation.

6. Links

More about Tcl, its syntax and other useful information can be found at:

Tcl Website [http://www.tcl.tk]

Tcl Commands [http://www.tcl.tk/man/tcl8.5/TclCmd/contents.htm]
Tcl Tutoria [http://www.tcl.tk/man/tcl8.5/tutorial /tcltutorial .html]
Tcler'sWiki [http://wiki.tcl.tk/]

GRMON2-UM 213 www.cobham.com/gaisler
April 2018, Version 2.0.93

http://www.tcl.tk/man/tcl8.5/TclCmd/proc.htm
http://www.tcl.tk/man/tcl8.5/TclCmd/proc.htm
http://www.tcl.tk/man/tcl8.5/TclCmd/proc.htm
http://www.tcl.tk
http://www.tcl.tk
http://www.tcl.tk/man/tcl8.5/TclCmd/contents.htm
http://www.tcl.tk/man/tcl8.5/TclCmd/contents.htm
http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html
http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html
http://wiki.tcl.tk/
http://wiki.tcl.tk/

COBHAM

Appendix D. Fixed target
configuration file format

To use afixed configuration file, GRMON should be started with - cf g fil e. A fixed configuration file can
be used to describe the target system instead of reading the plug and play information. The configuration file
describeswhich | P cores are present on the target and on which addresses they are mapped, using an XML format.
An description file can be generated from an plug and play system using the command info sys-xml fi | e.

Valid tags for the XML format are described below.
<grxml>
e Parents:
 Children: grlib

Attribute Description

versi on Version of the XML syntax
<grlib>

e Parents: grxml

« Children: bus

Attribute Description

build GRLIB build identification number
devi ce GRLIB device identification number

<bus>
» Parents: grlib, slave, bus
 Children: master, dlave, bus
Attribute Description
type Valid values are AHB or APB
ffactor Frequency factor relavtive parent bus

<master>
* Parents: bus
¢ Children:

Attribute Description

vendor Core vendor identification number
devi ce Core device identification number
version Version number

irq Assigned interrupt number
<dave>
 Parents: bus

¢ Children: bus, bar, custom

Attribute Description

vendor Core vendor identification number
devi ce Core device identification number
version Version number

irg Assigned interrupt number

<bar>
¢ Parents: dave

GRMON2-UM 214

www.cobham.com/gaisler
April 2018, Version 2.0.93

 Children:
Attribute Description

COBHAM

addr ess Base address of the bar
| ength Length of the bar in bytes

<custom>
¢ Parents: dave
¢ Children:

Attribute Description

regi ster Vaue of the user defined bar

Below is an example configuration file for asimple LEON3 system.

<?xm version="1.0" standal one="yes" ?>
<grxm version="1.0">
<grlib device="0x0" buil d="4109">
<bus type="AHB" ffactor="1.000000">

<!-- LEON3 SPARC V8 Processor -->
<mast er vendor="0x1" devi ce="0x3">
</ mast er >
<!-- JTAG Debug Link -->

<mast er vendor="0x1" devi ce="0x1lc" version="1">

</ mast er >
<!-- LEON2 Menory Controller -->
<sl ave vendor ="0x4" devi ce="0xf">

<bar address="0x00000000" | engt h="0x20000000"/>
<bar address="0x20000000" | engt h="0x20000000"/ >
<bar address="0x40000000" | engt h="0x40000000"/>

</ sl ave>
<!-- AHB/ APB Bridge -->
<sl ave vendor ="0x1" devi ce="0x6">

<bar address="0x80000000" | engt h="0x100000"/>

<bus type="APB" ffactor="1.000000">
<!-- LEON2 Menory Controller -->
<sl ave vendor ="0x4" devi ce="0xf">

<bar address="0x80000000" | ength="0x100"/>

</ sl ave>
<l-- Ceneric UART -->

version="1">

<bar address="0x80000100" | ength="0x100"/>

</ sl ave>
<I-- Multi-processor Interrupt Crl.

<sl ave vendor ="0x1" devi ce="0xd" version="3">
<bar address="0x80000200" | ength="0x100"/>

</ sl ave>
<!-- Mdular Timer Unit -->

<sl ave vendor="0x1" devi ce="0x11" irqg="8">
<bar address="0x80000300" | ength="0x100"/>

</ sl ave>
<!-- Ceneral Purpose I/O port -->

<sl ave vendor ="0x1" devi ce="0x1a" version="1">

<bar address="0x80000500" | ength="0x100"/>

</ sl ave>
</ bus>
</ sl ave>
<!-- LEON3 Debug Support Unit -->

<sl ave vendor ="0x1" devi ce="0x4" version="1">

<bar address="0x90000000" | engt h="0x10000000"/>

</ sl ave>
</ bus>
</grlib>
</ grxm >

GRMON2-UM
April 2018, Version 2.0.93

215

www.cobham.com/gaisler

COBHAM
Appendix E. License key installation

GRMON has support for nodelocked and floating license keys. The type of key can be identified by the colour of
the USB dongle. The nodelocked keys are purple and the floating license keys are red.

1. Installing HASP HL Runtime Driver

GRMON islicensed using aHASP HL USB hardware key. A device runtime driver for the key must be installed
before the key can be used. The latest runtime can be found at the GRMON download page (see below).

Included in the downloaded HA SP runtime archive is a readme file which contains detailed installation instruc-
tions.

Administrator privileges are required on windows. On Linux it isrequired that the runtimeisinstalled as root user.

Floating license keys requires that the runtime is installed in both client and server. In addition the server also
need to have a license manager installed. The license manager software for Windows can be downloaded from
the same website as the runtime.

For Linux, license manager can be downloaded from the link below. The install script is outdated and will fail
on modern distributions, but the following workaround have been tested on a Ubuntu 16.04 machine. The licens
manager can also be started manually by running the haspl mexecutable.

$ sudo RUNLEVELDIR=/etc/rc2.d bash ./dinst .
2. Links

GRMON download page [http://www.gaiser.com/index.php/downloads/debug-tool s]
Linux license manager [http://www.gaisler.com/rusLM .tar.gz]

GRMON2-UM 216 www.cobham.com/gaisler
April 2018, Version 2.0.93

http://www.gaisler.com/index.php/downloads/debug-tools
http://www.gaisler.com/index.php/downloads/debug-tools
http://www.gaisler.com/rus/LM.tar.gz
http://www.gaisler.com/rus/LM.tar.gz

COBHAM

Appendix F. Appending environment
variables

1. Windows
Open the environment variables dialog by following the steps below:

Windows 7

1. Select Conput er from the Start menu

2. Choose Syst em Properti es from the context menu
3. ClickonAdvanced system settings

4. Select Advanced tab

5. ClickonEnvi ronnment Vari abl es button

Windows XP

1. Select Control Panel fromthe Start menu
2. Open System

3. Sdlect Advanced tab

4, ClickonEnvi ronment Vari abl es button

Variableslisted under User vari abl es will only affect the current user and Syst em var i abl es will affect
all users. Select the desired variable and press Edi t to edit the variable value. If the variable does not exist, a
new can be created by pressing the button New.

To append the PATH, find the variable under System variables or User variables (if the user variable does not exist,
then create a new) and press Edi t . At the end of the value string, append a single semicolon (;) as a separator
and then append the desired path, e.g. ; C. \ ny\ pat h\ t o\ append

2. Linux

Use the export <name>=<value> command to set an environment variable. The paths in the variables PATH or
LD LI BRARY_PATH should be separated with asingle colon ().

To append apath to PATHor LD_LI BRARY_PATH, add the path to the end of the variable. See example below.

$ export LD_LI BRARY_PATH=$LD_LI BRARY_PATH: / ny/ pat h/ t o/ appand

GRMON2-UM 217 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM
Appendix G. Compatibility

Breakpoints
Tcl has anative command called break, that terminates |oops, which conflicts the the GRMON1 command
break. Therefore break, hbreak, watch and bwatch has been replaces by the command bp.

Cache flushing
Tcl has anative command called flush, that flushed channels, which conflicts the the GRMON1 command
flush. Therefore flush has been replaced by the command cctrl flush. In addition the command icache
flush can be used to flush the instruction cache and the command dcache flush can be used to flush the
data cache.

Case sensitivity
GRMON2 command interpreter is case sensitive whereas GRMONL1 isinsensitive. Thisis because Tcl is
case sensitive.

-eth -ip
-ip flag is not longer required for the Ethernet debug link, i.e. it is enough with -eth 192.168.0.51.

GRMON2-UM 218 www.cobham.com/gaisler
April 2018, Version 2.0.93

COBHAM

Cobham Gaisler AB
Kungsgatan 12

411 19 Gothenburg
Sweden
www.cobham.com/gaisler
sales@gaisler.com

T: +46 31 7758650

F: +46 31 421407

Cobham Gaisler AB, reserves the right to make changes to any products and services described
herein at any time without notice. Consult Cobham or an authorized sales representative to verify that
the information in this document is current before using this product. Cobham does not assume any
responsibility or liability arising out of the application or use of any product or service described herein,
except as expressly agreed to in writing by Cobham; nor does the purchase, lease, or use of a product
or service from Cobham convey a license under any patent rights, copyrights, trademark rights, or any
other of the intellectual rights of Cobham or of third parties. All information is provided as is. There is no
warranty that it is correct or suitable for any purpose, neither implicit nor explicit.

Copyright © 2017 Cobham Gaisler AB

GRMON2-UM 219 www.cobham.com/gaisler
April 2018, Version 2.0.93

	
	Table of Contents
	1. Introduction
	1.1. Overview
	1.2. Supported platforms and system requirements
	1.3. Obtaining GRMON
	1.4. Installation
	1.5. License
	1.6. GRMON Evaluation version
	1.7. Problem reports

	2. Debugging concept
	2.1. Overview
	2.2. Target initialization
	2.2.1. LEON2 Target initialization
	2.2.2. Configuration file target initialization

	2.3. Memory register reset values

	3. Operation
	3.1. Overview
	3.2. Starting GRMON
	3.2.1. Debug link options
	3.2.2. Debug driver options
	3.2.3. General options

	3.3. GRMON command-line interface (CLI)
	3.4. Common debug operations
	3.4.1. Examining the hardware configuration
	3.4.2. Uploading application and data to target memory
	3.4.3. Running applications
	3.4.4. Inserting breakpoints and watchpoints
	3.4.5. Displaying processor registers
	3.4.6. Backtracing function calls
	3.4.7. Displaying memory contents
	3.4.8. Instruction disassembly
	3.4.9. Using the trace buffer
	3.4.10. Profiling
	3.4.11. Attaching to a target system without initialization
	3.4.12. Multi-processor support
	3.4.13. Stack and entry point
	3.4.14. Memory Management Unit (MMU) support
	3.4.15. CPU cache support

	3.5. Tcl integration
	3.5.1. Shells
	3.5.2. Commands
	3.5.3. API

	3.6. Symbolic debug information
	3.6.1. Multi-processor symbolic debug information

	3.7. GDB interface
	3.7.1. Connecting GDB to GRMON
	3.7.2. Executing GRMON commands from GDB
	3.7.3. Running applications from GDB
	3.7.4. Running SMP applications from GDB
	3.7.5. Running AMP applications from GDB
	3.7.6. GDB Thread support
	3.7.7. Virtual memory
	3.7.8. Specific GDB optimization
	3.7.9. Limitations of GDB interface

	3.8. Thread support
	3.8.1. GRMON thread commands

	3.9. Forwarding application console I/O
	3.9.1. UART debug mode

	3.10. EDAC protection
	3.10.1. Using EDAC protected memory
	3.10.2. LEON3-FT error injection

	3.11. FLASH programming
	3.11.1. CFI compatible Flash PROM
	3.11.2. SPI memory device

	3.12. Automated operation
	3.12.1. Tcl commanding during CPU execution
	3.12.2. Communication channel between target and monitor
	3.12.3. Test suite driver

	4. Debug link
	4.1. Serial debug link
	4.2. Ethernet debug link
	4.3. JTAG debug link
	4.3.1. Xilinx parallel cable III/IV
	4.3.2. Xilinx Platform USB cable
	4.3.3. Altera USB Blaster or Byte Blaster
	4.3.4. FTDI FT4232/FT2232
	4.3.5. Amontec JTAGkey
	4.3.6. Actel FlashPro 3/3x/4/5
	4.3.7. Digilent HS1

	4.4. USB debug link
	4.5. GRESB debug link
	4.5.1. AGGA4 SpaceWire debug link

	4.6. User defined debug link
	4.6.1. API

	5. Debug drivers
	5.1. AMBA AHB trace buffer driver
	5.2. Clock gating
	5.2.1. Switches

	5.3. DSU Debug drivers
	5.3.1. Switches
	5.3.2. Commands
	5.3.3. Tcl variables

	5.4. Ethernet controller
	5.4.1. Commands

	5.5. GRPWM core
	5.6. USB Host Controller
	5.6.1. Switches
	5.6.2. Commands

	5.7. I2C
	5.8. I/O Memory Management Unit
	5.9. Multi-processor interrupt controller
	5.10. L2-Cache Controller
	5.10.1. Switches

	5.11. Statistics Unit
	5.12. Leon2 support
	5.12.1. Switches

	5.13. On-chip logic analyzer driver
	5.14. Memory controllers
	5.14.1. Switches
	5.14.2. Commands

	5.15. Memory scrubber
	5.16. MIL-STD-1553B Interface
	5.17. PCI
	5.17.1. PCI Trace

	5.18. SPI
	5.19. SpaceWire router
	5.20. SVGA frame buffer

	6. Support
	Appendix A. Command index
	Appendix B. Command syntax
	1. ahb - syntax
	2. amem - syntax
	3. attach - syntax
	4. at - syntax
	5. batch - syntax
	6. bdump - syntax
	7. bload - syntax
	8. bp - syntax
	9. bt - syntax
	10. cctrl - syntax
	11. cont - syntax
	12. cpu - syntax
	13. dcache - syntax
	14. dccfg - syntax
	15. dcom - syntax
	16. ddr2cfg1 - syntax
	17. ddr2cfg2 - syntax
	18. ddr2cfg3 - syntax
	19. ddr2cfg4 - syntax
	20. ddr2cfg5 - syntax
	21. ddr2delay - syntax
	22. ddr2skew - syntax
	23. detach - syntax
	24. disassemble - syntax
	25. dump - syntax
	26. dwarf - syntax
	27. edcl - syntax
	28. eeload - syntax
	29. ehci - syntax
	30. ei - syntax
	31. ep - syntax
	32. exit - syntax
	33. flash - syntax
	34. float - syntax
	35. forward - syntax
	36. gdb - syntax
	37. go - syntax
	38. gr1553b - syntax
	39. grcg - syntax
	40. grpwm - syntax
	41. grtmtx - syntax
	42. help - syntax
	43. hist - syntax
	44. i2c - syntax
	45. icache - syntax
	46. iccfg - syntax
	47. info - syntax
	48. inst - syntax
	49. iommu - syntax
	50. irq - syntax
	51. l2cache - syntax
	52. l3stat - syntax
	53. l4stat - syntax
	54. la - syntax
	55. leon - syntax
	56. load - syntax
	57. mcfg1 - syntax
	58. mcfg2 - syntax
	59. mcfg3 - syntax
	60. mdio - syntax
	61. memb - syntax
	62. memh - syntax
	63. mem - syntax
	64. mil - syntax
	65. mmu - syntax
	66. nolog - syntax
	67. pci - syntax
	68. perf - syntax
	69. phyaddr - syntax
	70. profile - syntax
	71. quit - syntax
	72. reg - syntax
	73. reset - syntax
	74. rtg4fddr - syntax
	75. rtg4serdes - syntax
	76. run - syntax
	77. scrub - syntax
	78. sdcfg1 - syntax
	79. sddel - syntax
	80. sf2mddr - syntax
	81. sf2serdes - syntax
	82. shell - syntax
	83. silent - syntax
	84. spim - syntax
	85. spi - syntax
	86. spwrtr - syntax
	87. stack - syntax
	88. step - syntax
	89. svga - syntax
	90. symbols - syntax
	91. thread - syntax
	92. timer - syntax
	93. tmode - syntax
	94. uhci - syntax
	95. usrsh - syntax
	96. va - syntax
	97. verify - syntax
	98. vmemb - syntax
	99. vmemh - syntax
	100. vmem - syntax
	101. vwmemb - syntax
	102. vwmemh - syntax
	103. vwmems - syntax
	104. vwmem - syntax
	105. walk - syntax
	106. wash - syntax
	107. wmdio - syntax
	108. wmemb - syntax
	109. wmemh - syntax
	110. wmems - syntax
	111. wmem - syntax

	Appendix C. Tcl API
	1. Device names
	2. Variables
	3. User defined hooks
	4. User defined driver
	5. User defined commands
	6. Links

	Appendix D. Fixed target configuration file format
	Appendix E. License key installation
	1. Installing HASP HL Runtime Driver
	2. Links

	Appendix F. Appending environment variables
	1. Windows
	2. Linux

	Appendix G. Compatibility

