Gaisler

rRONTGRADC

LEON/GRLIB Guide rRONTGRADE

GRLIB VHDL IP Core Library

Configuration and Development Guide

Jul 2025, Version 2025.2

GUIDE Frontgrade Gaisler AB
Jul 2025, Version 2025.2 Kungsgatan | SE-411 19 | Goteborg | Sweden
+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

rRONTGRADE

Gaisler

LEON/GRLIB Guide

Table of contents

1 INEEOAUCTION ...ttt ettt et et eeabeeabe e e e e b aeesaessneenseeennaens 4

1.1 OVEIVIEW ..vvieieiiiiitieesteettestesteestestbesseeteestesteasseseasseaseaaseessesseesse st sessesseessanseassesseansensnessensens 4

1.2 OthET RESOUITES ...uvveieiieieiiie ettt ettt ettt ette et eestvee st esseaesae e seessbeesaenssaesseanssessseesssennns 4

1.3 LICEISING ...ttt sttt ittt ste ettt esteenteeteante et ee e e e eeseeae st eesae et sessesteensenseansenseensenneensensens 4

2 System Design GUIAEIINESccccvvieiiieiiiie e 5

2.1 TNEOAUCLION ...ttt ettt be et e eete et e e e esae e saeesseesssenssaesseanssesnseesssennes 5

2.2 MINIMAL SYSEEIM ...ttt sttt sae s e e e et et e see s eetesseeseesaeensennas 5

2.2.1 Minimal systems for LEONS and NOEL-Vccccoiiiiiiiiir e 5

2.3 IMEIMOTY IMLAD ..ttt ettt ettt sttt et ettt et eesebe st es e eesbeeaseessseensaenneeesseanneessseensaennns 6

23,1 OVEIVIEW .ttt ettt ettt ettt st eabesabesteeseestes e assa st asaessessaesbesssessesaeessanens 6

2.3.2 Typical LEON/GRLIB Memory Map.........cccecverierrieiienrieiienieeeieieeieieeeeeeeesens 6

2.3.3 Memory Map in Systems That Need 2 GiB Memory Areaccccevvvervenreennennn. 7

2.3.4 LEONS and NOEL-V MEMOIY MAPS.......ccuerriereereerereeeieiraeeeeessesssessessaessesssesnns 7

2.3.5 AHB I/O Area and GRLIB Plug&Play Areas...........ccceevevereeerecneeieeeeeeeeennn 7

24 INtErrupt ASSIZNMEINLS.e.eiiietieiie ettt ettt ettt ettt ettt et e et eetenaees e e e e e e eneeas 8

241 OVEIVICW ..tteeuiieeieieiecteetieette et eestae e eesbeabaeessaesssesssaesssaassessseesssennsaesssasssesnssesssennes 8

242 Linux 2.6 and Jaterccveeeiiiiiieiieie ettt eae et aeeaae e 8

243 RTEMS oottt et ettt ettt s b et sttt es et e eeeseeenen 8

2,44 VEWOTKS ..oiiceiiecie ittt ettt ette et ete et e e e sae e e sbeessaessbennsaesseaesseensnesssennes 8

2.5 Device Specific IdentifiCationccvecieeieeiiriiiieie et 8

3 LEON design information..........c..eecueierieieiieeeciieeesiieeesieeesiieeeseaeeesaaeeesaaeessaeennvae s 10

3.1 TNEOAUCLION ..ottt ettt tbe e e st te e st b e s aesseaeaeessaessseassaesnsaesseenees 10

32 General RecOMMENAAtIONS..........ccueiviiiiiiiiieie ittt ettt v e ete e sveeaeeeeaeas 10

3.2.1 Data Cache SNOOPING.....cc.eviereriierieeeieieeeeieeteeie e et et eseeee s eeseessessaesaesseenaeenes 10

322 VT7and FPU.c.oiiiiiiii ettt 10

323 MMU and Supervisor Tag bitccccoceriveeiiniieiiinneee e 10

33 LEON Example COnfigurationsceceveriiriiereieienteeriessesreesesesesseeseessesseessssseessasssessenns 10

3301 OVEIVIEW .eeiuviiiiiiiiestieseesteetaesteetaestestbesteeseasseaseesseeseesseessessaessesseessesssessessesssanseans 10

3.3.2 Minimal LEON Configuration............cccceveeeueieecuerieeeieeeeseeeeeseeseesseessesveesaeenas 11

3.3.3 General Purpose LEON Configuration...........ccccceevverierreenieerienrieienreeneseeeeveneeenns 12

3.34 High Performance LEON Configurationcccoceevvvveinreerienrieiesriene e eeveenenns 12

3.3.5 Configuration Settings For Existing LEON DeViCes.........ccccevvrrrierririeresrrernenne. 14

34 LEON3/4 subsystem (gaisler.subsys.leon dsu_stat base)........c..ccoceereririeiieiienceieene. 14

3.5 LEONS subsystem (gaisler.leon5sys) / NOEL-V subsystem (gaisler.noelvsys)............... 15

4 Multiple Buses, Clock Domains and Clock Gating...........cccceeeveeeevieenieenniveennnen. 16

4.1 TNEOAUCLION ..ttt et ettt tae e aese e e sbae s eesreaeseessaessseansaeensaesseenees 16

4.2 Creating Multi-Bus SYSEINScc.eecviriiriieeiierieseieiie st steeeieee ettt ss e sneenae e 16

N B O)< 4 1<) TSRS 16

4.2.2 GRLIB FACIHItIES . .eviuveeieeiietiieiiet ettt ettt esie st st essesbe s e essesae e e ssessesennans 16

4.2.3 GRLIB AMBA Plug&Play in Multi-Bus Systems...........cccceeereerieriinnienierienenns 16

4.2.4 Buses in Different Clock DOMAINSccceovrveireieniirieneieie e 17

4.2.5 Single AHB Bus EXample.........cccooiiiiieniirieniieiiese et 17

4.2.6 Multi-Bus System EXamplecocovveiirieiiieie et 17

43 LEON3 Double-CIOCKING.......cueeiiiieiriiiieeeirietieteesteereestesaeesaesraesaesseessesseessssseassasssessenns 18

431 OVEIVIEW ..vteticeieiii et et et ettt e et e eseestesseesae st aetsesteessenseassesseaseasseessesssessessanssessanns 18

4.3.2 LEON3-CLK2X Template Desi@N.......cccccvrrirreiriiiiiniieniiirieniesreeeiesreeeseseeesveseeenns 18

4.3.3 CIOCKINGieieetieeiecie et cte ettt ettt ees et aebae st ssaessesssesaesseassesseessnassansaessesenns 18

4.3.4 MUulticyCle Paths.......ccocoiiiiiiiiieceiceee ettt s 19

4.3.5 Dynamic CIock SWItChINgcceeviiiuiriiiviiiiireieieeee et 21

4.3.6 CONTIGUIATION ..oouviieiiiiceeicee ettt st eetae st aetbesteeaveeeesbesseeseesseessesseessessaessessaees 21

44 CLOCK ZALINE ..ttt et sttt e ettt e ettt se e e e b e 21
GUIDE Frontgrade Gaisler AB
Jul 2025, Version 2025.2 2 Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

rRONTGRADE

Gaisler

LEON/GRLIB Guide

4.1 OVEIVIEW ..utiiiieeeiiesieeeteetieeetteeteestteestaesstaesaeaasbessseesssasssaesssaessessssessseassesnsaessesnnsas 21

442 LEON ClOCK SAtINGeovveivieiieeieeie ettt ettt s eeeen e eeaen e e e 21

5 Debug communication INKSccceeeriiiiiieiiiieeeie e e e 23

5.1 OVETVIEW ...ttt ettt ettt sttt sttt st et sheeh e st ebees bt eae e bt et e ee e et et e e ntesb e et b sbaes e st ebbenaeenes 23

5.2 Available debug link CONtrollers...........coueeuieieiieieieeieeeeee e 23

6 Core specific design recommENdationsccceeeeueeerueeeireeeieeeeieeenieeesieeesaeeeens 24

6.1 OVETVIEW ..ottt ettt sttt sttt st et she bt es bt e bt es bt eat et et e ee e ettt e e e sbees e shaes e st enbenbeenes 24

6.2 AHB/AHB Bridges (AHB2AHB/AHBBRIDGE/GRIOMMU)........ccceovieieienieiaeeiinieenne 24

6.3 SVGA Controller (SVGACTRL) .c.oouiiiiiiieienct ettt 24

7 GRLIB AMBA Test Frameworkc.ccoovuiiiiiiieiieiecieecie e 25

7.1 OVETVICW ..eeviiitieeieie it eeteettestteesteeeteeesteasaseesssaasaeeaseeesbasssaesssaesseansseesseesssasssaesseaansesnseenssenn 25

7.2 AT AHB MASETcvveiiiiiiiiiicteit ettt ettt st sttt ettt ettt st se et s sanee 25

72,1 DESCIIPLION .euvveeereeiiiriieeteeteesteeteestestaestestessteseeassesseessesssesesseessessaessanssessesssensesnes 25

7.2.2 Initialization and INStantiationcceeceeeereeieeieeieeie e e 25

7.2.3 SIMPLE ACCESSES..cuuriuririerierierieetiestestreteeeeesteeseaseeeesseesseesesssessaessesssessesssassenssenes 26

7.3 AT AHB SIAVE ...ttt et ettt b et et eae et e e see st et enene 27

75 T8 B B o7 3§ o1 5) WO PSPPSRt 27

7.3.2 Initialization and INStANtIAtIONccooeeiiiiriiii e 27

7.3.3 Controlling AT AHB_ SLV ..ottt e e 29

7.4 AT AHB CONIOILET......ciiiiieieeiieietie ettt ettt ettt ee ettt r e eebe e saeeaeaestbeessaeseeaesaeasneeeneas 31

A N B T er) o5 o) TSP STSS 31

T2 USAZEL...iiiuieiie ettt ettt ettt ettt ettt et sh e ettt b e et et e teeas 31

8 N0 o) 0T0) o U 32
GUIDE Frontgrade Gaisler AB
Jul 2025, Version 2025.2 3 Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

rRONTGRADE

Gaisler

LEON/GRLIB Guide

1.1

1.2

1.3

Introduction

Overview

The GRLIB IP Library is an integrated set of reusable IP cores, designed for system-on-chip (SoC)
development. The IP cores are centered around a common on-chip bus, and use a coherent method for
simulation and synthesis. The library is vendor independent, with support for different CAD tools and
target technologies. A unique plug&play method is used to configure and connect the IP cores with-
out the need to modify any global resources.

The LEON3, LEON4 and LEONS processors are synthesizable VHDL models of a 32-bit processor
compliant with the SPARC V8 architecture. The NOEL-V processor is a synthesizable VHDL model
of a 64-bit processor compliant with the RISC-V architecture. The models are highly configurable
and particularly suitable for SoC designs. The processor models are distributed as integrated parts of
the GRLIB IP Library.

This configuration and development guide is intended to aid designers when developing systems
based on LEON/GRLIB. The guide complements the GRLIB IP Library User’s Manual and the
GRLIB IP Core User’s Manual. While the IP Library user’s manual is suited for RTL designs and the
IP Core user’s manual is suited for instantiation and usage of specific cores, this guide aims to help
designers make decisions in the specification stage.

Other Resources

There are several documents that together describe the GRLIB IP Library and Frontgrade Gaisler’s IP

cores:

* GRLIB IP Library User’s Manual (grlib.pdf) - Main GRLIB document that describes the library
infrastructure, organization, tool support and on-chip bus.

* GRLIB IP Core User’s Manual (grip.pdf) - Describes specific IP cores provided with the GRLIB
IP library. Also specifies which cores that are included in each type of GRLIB distribution.

* GRLIB-FT User’s Manual (grlib-ft.pdf) - Describes the FT and FT-FPGA versions of the GRLIB
IP library. The document is an addendum to the GRLIB IP Library User’s Manual. This docu-
ment is only available in the FT and FT-FPGA distributions of GRLIB.

* GRLIB FT-FPGA Xilinx Add-on User’s Manual (grlib-ft-fpga-xilinx.pdf) - Describes function-
ality of the Virtex5-QV and Xilinx TMRTool add-on package to the FT-FPGA version of the
GRLIP IP library. The document should be read as an addendum to the ‘GRLIB IP Library
User’s Manual’ and to the GRLIB FT-FPGA User’s Manual. This document is only available as
part of the add-on package for FT-FPGA.

Licensing

Some of the cores mentioned in this document (such as LEON4 and the AHB bridges) are only avail-
able in the commercial versions of GRLIB.

GUIDE

Frontgrade Gaisler AB

Jul 2025, Version 2025.2 4 Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

LEON/GRLIB Guide

rRONTGRADE

Gaisler

2

2.1

2.2

System Design Guidelines
Introduction

The design and partitioning of a system strongly depends on the intended use for the system. The sec-
tions below make general recommendations based on the components available in GRLIB.

Minimal System
A minimal LEON/GRLIB system consists of the following IP cores:

TABLE 1. Minimal LEON system

Core Description

CLKGEN Clock generator

RSTGEN Reset generator. Generating a glitch free on-chip system reset signal.
AHBCTRL AHB arbiter/controller.

APBCTRL AHB/APB bridge/controller. Must be included in order to interface

peripheral cores such as interrupt controller and timer unit.
LEON3/4 LEON3/4 processor

IRQMP Interrupt controller

GPTIMER General Purpose Timer Unit

MEMCTRL Memory controller providing access to (P)ROM and RAM. The
GRLIB IP Library contains several memory controllers. It is also possi-
ble to include on-chip ROM and RAM by using the AHBROM and
AHBRAM IP cores.

In addition to the cores described above it is recommended to include a LEON Debug Support Unit
(DSU) and a debug communication link to be able to control the processor and inspect the system via
the GRMON Debug Monitor. GRLIB contains several debug communication link (DCL) cores. All
DCL cores are controlled over an external link to make accesses on an on-chip AHB bus. Examples of
DCL cores are the AHBITAG, AHBUART and USBDCL cores. See section 5 for more information.

In order for the processor to be able to communicate with the outside world, an 8-bit UART and a
General Purpose 1/0 port is also typically included in a LEON design.

With the above considerations the recommended minimal LEON/GRLIB system also includes the
following cores:

TABLE 2. Additional recommended cores for minimal LEON system

Core Description
DSU3/4 LEON Debug Support Unit

AHBITAG/ Debug communication link. AHBJTAG provides an external JTAG

AHBUART/ link. Other examples include AHBUART (serial UART), USBDCL

USBDCL/ (USB), GRETH (Ethernet debug communication link is available as
GRETH part of Ethernet MAC core).

APBUART 8-bit UART
GRGPIO General Purpose 1/0 Port

2.2.1 Minimal systems for LEONS and NOEL-V

LEONS and NOEL-V are delivered as part of subsystems comprising a minimal system, with excep-
tion for the memory controller. Both subsystems includes an AHB system and an APB system, which
are exported outside the subsystem, to allow peripherals to be connected to these.

GUIDE

Frontgrade Gaisler AB

Jul 2025, Version 2025.2 5 Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

rRONTGRADE

Gaisler

LEON/GRLIB Guide

23

Memory Map

2.3.1 Overview

Most LEON systems use a memory map where ROM (boot PROM) is mapped at address
0x00000000 and RAM is mapped at address 0x40000000. Traditionally the AHB/APB bridge has
been mapped at 0x80000000 and peripherals such as timer, interrupt controller and UART have been
placed at fixed offsets in the APB address space. Table 3 shows the base addresses historically used in
LEON systems.

TABLE 3. Peripheral base addresses, legacy systems

Base address | Description

0x80000000 LEON2 memory controller

0x80000100 Generic UART (APBUART)

0x80000200 Multi-processor interrupt controller IRQMP)
0x80000300 Modular timer unit (GPTIMER)

Some software may not read all peripheral core base addresses from plug&play and instead assume
that some peripherals are mapped at these fixed offsets. One of the affected software packages is the
BCC 1.0.x toolchain, where the -qambapp switch must be given in order for the produced software to
find the UART, timer and interrupt controller in case these peripherals are not mapped at the
addresses given in table 3.

The traditional memory map described above does not fit all systems. In particular one or several
large memory area (>= 1 GiB) may be difficult to place as the standard AHB decoder in GRLIB con-
strains the base address of a memory area based on the memory area size. Other reasons include that
the use of AHB-to-AHB bridges that limit how the memory areas can be arranged. As a result of this,
there are several LEON/GRLIB designs with different memory maps. In order to ease software devel-
opment, this document contains some recommendations on how memory maps should be arranged.
Section 2.3.2 shows a traditional LEON/GRLIB memory map and section 2.3.3 contains recommen-
dations on how to arrange memory maps that contains large memory areas.

2.3.2 Typical LEON/GRLIB Memory Map

In order to use toolchains and other software distributed by Frontgrade Gaisler, some constraints in
the system’s memory map should be observed. A typical LEON3 system has the following memory
map:

TABLE 4. Typical LEON3 memory map

Base address | Description
0x00000000 PROM

0x40000000 RAM base address. Some systems place SRAM at address 0x40000000
and SDRAM at base address 0x60000000. When SRAM is disabled the
memory controller may automatically adjust the SDRAM base address
to 0x40000000.

0x80000000 Base address of first AHB/APB bridge connecting interrupt controller,
UART(s) and timer unit.

0x90000000 Debug Support Unit register interface
0xFFF00000 AHB I/O area (if used by any core)
0xFFFFF000 Plug’n’play area (always located within AHB I/O area)

The most important areas in the table above are base addresses for ROM and RAM. The default linker
scripts make assumptions on the locations of these areas. Also, software that makes use of the GRLIB
AMBA plug’n’play areas often assume the main plug’n’play area to be located at OXFFFFF000. The

GUIDE

Frontgrade Gaisler AB

Jul 2025, Version 2025.2 6 Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

LEON/GRLIB Guide

rRONTGRADE

Gaisler

information in this area is used by software to dynamically find the addresses of all peripherals in the
system.

The location of the first AHB/APB bridge (0x80000000 in the table above) is generally of less impor-
tance. Some legacy software may assume that the bridge is located at the specified address.

The typical memory map given above constrains the maximum size of a memory area in the design.
The GRLIB infrastructure requires that memory areas are binary aligned according to their size. This
means that a 2 GiB memory area must start on address 0x00000000 or address 0x80000000. In order
to accommodate memory areas of 2 GiB some systems use variations of the memory map as shown in
table 5.

2.3.3 Memory Map in Systems That Need 2 GiB Memory Area

TABLE S. Memory map accomodating 2 GiB main memory area

Base address | Description

0x00000000 RAM

0x80000000 Other large area, for instance PCI bridge mapping PCI memory
0xC0000000 PROM / Memory mapped 10

0xD0000000 AHB/APB bridge

0xE0000000 Debug Support Unit register interface

0xFFF00000 AHB I/O area (if used by any core)

O0xFFFFF000 Plug’n’play area (always located within AHB I/O area)

The memory map in table 5 allows a 2 GiB memory map in the address range 0x00000000 -
O0x7FFFFFFF and is supported by the toolchains supplied by Frontgrade Gaisler by giving an extra
switch (see the toolchain and OS documentation for details). Note that the default start address for a
LEON processor is 0x0. If the memory map above is used, the reset start address should be changed
to 0xC0000000.

Existing LEON systems use variations of the above memory map. The main difficulties that can arise
from different memory maps is that the RAM and ROM areas may collide in linker scripts and boot
loaders. It is therefore recommended that RAM is always mapped at 0x40000000 or 0x00000000 and
that ROM (boot PROM area) is mapped at 0x00000000 or 0xC0000000.

Special switches may be required when building the application if RAM is mapped at 0x00000000.
See toolchain documentation for details.

2.3.4 LEONS and NOEL-V memory maps

LEONS and NOEL-V are delivered as parts of subsystems. The subsystems include an AHB system
and an APB system with their default memory maps. For further information about the memory map
of LEONS5 and NOEL-V systems, refer to the GRLIB IP Core User’s Manual (grip.pdf) sections
about LEONS5SYS and NOELVSYS.

2.3.5 AHB I/O Area and GRLIB Plug&Play Areas

It is recommended that the default addresses are used for AHB 1/O areas (determined by generic on
AHBCTRL) and GRLIB AMBA plug&play areas (determined via generics on AHBCTRL and
APBCTRL). Software scanning routines will assume that one plug&play area is located at
O0xFFFFF000.

It is possible to place the AHB I/O area and the AHB plug&play area so that it shadows another AHB
area. As an example a PCI core can be mapped at address 0xC0000000 - OxFFFFFFFF while the
plug&play area is still reachable at offset OxFFFFF000. While such memory maps are perfectly valid
and useful for many systems it generally not recommended to let the AHB /O or plug&play area
shadow another area as software drivers may not recognize that some of the memory area assigned to
a core is essentially unreachable. When an AHB I/O area or the plug&play area shadows another
AHB slave it means that the AHB slave will not be selected when an access is made to the address
range occupied by AHB I/O or plug&play.

GUIDE

Frontgrade Gaisler AB

Jul 2025, Version 2025.2 7 Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

LEON/GRLIB Guide

rRONTGRADE

Gaisler

24

25

Interrupt Assignments

2.4.1 Overview

The LEON processor and interrupt controller provides 15 interrupt lines in the default configuration.
Interrupt 15 is non-maskable, which leaves 14 interrupts usable for peripheral cores. The multiproces-
sor interrupt controllers (IRQMP and IRQ(A)MP cores) can be extended to provide 16 additional
interrupts, called extended interrupts.

The GRLIB interrupt infrastructure allows any number of cores to share the same interrupt line. Note,
however, that sharing interrupts requires that the software drivers can handle shared interrupts. Also,
the time required to serve an interrupt request may be significantly prolonged if software needs to
check a large number of registers in order to determine if a peripheral asserted an interrupt.

Some operating systems place additional constraints on interrupt assignments. The subsections below
describe the requirements of each OS. The basic rules to follow in order to be able to run the maxi-
mum amount of software can be summarized with:

1. If possible, have one dedicated interrupt for each interrupt source (no shared interrupts).
2. Configure the timer unit (GPTIMER) to have dedicated interrupts for each timer

3. Place the timer interrupts within the range 2 - 12

4. Leave interrupts lines 13 - 15 unused

The subsections below dealing with operating systems may become outdated due to changes in the
operating systems. If in doubt, please consult the OS documentation or contact Frontgrade Gaisler for
the latest information.

2.4.2 Linux 2.6 and later

Interrupt 15 is used for cross-calls. Interrupt 13 is the default selection for inter-processor-interrupts
(IPI). The interrupt line to be used for IPI can be selected when building the kernel and cannot be
shared with peripherals.

Linux also requires that the first timer on the general purpose timer unit (GPTIMER) has a dedicated
interrupt. For SMP operation the second timer must also have a dedicated interrupt line allocated.

2.4.3 RTEMS

RTEMS supports extended interrupts. Interrupt 14 is used for cross-CPU messaging in AMP systems.
This interrupt is defined in leon.h: LEON3_ MP_IRQ, cannot be a shared interrupt and must be in the
range 1 .. 14.

RTEMS SMP is at the time of writing not finished and requirements are not known.

Timer 0 of GPTIMER 0 is the system clock timer, however RTEMS can be used without a timer.
There are two cases depending on which RTEMS distribution that is used:

Classical/official RTEMS BSP: GPTIMERO.timer0 must have separate IRQ and the interrupt must be
in the range 1 .. 14.

“Driver manager BSP” (RCC LEON3/4 BSP): Can handle both separate and shared IRQs on GPTI-
MER, interrupt can be in the range 1 .. 31 (no limitations).

2.4.4 VxWorks

VxWorks makes use of interrupt 14 for inter-processor-interrupts (IPI). This interrupt should not be
shared with peripherals.

Device Specific Identification

GRLIB systems have two identifiers in the system’s plug&play area that can be used to distinguish a
particular device: The GRLIB build ID and the GRLIB System Device ID. The GRLIB build ID is set
globally for the full library and the device ID is set per design via the AHBCTRL VHDL generic
devid (refer to the AHBCTRL section in GRLIB IP Core User’s Manual, grip.pdf). This VHDL
generic should be set to a unique value for all new designs. The file lib/grlib/amba/devices.vhd lists
device IDs, under the comment grlib system device id’s, used for some existing designs. It is recom-
mended that customer designs use an ID larger than 16#0a00#. Please contact Frontgrade Gaisler sup-
port if you wish to have you device ID added to the listing in devices.vhd.

GUIDE

Frontgrade Gaisler AB

Jul 2025, Version 2025.2 8 Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

rRONTGRADE

Gaisler

LEON/GRLIB Guide

Communication interfaces may have additional vendor and device identifiers. This is, for instance,
the case for JTAG, PCI and USB. For the USB debug link it is recommended that users keep the
Frontgrade Gaisler IDs so that GRMON may properly detected the debug link. For all other identifi-
ers the implementers of a device should use their own IDs as assigned by the appropriate organisa-
tions. Re-use of Frontgrade Gaisler’s vendor/manufacturer ID may prevent the device from fully
functioning together with software and debug tools.

GUIDE Frontgrade Gaisler AB
Jul 2025, Version 2025.2 9 Kungsgatan | SE-411 19 | Goteborg | Sweden
+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

LEON/GRLIB Guide

rRONTGRADE

Gaisler

3

3.1

3.2

33

LEON design information

Introduction

The sections below contain recommendations on how to configure the LEON processors depending
on system requirements.

General Recommendations

3.2.1 Data Cache Snooping

To keep the data cache synchronized with external memory, cache snooping can be enabled. When
enabled, the data cache monitors write accesses on the AHB bus to cacheable locations. If another
AHB master writes to a cacheable location that is currently cached in the date cache, the correspond-
ing cache line is marked as invalid.

Data cache snooping is of high importance for SMP systems and, in general, both simplifies and
increases performance in systems with multiple masters. Note that the processor(s) snoop on the bus
to which they are directly connected. In a system with multiple AHB buses, snooping will only work
on the bus to which the processors are connected. Snooping will not provide cache coherency if, for
instance, there are masters connected between a Level-2 cache and memory, while the processors are
located in front of the Level-2 cache.

Snooping is also required to prevent aliasing effects in systems that use a memory management unit
(MMU) and a data cache that is either larger than the MMU page size or has more than one way. If the
processor(s) is implemented with a MMU, then separate snoop/physical tags must be enabled. A
multi-way cache allows virtual addresses mapped to the same physical address to be cached in each
cache-way. A write operation will only update the copy in one of the cache-ways, leading to data
coherency issues. If snooping with separate physical tags is enabled then the aliased addresses will be
invalidated by the processor write operation.

In case the data cache way size is larger than the MMU page size then multiple MMU pages may be
cached in the same cache-way, again leading to the cache containing multiple virtual locations that
map to the same physical address. In this case the LEON snooping implementation will not resolve
the situation and the processor needs to be implemented with a MMU page sizes that matches the
cache way size. Note that operating system support for MMU page sizes larger than 4 KiB is limited,
consult the documentation for the operating system.

3.2.2 V7 and FPU

When the LEON is implemented with an FPU it should also include hardware support for multiply
and divide (SPARC V8 MUL/DIV selected with the LEON VHDL generic v8). Otherwise a SPARC
V7 processor with FPU will be obtained and this configuration may not be supported by prebuilt
packages and toolchains.

3.2.3 MMU and Supervisor Tag bit

When the LEON is implemented with an MMU it is recommended to include the supervisor access
bit in the L1 cache tag. Otherwise there is a risk of information leaking to user mode from kernel
mode due to kernel data being present and accessible from user space in the L1 cache. The extra tag
information is included by setting the mmuen VHDL generic to 2. The extra tag bit does not provide
any extra functionality for systems that only use supervisor mode and use the MMU as an extra safety
net, in these cases the bit can be disabled to reduce the width of L1 tag RAMs with one bit.

LEON Example Configurations

3.3.1 Overview

The subsections below show three different example configurations for LEON processors; a minimal
configuration used to target low area and high frequency, a typical configuration with all features
enabled, and a high-performance configuration where the requirements on processing performance
outweigh area and power considerations.

Each section contains a table with recommended values for some of the LEON processor VHDL
generics. If you are using the xconfig GUI to configure the processor then please note that the VHDL

GUIDE

Frontgrade Gaisler AB

Jul 2025, Version 2025.2 10 Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

rRONTGRADE

Gaisler

LEON/GRLIB Guide

generic names do not directly correspond to the configuration options in the GUI. The descriptions of
the configuration settings should provide enough information to do appropriate configuration selec-
tion also via xconfig. The xconfig tool also has support to initialize the processor configuration with
values from the three example configurations described in the sections below. See the configuration
help text in xconfig for the option Force values from example configuration in the Processor sub
menu for additional information.

Also note that all listed configuration options do not apply to all LEON processors. For instance, the
LEON3 processor has a VHDL generic called bp that controls the inclusion of branch predication,
while the LEON4 processor is always implemented with support for branch prediction.

3.3.2 Minimal LEON Configuration

This LEON configuration is aimed at resource constrained systems where the area requirements of the
processor core needs to be minimized. Note that using an area minimized configuration may not nec-
essarily reduce the system’s performance since it may be possible to achieve a higher operating fre-
quency by reducing the amount of logic in the processor core.

Table 6 below shows recommended values for some of the LEON processor VHDL generics to attain
a minimal configuration in terms of area.

TABLE 6. Minimal LEON processor configuration

VHDL Recommended

generic value Description

dsu 0 Some area can be saved by removing the Debug Support Unit
(DSU). Howeyver, this unit can prove to be invaluable at least
during the software development phase.

fpu 0 Disable floating-point unit

v8 0 Do not include support for SPARC V8 MUL/DIV instructions

mac 0 Do not include support for SPARC V8e SMAC/UMAC

nwp 0 Disable hardware watchpoints

icen / dcen 1 Include processor caches

isets / dsets 1 Direct mapped instruction and data cache

irepl / drepl 2 Random replacement policy for both instruction and data cache
(setting is unused for direct-mapped cache)

isetsize / - The size of the caches does not significantly affect the required

dsetsize logic. Choose cache size according to application requirements and
amount of RAM available on target device.

dnsoop 0 Disable data cache snooping (see section 3.2.1)

mmuen 0 Disable memory management unit (MMU). Note: May be required
depending on software applications.

lddel 1 1-cycle load delay

tbuf 0 Disable instruction trace buffer (NOTE: Including the instruction
trace buffer may be of high value during software development
and debug).

pwd 1 Power-down implementation. Choose 2 if frequency target is not
met.

smp 0 Disable SMP support. If the processor core should be used in an
SMP configuration then see the GRIP documentation on how to set
the SMP generic. If SMP is enabled then the dsnoop VHDL
generic should also be set accordingly.

bp 0 Disable branch prediction

GUIDE Frontgrade Gaisler AB
Jul 2025, Version 2025.2 11 Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

rRONTGRADE

Gaisler

LEON/GRLIB Guide

3.3.3 General Purpose LEON Configuration

This LEON configuration is aimed for general purpose processing balancing performance against
area and power requirements.

TABLE 7. General purpose LEON processor configuration

VHDL Recommended

generic value Description

dsu 1 Include support for the LEON Debug Support Unit (DSU)

fpu - Include floating-point unit based on application requirements. A
floating-point unit is highly recommended for most systems.
LEON processors can primarily interface the GRFPU or GRFPU-
lite floating point unit. The GRFPU is a high-performance pipe-
lined FPU with high area requirements. GRFPU-lite provides a
balanced option with high acceleration of floating-point computa-
tions combined with lower area requirements compared to
GRFPU.

v8 2 Include support for SPARC V8 MUL/DIV instructions using a 5-
cycle multiplier. Note that if the target technology has multiplier
blocks a single-cycle multiplier (v8 generic set to 1) may provide
lower area and higher performance.

mac 0 Do not include support for SPARC V8¢ SMAC/UMAC instruc-
tions.

nwp 2 Include two hardware watchpoints

icen / dcen 1 Include processor caches.

isets / dsets 2 Implement instruction and data caches with two ways

irepl / drepl 2 Random replacement policy for both instruction and data cache, or
possibly LRU replacement (irepl/drepl set to 0).

isetsize / - The size of the caches does not significantly affect the required

dsetsize logic. Choose cache size according to application requirements and
amount of RAM available on target device.

dnsoop 6 Enable snooping with extra physical tags (see section 3.2.1)

mmuen 2 Enable memory management unit (MMU)

itlbbnum / 8 Use eight entries each for the instruction and data MMU transla-

dtlbnum tion look-a-side buffers

tlb_type 2 Use separate translation look-a-side buffers (TLB) with fast write
for data and instruction.

tlb_rep 0 Use LRU TLB replacement

lddel 1 Use l-cycle load delay

tbuf 4 Use 4 KiB instruction trace buffer.

pwd 2 Timing efficient power-down implementation.

smp 0 Disable SMP support. If the processor core should be used in an
SMP configuration then see the GRIP documentation on how to set
the SMP generic.

bp 1 Enable branch prediction

3.3.4 High Performance LEON Configuration

This LEON configuration is aimed at high performance processing where the needs for computational
speed outweighs area and power requirements.

GUIDE Frontgrade Gaisler AB
Jul 2025, Version 2025.2 12 Kungsgatan | SE-411 19 | Goteborg | Sweden
+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

rRONTGRADE

Gaisler

LEON/GRLIB Guide

In order to reduce the effects of memory latency, a Level-2 cache is recommended for high-perfor-
mance systems. This is of particular interest in multiprocessor systems.

TABLE 8. High-performance LEON processor configuration

VHDL Recommended

generic value Description

dsu 1 Include support for the LEON Debug Support Unit (DSU)

fpu 1-7 Use GRFPU floating-point unit. Select (FP) multiplier depending
on target technology. For FPGA this would typically be inferred
(1) or technology specific (4). For ASIC DesignWare multiplier
(2) or Module Generator (3).

v8 16#32# Include support for SPARC V8 MUL/DIV instructions using a
32x32 pipelined multiplier. Note that if the target technology has
multiplier blocks a single-cycle multiplier (v8 generic set to 1)
may provide lower area and higher performance.

mac 0 Do not include support for SPARC V8¢ SMAC/UMAC instruc-
tions

nwp 4 Include support for four hardware watchpoints

icen / dcen 1 Include processor caches.

isets / dsets 2 Implement instruction and data caches with two ways

irepl / drepl 0 Least-Recently-Used replacement policy for instruction and data
caches.

isetsize / - The size of the caches does not significantly affect the required

dsetsize logic. Choose cache size according to application requirements and
amount of RAM available on target device.

dnsoop 6 Enable snooping with extra physical tags (see section 3.2.1)

mmuen 2 Enable memory management unit (MMU)

itlbnum / 16 Use sixteen entries each for the instruction and data MMU transla-

dtlbnum tion look-a-side buffers

tlb_type 2 Use separate translation look-a-side buffers (TLB) with fast write
for data and instruction.

tlb_rep 0 Use LRU TLB replacement

lddel 1 Use 1-cycle load delay

tbuf 4 Use 4 KiB instruction trace buffer.

pwd 2 Timing efficient power-down implementation.

smp >0 Enable SMP support. If the processor core should be used in an
SMP configuration then see the GRIP documentation on how to set
the SMP generic. Note that several processor entities must be
instantiated. This configuration option only enables support for
SMP, it does not instantiate several processor cores.

bp 1 Enable branch prediction

GUIDE Frontgrade Gaisler AB
Jul 2025, Version 2025.2 13 Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

rRONTGRADE

Gaisler

LEON/GRLIB Guide

3.3.5 Configuration Settings For Existing LEON Devices

The table below shows configurations for existing Frontgrade LEON devices. Please refer to the pre-
vious subsections under section 3.3 for comments and descriptions of the different values.

TABLE 9. LEON processor configurations

VHDL UT699 UT700 GR712RC | GR740 LEON3-

generic Value Value value Value RTAX
example
value

dsu 1 1 1 1 1

fpu 2 2 2 2 0

v8 2 16#32#+4 | 2 16#32# 0

mac 0 0 0 0 0

nwp 4 4 2 4 2

icen 1 1 1 1 1

isets 2 4 4 4 1

isetsize 4 4 4 4 8

irepl 0 0 0 0 0

ilinesize 8 8 8 8 8

dcen 1 1 1 1 1

dsets 2 4 4 4 1

dsetsize 4 4 4 4 4

drepl 0 0 0 0 0

dlinesize 4 4 4 8 4

dnsoop 6 6 6 6 0

mmuen 1 1 1 1 0

itlbnum / 16/16 16 /16 16/16 16/16 -/-

dtlbnum

tlb_type 0 2 2 2 0

tlb_rep 0 0 0 0 0

lddel 2 1 1 1 1

tbuf 2 4 4 8 2

pwd 2 2 2 2 2

svt 1 1 1 1 1

smp 0 0 1 1 0

bp N/A (0) 1 1 N/A 0

npasi N/A (0) N/A (0) N/A (0) 1 N/A (0)

pwrpsr N/A (0) N/A (0) N/A (0) 1 N/A (0)

LEON ver- LEON3FT | LEON3FT | LEON3FT | LEON4v0 | LEON3FTvl

sion used vl v2 vl with BP to LEON3v3

34 LEON3/4 subsystem (gaisler.subsys.leon_dsu_stat base)

GRLIB contains a subsystem component that can be used to instantiate the LEON processor, debug
support unit and a statistics unit (performance counters). The subsystem is available in lib/gaisler/
subsys/ and also has a corresponding xconfig script. Please refer to GRLIB IP Core User’s Manual
(grip.pdf) for documentation of LEON_DSU_STAT BASE.

GUIDE Frontgrade Gaisler AB
Jul 2025, Version 2025.2 14 Kungsgatan | SE-411 19 | Goteborg | Sweden
+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

rRONTGRADE

Gaisler

LEON/GRLIB Guide

3.5 LEONS subsystem (gaisler.leonSsys) / NOEL-V subsystem (gaisler.noelvsys)

Both LEONS and NOEL-V are delivered as part of a subsystem, designed to provide a necessary min-
imal LEON5/NOEL-V system. Both subsystems are configurable to allow tailoring of the functional-
ity to meet performance and resource utilization goals. The subsystem for LEONS is available in /ib/
gaisler/leon5v0 and the subsystem for NOEL-V is available in lib/gaisler/noelv/subsys. Please refer
to GRLIB IP Core User’s Manual (grip.pdf) for documentation about LEON5SY'S and NOELVSYS.

GUIDE Frontgrade Gaisler AB
Jul 2025, Version 2025.2 15 Kungsgatan | SE-411 19 | Goteborg | Sweden
+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

LEON/GRLIB Guide

rRONTGRADE

Gaisler

4

4.1

4.2

Multiple Buses, Clock Domains and Clock Gating

Introduction

This section describes some techniques that can be used with GRLIB to create more complex system
architectures with multiple buses and/or clock domains.

Peripheral IP cores that need to work at a separate clock domain usually have their own clocking and
synchronization built in. This is not explained here, see the core-specific documentation.

Creating Multi-Bus Systems

4.2.1 Overview

The on-chip bus may become a bottle neck in systems where the processors and peripherals all share
the same bus. The fact that all IP cores are connected together may also introduce high loads in the
system, which can lead to timing issues at implementation. These issues can be solved by partitioning
the system into several AHB buses.

4.2.2 GRLIB Facilities

In order to partition the system into multiple buses, the general-purpose AHB bridge IP cores AHB-
BRIDGE (uni-directional) and AHB2AHB (bi-directional) are included in GRLIB. There are also
special-purpose cores, such as the IOMMU and L2-cache, that have bridge functionality built into
them.

4.2.3 GRLIB AMBA Plug&Play in Multi-Bus Systems

Software and debug monitors such as GRMON can detect all IP cores connected to the on-chip
bus(es) by scanning the plug&play configuration area. The format and function of this area is
described in the GRLIB User’s Manual and in the GRLIB IP Core User’s Manual documentation for
the AHB controller (AHBCTRL) and AHB/APB bridge (APBCTRL).

In multi-bus systems, each bus will have its own AMBA plug&play configuration area and software
must be able to access all plug&play areas In order for software able to discover all peripherals in a
system. The same applies for the GRMON debug monitor, to discover all peripherals the debug com-
munication link master interface must be connected to a bus from where it can access all plug&play
areas (as well as memory where peripheral registers are mapped).

The plug&play scanning routines discover the presence of multiple AHB buses when it discovers the
slave interface a core such as the Level-2 cache or AHB/AHB bridge (AHB2AHB, AHBBRIDGE).
Upon discovery of a bridge the routine will typically look in the user defined register of the bridge’s
plug&play information to get the base address of the AHB I/0O and plug&play area of the second bus.
Excatly how the base address of the plug&play information is communicated to the scanning routine
is specific for each core. The Level-2 cache and AHB/AHB bridges store this address in user defined
register 1 of the core’s AHB slave interface plug&play information. A value of zero in this register
signals to software that plug&play scanning should not be done for the second bus behind the bridge.

When software discovers a bridge to a new bus, scanning should commence using the new plug&play
area address (depth-first scanning) and once the new plug&play area has been handled scanning
should continue on the current bus.

Note that for plug&play scanning to work, all plug&play areas must be accessible from the AHB
master that performs the scan. This means that any bridge between AHB buses must have a window
that allows the plug&play area on the other side of the bridge to be accessed. System software and
debug tools by default start scanning for a plug&play area at the top of AMBA memory space. it is
important that the plug&play area located in this address has pointers so that all other plug&play
areas in the system can be discovered. For instance, the default plug&play area address should not be
occupied by the plug&play area of a bus that is only connected to the rest of the system via the AHB
master interface side of a Level-2 cache or uni-directional bridge. This is because the extra informa-
tion at the AHB master interface does not contain the base address for the plug&play area of the bus
on the AHB slave interface side of the bridge. As a result of this, plug&play scanning routines will
only find one bus in the system.

GUIDE

Frontgrade Gaisler AB

Jul 2025, Version 2025.2 16 Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

rRONTGRADE

Gaisler

LEON/GRLIB Guide

4.2.4 Buses in Different Clock Domains

In order to work around timing issues, or to reduce power consumption, it can make sense to partition
the design also into several clock domains. The AHB/AHB bridges (AHB2AHB, AHBBRIDGE and
GRIOMMU) allows connecting buses with differing operating frequencies together.

The bus clocks on each side of the bridge need to have a frequency ratio relationship and fixed phase
relation. This avoids the need to resynchronize signals on chip which would cause a performance pen-
alty.

If you want to run everything except the processor at half speed, a more efficient solution than using
bridges is to use the LEON double clocking support explained in section 4.3.

4.2.5 Single AHB Bus Example

A typical LEON/GRLIB design is shown in the figure below. The design is centered around one
AMBA AHB bus and also has a AMBA APB bus that connects some of the peripheral cores via an

AHB/APB bridge.

USB PHY RS232 JTAG PHY LVDS CAN
o R S A i O
| |
| Serial JTAG Ethernet Spacewire CAN 2.0 |

LEON3 usB Dbg Link | | Dbg Link MAC Link Link
| Processor |
| |
| I AMBA AHB |
| I I |
| = AMBA APB |
AHB Memory AHB/APB I I I I I 1
| Controller Controller Bridge |
| 1/0 port PS/2 UART Timers IrqCtrl VGA |
Lo - — — - 1 - - — _— — 4
8/32-bits memory bus l <I T <I I>
. . . 16-bit I/0
-bi)
PROM /0 SDRAM port PS/2 IF RS232 WDOG \g(,ja%)

Building the system around one AHB bus has advantages in that it simplifies system design.

4.2.6 Multi-Bus System Example

RS232 JTAG PHY LVDS CAN
'_ _________ { - _I - _I_ B B } B B % - _|
| |
| AHB Serial JTAG Ethernet Spacewire CAN 2.0 |
LEON3 Controller Dbg Link Dbg Link MAC Link Link
| | Processor |
| |
| I AMBAAHB |
| I |
| AMBA APB |
Memory AHB2AHB AHB/APB I I I I I 1
| Controller Bridge Bridge |
| Y 1/0 port PS/2 UART Timers IrqCtrl SVGA |
| | 4 4 4] |
| I I (SVGA) AMBA AHB |
| Memory AHB |
| Controller Controller |
L - - - - - 4+ - - - - - = -3+ - |- - — - - - - - — |
v
GUIDE Frontgrade Gaisler AB
Jul 2025, Version 2025.2 17 Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

rRONTGRADE

Gaisler

LEON/GRLIB Guide

4.3

One example (shown above) of when a multi-bus system resolves bus contention is when a SVGA
controller (SVGACTRL core) is used. The SVGA controller continuously reads a frame buffer
located in external memory. This constant data fetching can consume a significant amount of the
available bus bandwidth, particularly in systems with relatively low system frequencies. The impact
of the SVGA controller bus traffic can be removed by placing the SVGA controller and a dedicated
memory controller on a separate bus. The processor can still access the frame buffer through and uni-
directional bridge.

LEON3 Double-Clocking

4.3.1 Overview

To avoid critical timing paths in large AHB systems, it is possible to clock the LEON3 processor core
at an inter multiple of the AHB clock. This will allow the processor to reach higher performance
while executing out of the caches. The performance will be higher while executing out of the caches
since the processor core will be running at a higher frequency. On a cache miss the processor will
need to make a bus access and timing of this bus access will be made according to the lower bus fre-
quency. This chapter will describe how to implement a LEON3 double-clocked system using the
LEON3-CLK2X template design as an example.

The LEON3 CPU core be clocked at a multiple of the clock speed of the AMBA AHB bus. When
clocked at double AHB clock frequency, all CPU core parts including integer unit and caches will
operate at double AHB clock frequency while the AHB bus access is performed at the slower AHB
clock frequency. The two clocks have to be synchronous and multicycle paths between the two clock
domains have to be defined at synthesis tool level. Separate components (leon3s2x, leon3x,
leon3ft2x) are provided for the double clocked core. Double clocked versions of DSU (dsu3 2x) and
MP interrupt controller (irqgmp2x) are used in a double clocked LEON3 system. An AHB clock quali-
fier signal (clken input) is used to identify end of AHB cycle. The AHB qualifier signal is generated in
CPU clock domain and is high during the last CPU clock cycle under AHB clock low-phase.

4.3.2 LEON3-CLK2X Template Design

The LEON3-CLK2X design is a multi frequency design based on double-clocked LEON3 CPU core.
The LEON3 CPU core and DSU run at multiple AHB frequency internally, while the AHB bus and
other AHB components are clocked by the slower AHB clock. Double clocked version of the inter-
rupt controller is used, synchronizing interrupt level signals between the CPU and the interrupt con-
troller.

The design can be configured to support different ratios between CPU and AHB clock such as 2x, 3x
or 4x. If dynamic clock switching is enabled, an glitch-free clock multiplexer selecting between the
fast CPU clock and the slower AHB clock is used to dynamically change frequency of the CPU core
(by writing to an APB register).

4.3.3 Clocking

The design uses two synchronous clocks, AHB clock and CPU clock. For Xilinx and Altera technolo-
gies the clocks are provided by the clkgen module, for ASIC technologies a custom clock generation
circuit providing two synchronous clocks with low skew has to be provided.

An AHB clock qualifier signal, identifying end of an AHB clock cycle is necessary for correct opera-
tion of the double-clocked cores. The AHB clock qualifier signal (HCLKEN), indicating end of an
AHB clock cycle, is provided by the gmod module. The signal is generated in CPU clock domain and
is active during the last CPU clock cycle during low-phase of the AHB clock. Figure 1 shows timing
for CPU and AHB clock signals (CPUCLK, HCLK) and AHB clock qualifier signal (HCLKEN) for
clock ratios 2x and 3x.

GUIDE

Frontgrade Gaisler AB

Jul 2025, Version 2025.2 18 Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

rRONTGRADE

Gaisler

LEON/GRLIB Guide

CPUCLK

HCLK

]
HCLKEN —‘ |

CPUCLK

HCLK

b b L L |
|

|

Figure 1. Timing diagram for CPUCLK, HCLK and HCLKEN

4.3.4 Multicycle Paths

Paths going through both CPU and AHB clock domains have propagation time of one AHB clock
cycle, and should be marked as multicycle paths with following exceptions:

Start point Through End point Propagation time
leon3s2x core

CPUCLK ahbi CPUCLK N CPUCLK
CPUCLK ahbsi CPUCLK N CPUCLK
CPUCLK ahbso CPUCLK N CPUCLK
HCLK irqi CPUCLK 1 CPUCLK
CPUCLK irqo HCLK 1 CPUCLK
CPUCLK u0_0/p0/c0/sync0/r[*] 1 CPUCLK

(register)

dsu3_2x core

CPUCLK ahbmi CPUCLK N CPUCLK

CPUCLK ahbsi CPUCLK N CPUCLK
dsui CPUCLK 1 CPUCLK

r[*] (register) th[*] (register) 1 CPUCLK

irqmp2x core

r2[*] (register) [*] (register) 1 CPUCLK

* N is ratio between CPU and AHB clock frequency (2, 3, ...)

Sample DC script defining multicycle paths and exceptions is provided in the design directory
(dblclk.dc).

Figure 2 shows synchronization of AHB signals starting in HCLK clock domain and ending in CPU-
CLK domain (inside the double clocked cores LEON3S2X and DSU3 2X). These AHB signals are
captured by registers in CPUCLK domain at the end of AHB clock cycle, allowing propagation time
of 2 or more CPUCLK cycles (one HCLK cycle). The end of the AHB clock cycle is indicated by the
AHB clock qualifier signal HCLKEN. One of the inputs of the AND gate in figure below is connected
to the clock qualifier signal HCLKEN ensuring that the value of the signal AHBI is latched into R2 at
the end of AHB cycle (HCLKEN = “1°). The value of signal AHBI is not valid in the CPUCLK clock
domain if the qualifier signal HCLKEN is low. In this case, the AND gate will be closed and the value
of the signal AHBI will not propagate to register R2.

GUIDE

Frontgrade Gaisler AB

Jul 2025, Version 2025.2 19 Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

LEON/GRLIB Guide

rRONTGRADE

Gaisler

HCLK ! CPUCLK

Clock Domain | Clock Domain
|
|

R1 R2
K\\ AHBI |
1D Q i D Ql—
|
|
| D Q7 HCIKEN CPUCLK
HCLK |

|
|| cpucLk
|
| LEON3S2X
|

Figure 2. Synchronization between HCLK and CPUCLK clock domains

Synchronization of AHB signals going from the double clocked cores to the AHB clock domain is
shown if figure 3. The AND gate is open when CPU (or DSU) performs an AHB access (AHBEN =
‘1’). When the AND gate is open, the signal AHBO will be stable during the whole AHB cycle and its
value propagates to the HCLK clock domain (AHB bus). When CPU does not perform AHB access
(CLKEN = ‘1) the AND gate is closed (AHBEN = ‘0’) disabling propagation of signal AHBO to the
HCLK clock domain.

HCLK
Clock Domain

CPUCLK
Clock Domain

|
|
|
R1 |
/\ | AHBO
—1b a

[
| R2
' e A

CPUCLK |
| b o AHBEN
| HCLK
| ’7
|
| HCLK

LEON3S2X |

[
Figure 3. Synchronization between CPUCLK and HCLK clock domains

The AND gates in figures 2 and 3 are 2-input clock AND gates. Synthesis tool should not optimize
these AND gates. Sample DC-script puts ‘don’t-touch’ attribute on these cells to prevent optimiza-
tion.

The multicycle constraints for the GRLIB double clocked cores are typically defined by start clock
domain, intermediate points and end clock domain. Although FPGA synthesis tools provide support
for multicycle paths, they do not provide or have limited support for this type of multicycle con-

GUIDE

Frontgrade Gaisler AB

Jul 2025, Version 2025.2 20 Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

LEON/GRLIB Guide

rRONTGRADE

Gaisler

4.4

straints (start clock domain, intermediate points, end clock domain). This limitation results in over-
constrained FPGA designs (multicycle paths become single cycle) which are fully functional and suit-
able for FPGA prototyping.

4.3.5 Dynamic Clock Switching

An optional clock multiplexer switching between the CPU and AHB clocks and providing clock for
double-clocked cores can be enabled. The clock multiplexer is used to dynamically change frequency
of the CPU core, e.g. CPU can run at lower AHB frequency during periods with low CPU load and at
twice the AHB frequency during periods with high CPU load.

The clock switching is controlled by writing to the gmod modules APB register (default address
0x80000400), bit 0: writing ‘1’ will switch to the CPU clock and writing ‘0’ will switch to the AHB
clock.

The clock multiplexer is glitch-free, during clock switching the deselected clock is turned-off (gated)
before the selected clock is enabled and selected.

Dynamic clock switching is available for Xilinx and generic technologies.

4.3.6 Configuration

xconfig

Clock ratios 2x, 3x and 4x between CPU and AHB clock are supported. Clock ratio 2x is supported
for all technologies, ratios 3x and 4x are supported for ASIC technologies. Dynamic clock switching
is available for Xilinx and ASIC technologies.

leon3s2x

Double-clocked LEON3 core is configured similarly to standard LEON3 core (leon3s) through
VHDL generics. An additional VHDL generic clk2x is set to ((clock ratio - 1) + (8 * dyn)) where dyn
is 1 if dynamic clock switching is enabled and 0 if disabled.

gmod

Local gmod module generates AHB clock qualifier signal and optionally controls dynamic clock
switching. The module is configured through VHDL - generics defining clock ratio (clkfact), dynamic
clock switching (dynfreq) and address mapping of modules APB register (pindex, paddr, pmask).

irgmp_2x
VHDL generic clkfact should be set to clock ratio between CPU and AHB clocks.

Clock gating

4.4.1 Overview

GRLIB contains support for using clock gating for both the processors and peripheral IP cores. The
GRCLKGATE unit described in the GRLIB IP Core User’s Manual can be used both to gate peripher-
als and to provide automatic processor (and floating-point unit) clock gating.

4.4.2 LEON clock gating

To further reduce the power consumption of the processor, the clock can be gated-off when the pro-
cessor has entered power-down state. Since the cache controllers and MMU operate in parallel with
the processor, the clock cannot be gated immediately when the processor has entered the power-down
state. Instead, a power-down signal (DBGO.idle) is generated when all outstanding AHB accesses
have been completed and it is safe to gate the clock. This signal should be clocked though a positive-
edge flip-flop followed by a negative-edge flip-flop to guarantee that the clock is gated off during the
clock-low phase. To ensure proper start-up state, the clock should not be gated during reset and at
least 3 clocks after that reset has been de-asserted.

GUIDE

Frontgrade Gaisler AB

Jul 2025, Version 2025.2 21 Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

rRONTGRADE

Gaisler

LEON/GRLIB Guide

LEON3/4 entity
RESETN —
DBGO.IDLE D Q D Q > >
DBGO.IPEND —(O GCLK

CLK

v

AHB CLK

LEON3/4 entity
RESETN —— b a
DSUO.PWD[n] —— GCLK

CLK

v

AHB CLK

Figure 4. Examples of LEON clock gating

The processor should exit the power-down state when an interrupt become pending. The signal
DBGO.ipend will then go high when this happen, and should be used to re-enable the clock.

When the debug support unit (DSU3 or DSU4) is used, the DSUO.pwd signal should be used instead
of DBGO.idle. This will ensure that the clock also is re-enabled when the processor is switched from
power-down to debug state by the DSU. The DSUO.pwd is a vector with one power-down signal per
CPU (for SMP systems). DSUO.pwd takes DBGO.ipend into account, and no further gating or latch-
ing needs to be done of this signal. If cache snooping has been enabled, the continuous clock will
ensure that the snooping logic is activated when necessary and will keep the data cache synchronized
even when the processor clock is gated-off. In a multi-processor system, all processor except node 0
will enter power-down after reset and will allow immediate clock-gating without additional software
support.

Clock-tree routing must ensure that the continuous clock (CLK) and the gated clock (GCLK) are
phase-aligned. The template design leon3-clock-gate shows an example of a clock-gated system.
Please refer to the LEON signal descriptions in the GRLIB IP Core User’s Manual document for doc-
umentation on which processor clock inputs that are allowed to be gated-off. Please also see the docu-
mentation for the GRCLKGATE and GRCLKGATE?2 IP cores in the same document.

GUIDE

Frontgrade Gaisler AB

Jul 2025, Version 2025.2 22 Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

rRONTGRADE

Gaisler

LEON/GRLIB Guide

5 Debug communication links

5.1 Overview

GRLIB contains several debug communication link (DCL) controller cores. All DCL cores are con-
trolled over an external link to make accesses on an on-chip AHB bus. These communcation links can
be used by an external debug monitor to perform debugging operations on the system or by other
external devices that need direct memory access to the design.

5.2 Available debug link controllers

A debug communication link controller is an IP core that has that supports communication over an
external interface without on-chip software involvement. The IP core decodes incoming traffic and
translates the traffic to operations on the AMBA bus. The table below lists IP cores that can act as
debug communication link controllers.

TABLE 10. Debug Communication Link controllers

AMBA access
Interface IP core size supported Notes
Serial UART AHBUART Word Supported by GRMON
JTAG AHBITAG Byte, Half-word, | Supported by GRMON
Word
Ethernet GRETH/ Word DCL functionality is optional to include in
GRETH GBIT Ethernet controllers. Supported by
- GRMON.
PCI GRPCI/ GRPCI2 Byte, Half-word, | GRMON can make use of PCI target to
Word access system.
SpaceWire GRSPW Read: Byte, RMAP hardware handler is optional to
RMAP GRSPW2 / Half-word, include in Spa.ceWire controllers. GRMON
Word can connect via GRESB Ethernet-to-Space-
GRSPWROUTER Write: Word Wire bridge. The controller.s translate sub-
word read accesses to 32-bit read
operations.
USB GRUSB_DCL Word Supported by GRMON
12C [12C2AHB Byte, Half-word, | Not supported by GRMON
Word
SPI SPI2AHB Byte, Half-word, | Not supported by GRMON
Word
GUIDE Frontgrade Gaisler AB
Jul 2025, Version 2025.2 23 Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

LEON/GRLIB Guide

rRONTGRADE

Gaisler

6

6.1

6.2

6.3

Core specific design recommendations

Overview

The subsections below contain system design recommendations when using specific GRLIB cores.
AHB/AHB Bridges (AHB2AHB/AHBBRIDGE/GRIOMMU)

The AHB/AHB bridges can be of high value when partitioning the system into several clock domains
or when there is a need to separate bus traffic. The use of a bridge will result in increased latencies
when accesses need to traverse over the bridge.

For bi-directional bridge configurations the designer needs to be aware that collisions (attempts to tra-
verse the bridge both ways simultaneously) will mean that the access on the slave bridge will be
aborted and then re-attempted. This situation can potentially lead to starvation and deadlocks.

When instantiating the bridge with a prefetch buffer the buffer should be scaled so that it does not
prefetch unnecessarily large amounts of data. If the master(s) traversing the bridge have a maximum
burst length of eight words, then the bridge’s prefetch buffer should not be larger than eight words.

SVGA Controller (SVGACTRL)

The SVGA controller can consume a significant amount of the available bus bandwidth. Even if cal-
culations show that there is plenty of bandwidth available, the inclusion of SVGACTRL may add bus
access latencies that significantly impact computational performance. For design that include a
SVGA controller it is recommended to place the SVGA controller on a separate bus with a dedicated
frame buffer memory.

GUIDE

Frontgrade Gaisler AB

Jul 2025, Version 2025.2 24 Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

LEON/GRLIB Guide

rRONTGRADE

Gaisler

7

7.1

7.2

GRLIB AMBA Test Framework

Overview

GRLIB has a number of packages that can aid in verification of AMBA cores. New developments
should use the GRLIB AMBA Test Framework (ATF). The test framework consists of an AHB mas-
ter core, an AHB slave core and an AHB arbiter/controller core. The AHB master and slave cores
have debug interfaces that allow them to be controlled using external stimuli.

The sections below give an overview of the components in the framework. The test framework is not
distributed as a product and there is no complete user’s manual. The test master and slave is con-
trolled by procedure calls that are documented in their respective VHDL packages (described below).

ATF files are located in the directory <grlib root>/lib/grlib/atf/. All GRLIB distributions do not
include ATF. If the atf directory is missing from your GRLIB tree, then your version of GRLIB does
not contain the components described in this section.

NOTE: The GRLIB AMBA test framework is NOT included in the free GRLIB-GPL.

AT AHB Master

7.2.1 Description

The AT AHB Master (AT_AHB_MST) is a non-synthesizable AHB master core with a debug inter-
face so that the master can be controlled via function calls.

7.2.2 Initialization and Instantiation

The component for the master is defined in the package grlib.at_pkg and the procedure calls to con-
trol the master is available in the package grilib.at ahb _mst pkg. In order to instantiate the master, the
following libraries should be included:

library ieee;

use ieee.std logic 1164.all;
library grlib; B

use grlib.amba.all;

use grlib.at pkg.all;

use grlib.at ahb mst pkg.all;
use grlib.testlib.all;

The component for AT _AHB_MST has the following interface:

component at ahb mst is

generic (
hindex: in Integer :
vendorid: in Integer :
deviceid: in Integer :
version: in Integer :
grlibdatamux: in integer :

port (
-- AMBA AHB system signals
hclk: in std ulogic;
hresetn: in std ulogic;
--AHB Interface
ahbi: in ahb mst in type;
ahbo: out ahb mst out type;
--Operation Scheduling Interface
atmi: in at ahb mst in type;
atmo: out at ahb mst out type
)i

end component;

I
Roooo

The only VHDL generics that require proper assignment are hindex and grlibdatamux. The hindex
generic must match the bus index in the same way as for other GRLIB AHB masters. The grlibdata-
mux generic decides if the core should use AMBA compliant data multiplexing (grlibdatamux => 0)
or the simplified data multiplexing scheme (grlibdatamux => 1) commonly used in GRLIB (see the
GRLIB IP Library User’s Manual, grlib.pdf, for details). For use in a normal GRLIB system the
default value is recommended. An example instantiation of AT AHB MST can be found in verifica-
tion/at/at_tb.vhd. At the top of the file the libraries mentioned above are included. The test bench
instantiates several AMBA masters, the signals used to control the debug interfaces are created as:

signal atmi : at_ahb mst in vector (0 to 2);
signal atmo : at ahb mst out vector (0 to 2);

GUIDE

Frontgrade Gaisler AB

Jul 2025, Version 2025.2 25 Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

rRONTGRADE

Gaisler

LEON/GRLIB Guide

The masters are then instantiated using a generate loop:

—-—- Masters
mstrs0l : for i in 0 to 2 generate
amst : at ahb mst
generic map (
hindex > FIRST MASTER INDEX+i,
vendorid => 0,
deviceid => 0,
version => 0)
port map (
-- AMBA AHB system signals
hclk => clk,
hresetn => rstn,

-- Direct Memory Access Interface
atmi => atmi (1),
atmo => atmo (1),

-- AMBA AHB Master Interface

ahbi => ahbmi,

ahbo => ahbmo (FIRST MASTER INDEX+i));
end generate;

The masters are controlled by calls from the test bench process. Before use, each master debug inter-
face must be initialized. In verification/at/at_tb.vhd this is done by calls to at_init(..):

testbench: process

————— variable definitions removed -----

Print ("AMBA Test Framework test bench");
Print ("--——————"—""H-"H—-"-"-"-"-"-"-"""""""-"""-"""""""-"-"-"-"—"————————— ")
for i in atmi'range loop
at init (i, atmi);
end loop;
wait until rstn = '1'

7.2.3 Simple Accesses

After initalization has been performed, as described in the previous section, the procedures defined in
grlib.at_ahb_mst _pkg (lib/grlib/atf/at_ahb_mst_pkg.vhd) can be used to command the master to per-
form accesses. The procedures are either read or write procedures. A read or write procedure can be
either blocking (call will not return before the access is completed) or non-blocking (call will return
immediately and another call must be made at a later time in order to complete the command on the
debug interface). All non-blocking procedures have names ending with _nb, the procedures used to
complete a non-blocking call have names that end with _nb_fin.

Procedures that make single accesses are named in the following format: at read <size>(..) or
at_write_<size>(..). Where <size> can be 8, 16, 32, 64, 128 or 256. The non-blocking pairs are
named at read <size> nb(..) | at read <size> nb_fin(..) and at write_nb(..) / at_write_nb_fin(..).
There are also procedures that make burst accesses. These have the word burst in their name, for
instance at_write_burst 32(..). The procedure names are overloaded and there can be several variants
of a procedure, with a different number of parameters.

The simplest way to perform a single access, in this case a write, is to use a call like:

at write 32(

address => X”h40000000”,
data => X”01234567”,
atmi => atmi(0),

atmo => atmo(0));

The non-blocking variant is (here we assume that we have defined the variable id as an integer and the
variable ready as a boolean):

at _write 32 nb(
address => X”h40000000”,
data => X”01234567”,
waitcycles => 0,
lock => false,
hprot => “0011”,
back2back => false,
screenoutput => false,

GUIDE

Frontgrade Gaisler AB

Jul 2025, Version 2025.2 26 Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

rRONTGRADE

Gaisler

LEON/GRLIB Guide

id => id,
atmi => atmi(0),
atmo => atmo (0));
-- Here other tasks can be performed
at_write 32 nb_ fin(
id => id,
wait for op => true,
screenoutput => false,
ready => ready,
atmi => atmi (0),
atmo => atmo(0));

The first call initiates a write access to address 0x40000000 with data 0x01234567. The access should
start immediately, not assert HLOCK and use the specified HPROT (0b0011). The first call will
assign an access identifier to the variable id. This identifier is used by AT AHB_MST to keep track of
the access. The same access identifier must then be used in the call to at write 32 nb fin(..). The
core will try to perform the write access even if the call to at write 32 nb_fin(..) never takes place.
However, if at_write_32 nb_fin(..) is never called, the core will keep a record of the completed
access in its internal data structures forever.

A call to at_<operation>_ <size> nb_fin(..) procedure will block if the wait for op parameter is set
to true. If wait_for_op is set to false, the call will return immediately and the ready variable must be
checked to see if AT AHB_ MST completed the access.

The description given for write operations above also applies to read operations. Note that for non-
blocking reads (at_read <size> nb(..) / at read <size> nb_fin(..)), the data will be returned when
at read <size> nb_fin(..) is called. The first call only tells the master to initiate an access, the
at read <size> nb_fin(..) call will tell you when, and if, the access has completed and the master
will have data available.

As mentioned above, the core can also generate burst accesses. In the case of non-blocking burst
accesses, the id and ready parameters will be arrays instead of single values.

The description above covers basic operation of AT AHB_MST. Please refer to the griib.at_ahb _m-
st_pkg package located at lib/grilib/atf/at ahb _mst pkg.vhd to see all available procedure calls. Each
call and its parameters are documented in the package.

7.3 AT AHB Slave

7.3.1 Description

The AT AHB Slave (AT _AHB_SLV) is an non-synthesizable AHB slave core with a debug interface
that allows insertion of custom AHB replies and access to the core’s internal memory structures.

7.3.2 Initialization and Instantiation

The component for the slave is defined in the package grlib.at_pkg and the procedure calls used to
access the slave via its debug interface are available in the package grlib.at_ahb_slv_pkg. In order to
instantiate the slave, the following libraries should be included:

library ieee;

use ieee.std logic 1164.all;

library grlib; B

use grlib.amba.all;

use grlib.at pkg.all;

use grlib.at ahb_slv pkg.all;

The component for AT AHB_SLV has the following interface:

component at _ahb slv is

generic (

hindex : integer := 0; -- Slave index

bankOaddr : integer := 0;

bankOmask : integer := 0;

bankOtype : integer := 0; -- 0: memory area 1l: I/O area

bankOcache : integer := 0; -- Cachable

bankOprefetch : integer := 0; -- Prefetchable

bankOws : integer := 0; -- Waitstates

bankOrws : integer := 0; -- Random wait states 'ws' is the maxmimum

bankOdataload : integer := 0; -- Load data from file

bankOdatafile : string = "none"; -- Initial data for bank

bankladdr : integer := 0;

banklmask : integer := 0;

bankltype : integer := 0; -- 0: memory area 1l: I/O area
GUIDE Frontgrade Gaisler AB
Jul 2025, Version 2025.2 27 Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

LEON/GRLIB Guide

rRONTGRADE

Gaisler

banklcache : integer := 0; -- Cachable
banklprefetch : integer := 0; -- Prefetchable
banklws : integer := 0; -- Waitstates
banklrws : integer := 0; -- Random wait states 'ws' is the maxmimum
bankldataload : integer := 0; -- Load data from file
bankldatafile : string = "none"; -- Initial data for bank
bank2addr : integer := 0;
bank2mask : integer := 0;
bank2type : integer := 0; -- 0: memory area 1l: I/O area
bank2cache : integer := 0; -- Cachable
bank2prefetch : integer := 0; -- Prefetchable
bank2ws : integer := 0; -- Waitstates
bank2rws : integer := 0; -- Random wait states 'ws' is the maxmimum
bank2dataload : integer := 0; -- Load data from file
bank2datafile : string = "none"; -- Initial data for bank
bank3addr : integer := 0;
bank3mask : integer := 0;
bank3type : integer := 0; -- 0: memory area 1l: I/O area
bank3cache : integer := 0; -- Cachable
bank3prefetch : integer := 0; -- Prefetchable
bank3ws : integer := 0; -- Waitstates
bank3rws : integer := 0; -- Random wait states 'ws' is the maxmimum
bank3dataload : integer := 0; -- Load data from file
bank3datafile : string = "none"; -- Initial data for bank
grlibdatamux : integer :=1 -- GRLIB AMBA data MUX:ing
)i

port (
rstn : in std ulogic;
clk : in std ulogic;
ahbsi : in ahb slv _in type;
ahbso : out ahb slv out type;
dbgi : in at _slv dbg in type;
dbgo : out at _slv dbg out type

)i
end component;

The hindex generic must match the bus index in the same way as for other GRLIB cores. The gr/ib-
datamux generic decides if the core should use AMBA compliant data multiplexing (grlibdatamux =>
0) or the simplified data multiplexing scheme (grlibdatamux => 1) used in GRLIB (see the GRLIB IP

Library User’s Manual, grlib.pdf, for details).

For use in a normal GRLIB system, the default value is recommended. The other generics define the
size and behavior of the, up to, four available AHB memory areas (banks). Each bank is configured
via a set of generics described in the table below:

VHDL generic Description

bank*addr Bank base address. Set in the same manner as for all GRLIB AHB slaves

bank*mask Bank mask. Decides how many of the bank*addr bits that are matched against the
incoming AMBA HADDR and thereby also determines the size of the memory area.

bank*type Selects if the bank is an AHB memory area or an AHB 1/O area. The AT AHB SLV
package defines to constants that can be used to select the type: AT AHBSLV._MEM
and AT AHBSLV IO.

bank*cache Determines if bank is cacheable. This value is only used when banktype is set to
AT AHBSLV_MEM.

bank*prefetch Determines if the bank is prefetchable. This value is only used when banktype is set
to AT _AHBSLV_MEM.

bank*ws Number of wait states that the core will insert on each access to the bank.

bank*rws Enables random wait states. If this generic is set to AT _AHBSLV_RANDOM_ WS,
the core will insert between 0 and bank*ws wait states on each access. If this generic
is set to AT _AHBSLV_FIXED_ WS the core will always insert bank*ws wait states.

bank*dataload If this generics is non-zero, the core will load initial memory data from the SREC file
specified by bank*datafile.

bank*datafile See above.

TABLE 11. AT AHB SLV VHDL generics

GUIDE
Jul 2025, Version 2025.2

28

Frontgrade Gaisler AB

Kungsgatan | SE-411 19 | Goteborg | Sweden
+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

rRONTGRADE

Gaisler

LEON/GRLIB Guide

An example instantiation of AT AHB SLV can be found in verification/at/at tb.vhd. At the top of
the file the libraries mentioned above is included. The signals used to make accesses to AT AH-
B_SLV’s debug interface are created with:

signal dbgi : at slv dbg in type;
signal dbgo : at slv_dbg out type;

An example instantiation of AT _AHB_SLV looks like:

ahbslv0 : at_ahb slv

generic map (
hindex => 0,
-- Bank 0 configuration;
bankOaddr => 16#000#,
bankOmask => 16#FFF#,
bankOtype => AT AHBSLV MEM,
bankOcache => 1,
bankOprefetch => 1,
bankOws => 1,
bankOrws => AT AHBSLV_FIXED WS,
bankOdataload => 0,
bankOdatafile => "none")

port map (
rstn => rstn, clk => clk,
ahbsi => ahbsi, ahbso => ahbso(0),
dbgi => dbgi, dbgo => dbgo);

After the rstn signal has gone high the core will be ready to handle incoming AMBA accesses. If no
file is used to initialize the memory, all memory position will contain ‘U’.

7.3.3 Controlling AT AHB SLV

When the slave has left system reset (rstn input is high), the procedures defined in griib.at ah-
b _slv_pkg (lib/grlib/atf/at_ahb_slv_pkg.vhd) can be used to control the slave’s behavior and to access
the slave’s internal memory.

Accesses to the slave’s internal memory are made via the ahbslv_read(..) and ahbslv_write(..) proce-
dures. These procedures have the following interface:

-- Subprogram: ahbslv write

-- Description: Write data to slave memory. The input address is masked and

-= only the valid bits are used. This means that the full AMBA

-= address can be used and the caller does not have to subtract
the bank start address.

procedure ahbslv write (

constant address : in std _logic_vector (ADDR R);
constant data : in std | logic vector;
constant bank : in 1nteger,

signal dbgi : out at slv dbg in type;
signal dbgo : in at slv_dbg out type);

-- Subprogram: ahbslv_ read

-- Description: Read data from slave memory. The input address is masked and
-= only the valid bits are used. This means that the full AMBA
-= address can be used and the caller does not have to subtract
-= the bank start address.

procedure ahbslv_read (

constant address : in std logic vector (ADDR R);
variable data : out std logic_vector;
constant bank : in integer;

signal dbgi : out at _slv dbg in type;
signal dbgo : in at slv dbg out type);

These functions are useful quickly initializing memory or to check the result of AMBA accesses
made to the slave without generating traffic on the AMBA AHB bus. The width of the vector assigned
to the data parameter determines the size of the access. The width of the address vector input must be
32 bits (31 downto 0).

A common use of AT _AHB_SLV is to specify special responses in order to test the behavior of AHB
masters in the system. . Custom responses can be inserted with the ahbslv_response(..) procedure. This
procedure name is overloaded and variants with a different number of parameters exist. The most ver-
satile ahbslv_response(..) procedure is:

procedure ahbslv response (

constant addregs_start : in std logic vector (ADDR R);

constant address stop : in std | logic vector(ADDR R);

constant bank : in integer;

constant response : in std logic vector (1l downto 0);

constant data : in std . logic vector;

constant master : in integer range 0 to NAHBMST-1;
GUIDE Frontgrade Gaisler AB
Jul 2025, Version 2025.2 29 Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

rRONTGRADE

Gaisler

LEON/GRLIB Guide

constant anymst : in boolean;

variable id : out integer;

signal dbgi : out at slv dbg in type;
signal dbgo : in at slv dbg out type;
constant ws : in integer := 0;
constant repeat : in integer := 1;
constant count : in integer := 1;
constant splitcnt : in integer := 5;
constant mem access : in boolean := false;
constant read response : in boolean := true;
constant write response : in boolean := true;
constant lock : in boolean := false;
constant delay : in integer := 0;
constant hprot : in std logic_vector (3 downto 0);
constant anyhprot : in boolean);

The parameters are documented in the griib.at ahb slv_pkg package. Note that several parameters
have default values, this means that they do not have to be assigned when using the procedure. A
selection of available AT AHB_SLV procedures are listed in table 12. All procedures are further doc-
umented in the grlib.at_ahb_slv_pkg package located at /ib/grlib/atf/at_ahb _slv_pkg.vhd.

Procedure name Description

ahbslv_response Inserts a customized response into the slaves response queue. If two
responses are inserted for the same address (range), the first response to be
inserted will be the first given. Several overloaded versions exist giving the
ability to, for instance, only replying to accesses from a specific master that
have a specific HPROT value. When a response is inserted, an unique iden-
tifier for that response is returned.

ahbslv_response_status Used to determine if a response with a specified identifier is in the slave’s
response queue.

ahbslv_response remove | Removes a response with a specified identifier from the slave’s response
queue.

ahbslv_response_clear Removes all queue responses in the slave or only for a specified bank.

ahbslv_response unlock A response inserted with ahbslv_response(..) can be “locked” which means
that it will be valid for an unlimited number of accesses. This procedure can
be used to “unlock” the response, removing it from the slave.

ahbslv_waitforaccess This procedure will block until an access has been made to a specified
memory address.

ahbslv_waitforcomplete This procedure will block until a queued response has been triggered and
removed from the slave’s response queue.

ahbslv_setconfig Changes the default behavior of AHB slave model. Can be used to config-
ure wait states, random wait states, random RETRY and SPLIT responses,
etc.

ahbslv_getconfig Reads the current default behavior of the slave.

ahbslv_enable split Enables SPLIT responses with a specified probability.

ahbslv_disable_split Disables SPLIT responses.

ahbslv_enable retry Enables RETRY responses with a specified probability.

ahbslv_disable retry Disables RETRY responses.

ahbslv_set ws Sets the default number of wait states to be inserted by the slave.

ahbslv_get ws Gets the default number of wait states inserted by the slave.

TABLE 12. Selection of AT _AHB_SLV procedures

GUIDE Frontgrade Gaisler AB
Jul 2025, Version 2025.2 30 Kungsgatan | SE-411 19 | Goteborg | Sweden
+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

rRONTGRADE

Gaisler

LEON/GRLIB Guide

7.4 AT AHB Controller
7.4.1 Description
The AT AHB Controller (AT_AHB_CTRL) is an non-synthesizable AHB arbiter/controller. Com-
pared to the standard GRLIB AHBCTRL core, AT AHB_CTRL supports early burst termination and
forced re-arbitration
7.4.2 Usage
In order to instantiate the controller, the following libraries should be included:
library ieee;
use ieee.std logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.at pkg.all; . .
The component for AT AHB_CTRL has the following interface:
component at_ahb_ctrl is
generic (
defmast : integer := 0; -- default master
split : integer := 0; -- split support
rrobin : integer := 0; -- round-robin arbitration
timeout : integer range 0 to 255 := 0; -- HREADY timeout
ioaddr : ahb addr type := 16#fff#; -- I/O area MSB address
iomask : ahb _addr type := 16#fff#; -- I/O area address mask
cfgaddr : ahb addr type := 16#ff0#; -- config area MSB address
cfgmask : ahb addr type := 16#ff0#; -- config area address mask
nahbm : integer range 1 to NAHBMST := NAHBMST; -- number of masters
nahbs : integer range 1 to NAHBSLV := NAHBSLV; -- number of slaves
ioen : integer range 0 to 15 := 1; -- enable I/0 area
disirg : integer range 0 to 1 := 0; -- disable interrupt routing
fixbrst : integer range 0 to 1 := 0; -- support fix-length bursts
debug : integer range 0 to 2 := 2; -- report cores to console
fpnpen : integer range 0 to 1 := 0; -- full PnP configuration decoding
icheck : integer range 0 to 1 := 1;
devid : integer := 0; -- unique device ID
enbusmon : integer range 0 to 1 := 0; --enable bus monitor
assertwarn : integer range 0 to 1 := 0; --enable assertions for warnings
asserterr : integer range 0 to 1 := 0; --enable assertions for errors
hmstdisable : integer := 0; --disable master checks
hslvdisable : integer := 0; --disable slave checks
arbdisable : integer := 0; --disable arbiter checks
mprio : integer := 0; --master with highest priority
mcheck : integer := 1; --check memory map for intersects
enebterm : integer := 0; --enable early burst termination
ebprob : integer := 10; --probability setting for of early bursttermination
ccheck : integer range 0 to 1 := 1; --perform sanity checks on pnp config
acdm : integer := 0 --AMBA compliant data muxing (for hsize > word)
)i
port (
rst : in std ulogic;
clk : in std ulogic;
msti : out ahb mst in type;
msto : in ahb mst out vector;
slvi : out ahb slv_in type;
slvo : in ahb slv _out vector;
testen : in std ulogic := '0';
testrst : in std ulogic := '1"';
scanen : in std ulogic := '0';
testoen : in std ulogic := 'l';
doarb : in std ulogic := '0'
)i
end component;
Most of the core’s VHDL generics are the same as for the AHBCTRL core. Two generics have been
added: enebterm and ebprob. When enebterm is set to a non-zero value the core may automatically
terminate burst accesses early. The normal GRLIB arbiter, AHBCTRL, does not interrupt a burst by
removing grant from a master. With enebterm /= 0 and ebprob set to 10 the probability of a burst
being interrupted by AT _AHB_CTRL is about 0.10 in each cycle.
Bursts may also be terminated early by assertion of the doarb input signal. When doarb is asserted,
the AHB arbiter will perform arbitration.
Use of AT _AHB_CTRL is primarily recommended when a core will be used in non-GRLIB systems.
The GRLIB arbiter will never interrupt a burst access and it is not a strict requirement that a core can
handle terminated bursts for the core to function in GRLIB.
GUIDE Frontgrade Gaisler AB
Jul 2025, Version 2025.2 31 Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

rRONTGRADE

Gaisler

LEON/GRLIB Guide

8 Support

Frontgrade Gaisler AB provides support via support@gaisler.com for customers with support con-
tracts. Limited free support is also provided by Frontgrade Gaisler engineers on the GRLIB commu-

nity found at https://discourse.grlib.community/.

GUIDE Frontgrade Gaisler AB

Jul 2025, Version 2025.2 32 Kungsgatan | SE-411 19 | Goteborg | Sweden
+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

LEON/GRLIB Guide

Frontgrade Gaisler AB
Kungsgatan 12

411 19 Goteborg

Sweden
www.frontgrade.com/gaisler
sales@gaisler.com

T: +46 31 7758650

Frontgrade Gaisler AB, reserves the right to make changes to any products and services described herein at
any time without notice. Consult the company or an authorized sales representative to verify that the informa-
tion in this document is current before using this product. The company does not assume any responsibility or
liability arising out of the application or use of any product or service described herein, except as expressly
agreed to in writing by the company; nor does the purchase, lease, or use of a product or service from the
company convey a license under any patent rights, copyrights, trademark rights, or any other of the intellec-
tual rights of the company or of third parties. All information is provided as is. There is no warranty that it is
correct or suitable for any purpose, neither implicit nor explicit.

Copyright © 2025 Frontgrade Gaisler AB

GUIDE Frontgrade Gaisler AB
Jul 2025, Version 2025.2 33 of 33 Kungsgatan | SE-411 19 | Goteborg | Sweden
+46 31 7758650 | frontgrade.com/gaisler

http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler
http://www.cobhamaes.com/gaisler

	1 Introduction
	1.1 Overview
	1.2 Other Resources
	1.3 Licensing

	2 System Design Guidelines
	2.1 Introduction
	2.2 Minimal System
	2.2.1 Minimal systems for LEON5 and NOEL-V

	2.3 Memory Map
	2.3.1 Overview
	2.3.2 Typical LEON/GRLIB Memory Map
	2.3.3 Memory Map in Systems That Need 2 GiB Memory Area
	2.3.4 LEON5 and NOEL-V memory maps
	2.3.5 AHB I/O Area and GRLIB Plug&Play Areas

	2.4 Interrupt Assignments
	2.4.1 Overview
	2.4.2 Linux 2.6 and later
	2.4.3 RTEMS
	2.4.4 VxWorks

	2.5 Device Specific Identification

	3 LEON design information
	3.1 Introduction
	3.2 General Recommendations
	3.2.1 Data Cache Snooping
	3.2.2 V7 and FPU
	3.2.3 MMU and Supervisor Tag bit

	3.3 LEON Example Configurations
	3.3.1 Overview
	3.3.2 Minimal LEON Configuration
	3.3.3 General Purpose LEON Configuration
	3.3.4 High Performance LEON Configuration
	3.3.5 Configuration Settings For Existing LEON Devices

	3.4 LEON3/4 subsystem (gaisler.subsys.leon_dsu_stat_base)
	3.5 LEON5 subsystem (gaisler.leon5sys) / NOEL-V subsystem (gaisler.noelvsys)

	4 Multiple Buses, Clock Domains and Clock Gating
	4.1 Introduction
	4.2 Creating Multi-Bus Systems
	4.2.1 Overview
	4.2.2 GRLIB Facilities
	4.2.3 GRLIB AMBA Plug&Play in Multi-Bus Systems
	4.2.4 Buses in Different Clock Domains
	4.2.5 Single AHB Bus Example
	4.2.6 Multi-Bus System Example

	4.3 LEON3 Double-Clocking
	4.3.1 Overview
	4.3.2 LEON3-CLK2X Template Design
	4.3.3 Clocking
	4.3.4 Multicycle Paths
	4.3.5 Dynamic Clock Switching
	4.3.6 Configuration

	4.4 Clock gating
	4.4.1 Overview
	4.4.2 LEON clock gating

	5 Debug communication links
	5.1 Overview
	5.2 Available debug link controllers

	6 Core specific design recommendations
	6.1 Overview
	6.2 AHB/AHB Bridges (AHB2AHB/AHBBRIDGE/GRIOMMU)
	6.3 SVGA Controller (SVGACTRL)

	7 GRLIB AMBA Test Framework
	7.1 Overview
	7.2 AT AHB Master
	7.2.1 Description
	7.2.2 Initialization and Instantiation
	7.2.3 Simple Accesses

	7.3 AT AHB Slave
	7.3.1 Description
	7.3.2 Initialization and Instantiation
	7.3.3 Controlling AT_AHB_SLV

	7.4 AT AHB Controller
	7.4.1 Description
	7.4.2 Usage

	8 Support

