rRONTGRADC

Gaisler

GR716B FPGA Scrubber Controller Application Note

Application Note
Doc. No GRHA-AN-0001

2024-11-25

Issue 1.0 Contract 4000130767/20/NL/MM/gm
Deliverable TN-7
Function Name Signature and date
Prepared |Radiation Effects Adria B. de Oliveira (/A R ﬂ o 2024-11-25
Approved |Radiation Effects Lucas A. Tambara Lo s Antins Tamtarne
2024-11-26
Checked Hardware Anandhavel Sakthivel ' P ¢
L AoavdAd-ove | 2024-11.26

© Frontgrade Gaisler AB

Contract: 4000130767/20/NL/MM/gm

CONFIDENTIAL

Deliverable: TN-7

Doc. No:

GRHA-AN-0001

tove: 1 Rev: 0 rRONTGRADE
Date: 2024-11-25 Page: 20f 37 Gaisler
Status: Approved
CHANGE RECORD

Issue Date Section / Page Description

1.0 2024-11-25 First issue of this document.

© Frontgrade Gaisler AB

CONFIDENTIAL

Contract: 4000130767/20/NL/MM/gm
Deliverable: TN-7

Doc. No: GRHA-AN-0001
fswe: 1 Rev: 0 rRONTGRADLC
Date: 2024-11-25 Page: 3 0f 37 Gaisler
Status: Approved
TABLE OF CONTENTS
O 0113 (o7 L1 13 o) o ST OR TR OPR PSP OPRPRN 5
1.1 Purpose and Scope of the DOCUMENL...........cccciiiiiiiiiiiieiec e 5
1.2 Applicable DOCUMENLSccuiiiiiiiiiiiiic it 5
1.3 Reference DOCUMENLS.coiiiiiiiiiiiiii i 5
2 ADDICVIATIONS ..ttt ettt b et b bt b et R et b e 6
3 BaCKEIOUNM ... 7
3.1 Soft Error Mitigation in SRAM-based FPGAScccccviiiiiiiiiiiie e 7
4 GR716B MiCIOCONIIOIIET ...ttt 9
4.1 FPGA Scrubber CONIOIIETccueiviiiiiiiiiiiiiesie e 10
4.1.1 Operation MOAES........eeiiiiiiiieiieiee ettt n e nne e neennnas 11
4.1.2 External Memory ConfigUIationc.ooveiirieiierinieseese e 11
5 System CONTIGUIALIONocvveviiieiiieiiiie et nn e ns 13
5.1 Datad GeNEIAtION.....uiiviiiiiitieic it 13
5.1.1 FPGA Design Implementationcccoiiriiieriniiiiesecesee e 13
5.1.2 Bitstream and Mask Files.........ccooiiiiiiiiiiiiiiicc e 13
5.1.3 Frame MaPPINgcceeiuieiieiiieiie sttt sttt e et e e sie e e e e sse e beesneeaneesnne e 14
5.1.4 GOlden CREC COdES.....c.uviiiiiiiiesiiiiiieiee et 14
5.2 Loading External Memory Data............cccooiiiiiiiiiiiiieiicec e 14
5.3 GR716B Microcontroller CONfiguIationccocveiiiieiiiiiiiiseee e 16
54 GRSCRUB CONfIUIAtIONciviiiiiiiiieiieiiieee et 17
5.4.1 REZISIEIS SELUINES ..eovviiiiieiiiiiiiesiee et e e 17
542 Operation CONLIOLciiiiiiiiiiiiii s 21
6 EXperimental SETUPccoiiiiiiiiie s 27
6.1 Validation Test SEtUPccviiiiiiieiie e 27
6.1.1 Setup I: Preliminary Test SEtUP........ccovviiiiiiiiiiiiiii i 27
6.1.2 Setup II: FINal TESt SETUPcovieiiiiiieieerierie e 28
6.2 Error INJECtION SELUPooiiiiiiiiiieiie ettt 30
6.2.1 Setup I - Error INJECtIONocviiiiiiiiiiiciccie e 30
6.2.2 Setup II - Error INJECtIONceiiiiiiieiicceere e 31
7 Experimental RESUILScocviiiiiiiiiii s 32
7.1 Validation RESUILS........cciiiiiiiiiiiiiic s 32
7.2 Error Injection RESUILS........ccoiiiiiiiiiiic s 32
LT 07031 Te] 11] 10§ PO PT PR ORI PR PPRTR 34
9 Annex A — Scripts PaCKagecooiiiiiiiiiii 35

© Frontgrade Gaisler AB CONFIDENTIAL

Contract: 4000130767/20/NL/MM/gm
Deliverable: TN-7

Doc. No: GRHA-AN-0001

Issue: 1 Rev.:
Date: 2024-11-25 Page:
Status:

rRONTGRADLE

Gaisler

© Frontgrade Gaisler AB

CONFIDENTIAL

Contract: 4000130767/20/NL/MM/gm
Deliverable: TN-7

Doc. No: GRHA-AN-0001

Issue: 1 Rev.: 0 F RON‘T‘GRADE

Date: 2024-11-25 Page: 5 of 37 Gaisler
Status: Approved

1 INTRODUCTION

11 Purpose and Scope of the Document

This document presents the application note for the Field Programmable Gate Array (FPGA) scrubber
controller featured in the Frontgrade Gaisler’s GR716B radiation-hardened microcontroller [AD1].
The scope of this document is limited to demonstrating the programming and scrubbing capabilities
of GR716B targeting an AMD/Xilinx Kintex UltraScale KU060 FPGA.

This document is part of the deliverables within the activity “GR716B Rad-Hard Microcontroller for
Space Applications” initiated by the European Space Agency (ESA) under Advanced Research in
Telecommunications Systems (ARTES) Competitiveness & Growth, contract
4000130767/20/NL/MM/gm.

The work has been performed by Frontgrade Gaisler AB, Goteborg, Sweden.
1.2 Applicable Documents

The following documents, listed in order of precedence, contain requirements applicable to the
contents of the document:

[AD1] Frontgrade Gaisler, “GR716B Advanced Data Sheet and User’s Manual”, version 0.8,
2024.

[AD2] Frontgrade Gaisler, “GRLIB VHDL IP Core Library”, version 2024.2, July 2024.

[AD3] Frontgrade Gaisler, “GRMON4 User’s Manual”, version 4.0.1, 2024.

[AD4] Frontgrade Gaisler, “GR716B Preliminary User's Manual”, GR716B-BOARD-UM,
version 0.1, July 2024.

[AD5] Frontgrade Gaisler, “GR-CPCIS-XCKU Data Sheet and User's Manual”, GR-CPCIS-
XCKU-DSUM, version 1.5, Nov. 2023.

[AD6] Frontgrade Gaisler, “GRSCRUB FPGA Error Injection Framework User Manual”,
GRSCRUB-SPEC-0001, issue 1.0, Dec. 2022.

1.3 Reference Documents

The following documents are referred as they contain relevant information:

[RD1] J. Heiner et al., “Fault Tolerant ICAP Controller for High-Reliable Internal Scrubbing,”
2008 IEEE Aerospace Conference, Big Sky, MT, 2008, pp. 1-10.

[RD2] F. Brosser et al., “Assessing scrubbing techniques for Xilinx SRAM-based FPGAs in
space applications,” 2014 International Conference on FPT, Shanghai, 2014, pp. 296-299.

[RD3] A. Stoddard et al., “A Hybrid Approach to FPGA Configuration Scrubbing,” in IEEE
TNS, vol 64, no 1, pp 497-503, Jan 2017.

[RD4] AMD/Xilinx, “UltraScale Architecture Soft Error Mitigation Controller LogiCORE 1P
Product Guide,” PG187, June 2024.

[RD5] A. Oliveira et al., “NOEL-V FT and GRSCRUB IP: Fault Tolerance Characterization of
a Complex System-on-Chip on Xilinx Kintex UltraScale FPGA,” 2022 RADECS, Venice,
Italy, 2022, pp. 1-5, doi: 10.1109/RADECS55911.2022.10412477.

[RD6] AMD/Xilinx, “UltraScale Architecture Configuration User Guide,” UG570 (v1.19), June
2024.

Contract: 4000130767/20/NL/MM/gm
© Frontgrade Gaisler AB CONFIDENTIAL Deliverable: TN-7

Doc. No:

GRHA-AN-0001

rRONTGRADC

Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 6 of 37 Gaisler
Status: Approved

2 ABBREVIATIONS

ARTES Advanced Research in Telecommunications Systems
CMOS Complementary Metal Oxide Semiconductor
CRAM Configuration memory RAM

CRC Cyclic Redundancy Check

DSU Debug Support Unit

ECC Error Correction Code

EDAC Error Detection and Correction

EIFW Error Injection Framework

ESA European Space Agency

ESTEC European Space Research and Technology Center
FF Flip-Flop

FFC Full Frame Check

FPGA Field Programmable Gate Array

GPIO General-Purpose Input/Output

/O Input and Output

IP Intellectual Property

LUT Lookup Table

NDSEE Non-Destructive Single Event Effects

PLL Phase-Locked Loop

PSU Power Supply Unit

SDC Silent Data Corruption

SEE Single Event Effects

SEFI Single Event Functional Interrupt

SEM-IP Soft Error Mitigation Intellectual Property
SET Single Events Transient

SEU Single Event Upset

SMAP SelectMap

SoC System-on-Chip

SPI Serial Peripheral Interface

SPIMCTRL SPI Memory Controller

TMR Triple Modular Redundancy

XO Crystal Oscillator

© Frontgrade Gaisler AB

Contract: 4000130767/20/NL/MM/gm

CONFIDENTIAL

Deliverable: TN-7

Doc. No: GRHA-AN-0001

Issue: 1 Rev.: 0 F RON‘T‘GRADE

Date: 2024-11-25 Page: 7 of 37 Gaisler
Status: Approved
3 BACKGROUND

This section provides a background of Non-Destructive Single Event Effects (NDSEE) in SRAM-
based FPGAs and possible mitigation methods.

3.1 Soft Error Mitigation in SRAM-based FPGAs

The FPGA configuration memory defines the architecture of the design implemented in lookup tables
(LUT), flip-flops (FF), input and output (I/O) interconnections, routing tables, and clock lines, for
instance. To map such elements, the configuration memory is usually divided into frames that contains
32-bit word data. The number of words in a frame and the number of frames in the configuration
memory varies depending on the FPGA family.

NDSEEs are radiation-induced soft errors provoked by ionized particles that affect the system without
damaging the device permanently. FPGAs are susceptible to Single Event Effects (SEE) that may
affect not only the user data but also the configuration memory of the device. SRAM-based FPGAs
are particularly susceptible to soft errors on their configuration memory RAM (CRAM) due to the
memory elements used to configure the design logic.

Single Event Upsets (SEU) affecting the CRAM may lead to persistent errors in the system, changing
the architectural implementation of the design. Single Events Transients (SET) are transient pulses
that propagate through the combinational logic and may be captured by a memory cell, changing the
storage data. Soft errors can also directly affect the memory data, latches, and flip-flops, and cause
Silent Data Corruptions (SDC), which are incorrect application results. The Single Event Functional
Interrupt (SEFI) occurs when a soft error affects the control logic or a state register and leads to a
hang or a crash in the design.

CRAM scrubbing is a well-known fault tolerance technique responsible for coping with errors in the
configuration memory and avoiding their accumulation. It restores the CRAM frames by rewriting
the correct configuration frame-by-frame. The scrubbing operation does not interfere in the design
execution since it targets the static layer of the FPGA configuration memory. There are two scrubbing
approaches. The blind scrubbing rewrites the CRAM frames without a prior error check, which means
that all frames are refreshed whether they present an error or not. On the other hand, the readback
scrubbing first reads a frame, check for errors (error detection), and the frame is refreshed only in
case of bit-flip detection (error correction). The primary difference between both approaches is that
readback provides the error rate per scrubbing cycle.

A scrubbing is defined as internal when the scrubber engine is embedded inside the FPGA being
monitored. An external scrubbing is performed when the scrubber engine is located externally to the
target FPGA. The literature presents several scrubbing implementations that mainly differ in error
detection, power consumption, resource usage, and correction speed [RD1, RD2, RD3]. The
AMD/Xilinx Soft Error Mitigation Intellectual Property (SEM-IP) core [RD4] is an example of
internal scrubbing included in most AMD/Xilinx FPGAs.

One must notice that the scrubbing technique does not avoid bit-flips from happening or its effects
on the design. Additionally, memory elements that store dynamic data, such as Block RAMs (BRAM),
distributed memory, and flip-flops, are not protected by the CRAM scrubbing technique. Soft errors
affecting the dynamic elements can be mitigated by applying fault tolerance techniques such as
redundancy or Error Correction Code (ECC). Triplicating the logic is also an efficient method to cope
with the effects of single faults in the design. Additional user level techniques can also be applied to
deal with SDCs. Moreover, a periodic reset may be required to reestablish the system state and restore

Contract: 4000130767/20/NL/MM/gm
© Frontgrade Gaisler AB CONFIDENTIAL Deliverable: TN-7

Doc. No: GRHA-AN-0001

Issue: 1 Rev.: 0
Date: 2024-11-25 Page: 8 of 37
Status: Approved

rRONTGRADC

Gaisler

the initial state of flip-flops. Since SEFIs may also affect internal control elements of the FPGA or
the configuration interface, a complete reprogramming or power cycle might be required to restore

the system.

In this context, the GR716B microcontroller features an FPGA scrubber controller with programming
and scrubbing capabilities that aims at monitoring the target FPGA configuration memory, correcting
errors, and avoiding the accumulation of upsets. The next section details the features of the GR716B

FPGA scrubber controller.

© Frontgrade Gaisler AB

CONFIDENTIAL

Contract: 4000130767/20/NL/MM/gm
Deliverable: TN-7

Doc. No: GRHA-AN-0001

Issue: 1 Rev.: 0 FRON-T-GRADE

Date: 2024-11-25 Page: 9 of 37 Gaisler
Status: Approved
4 GR716B MICROCONTROLLER

The Frontgrade Gaisler’s GR716B is a fault-tolerant mixed-signal microcontroller implemented using
Imec’s DAREI180 radiation-hardened cell library in a 180nm Complementary Metal Oxide
Semiconductor (CMOS) technology. Figure 1 shows the GR716B block diagram. The GR716B
microcontroller is based on the fault-tolerant LEON3FT SPARC V8 processor featuring a 128KiB
Error Detection and Correction (EDAC) protected tightly coupled memory, and a double precision
IEEE-754 floating point unit (FPU). The GR716B also features memory protection units, non-
intrusive advanced on-chip debug support unit (DSU), real-time accelerators, 2-port Space Wire router,
MIL-STD-1553B interface, CAN FD interface, 10/100 Ethernet, FPGA scrubber controller,
programmable PWM interface, DACs and ADCs, and fast analog comparators. More information is
presented in the GR716B data sheet and user’s manual [AD1].

This document focuses on the FPGA supervisor and scrubber controller feature of the GR716B
microcontroller. The FPGA supervisor is highlighted in red in Figure 1 and is further described in the
following sections.

FPU

Real Time Real Time
Accelerator Accelerator

LEON3FT

Instruction RAM | | Instruction RAM

Data RAM

Instruction RAM

Data RAM Data RAM

Debug UART

HE

AHB trace Timers & I I DMA
& Statistic unit Watchdog Boot ROM controller
Clock Memory Memory
Gating Unit Scrubber Protection
PROM/SPI/SRAM Fault tolerant Memory controllers
FPGA supervisor | CAN FD I SpaceWire Router

SPI MIL-STD-1553 I Ethernet 10/100 Mbit/s I
12C UART I PacketWire TX/RX I

e

|

GPIO PWM .
Digital interfaces

11bit ADCs I PLL 12bit DACs I
Analog Comparators I Crystal Oscillator I 24bit AZ DACs I

FIR

Mixed-Signal functions

Figure 1. GR716B block diagram.

Contract: 4000130767/20/NL/MM/gm
© Frontgrade Gaisler AB CONFIDENTIAL Deliverable: TN-7

Doc. No: GRHA-AN-0001

Issue: 1 Rev.: 0 F RON‘T‘GRADE

Date: 2024-11-25 Page: 10 of 37 Gaisler
Status: Approved
4.1 FPGA Scrubber Controller

The GR716B FPGA scrubber controller is based on the GRSCRUB IP core from the GRLIB [AD2].
For simplicity, the GR716B FPGA scrubber controller is hereafter referred to as GRSCRUB. One
should refer to the GR716B data sheet [AD1] for further information about the GRSCRUB usage in
the GR716B microcontroller.

The GRSCRUB is an external FPGA configuration monitor that features programming and scrubbing
capabilities. After the initial configuration, the GRSCRUB is self-standing, which releases the
processor core to perform other tasks. The GRSCRUB is compatible with the AMD/Xilinx Kintex
UltraScale and Virtex-5 FPGA families. It accesses the target FPGA configuration memory externally
through the SelectMap (SMAP) interface.

As previously introduced, CRAM scrubbing prevents the accumulation of radiation-induced soft
errors in the configuration memory of SRAM-based FPGAs. The GRSCRUB can detect and correct
single and multiple errors affecting the FPGA configuration memory. However, the scrubbing
technique does not prevent upsets from happening or its effects on the design. Therefore, additional
mitigation techniques at the design level are recommended to decrease the number of single points of
failure in the system and increase the fault masking, as described in Section 3.

GR716B
Microcontroller | . _ % Target
ignal FPGA
GRSCRUB — 0
[M2:0]
I Slave Select‘Map
mode = “110”
External
Memory

Figure 2. Simplified example of user-case setup.

Figure 2 shows a simplified example of a setup using the GRSCRUB feature of the GR716B
microcontroller for supervising a target FPGA. Note that the FPGA MJ[2:0] pins must be pre-
configured to Slave SelectMap mode (i.e., M[2:0]="110"). The GR716B is connected to the
SelectMap interface of the FPGA via General-Purpose Input/Output (GPIO) pins (from GPIO[25] to
GPIO[38]). The GR716B allows using 8-bit data and all control pins required to program and scrub
the target FPGA. Table 1 describes the functionality of the GR716B GPIOs used to interface the
SelectMap. The proper configuration of the GR716B GPIO pins are presented later in this document.

An external Serial Peripheral Interface (SPI) Flash memory stores the bitstream used to program and
scrub the target FPGA. The external memory is referred to as golden memory since it stores all the
golden data required for the FPGA supervising functions. Besides the bitstream, the external memory
should store the FPGA mask data, the FPGA frame addresses (mapping information), and the Cyclic
Redundancy Check (CRC) codes (used for error detection during scrubbing). The external memory
must have enough storage space and be loaded prior to the usage of GRSCRUB. More information
about the required data to be stored in the external memory is available later in this document. One
should refer to the GR716B data sheet [AD1] for further information about the usage of the SPI
memory controller and memory connections.

Contract: 4000130767/20/NL/MM/gm
© Frontgrade Gaisler AB CONFIDENTIAL Deliverable: TN-7

Doc. No:

GRHA-AN-0001

: - 0 rRONTGRADC

Issue:

Date: 2024-11-25 Page: 11 o0f 37 Gaisler
Status: Approved

Table 1. GR716B GPIO pins description.

GR716B GPIO Pin direction Interface name Function
GPIO[25] Input INITN FPGA initialization
GPIO[26] Input DONE FPGA programming done
GPIO[34:27] Input/Output DATA[7:0] In/out 8-bit data
GPIO[35] Output PROGN FPGA configuration clear
GPIO[36] Output RDWR SelectMap read/write
GPIO[37] Output CSIN SelectMap chip select
GPIO[38] Output SCLK SelectMap clock

41.1 Operation Modes

The main operation modes of GRSCRUB in the GR716B microcontroller are:

412

Programming mode: GRSCRUB programs the configuration bitstream into the target FPGA.
Scrubbing mode: GRSCRUB executes a scrubbing operation. Two scrubbing methods are sup-
ported: blind and readback scrubbing. In both cases, the scrubbing can be performed targeting
the entire FPGA configuration memory or just selected frames, and the execution can be one-
time or periodic.

Blind scrubbing: GRSCRUB rewrites each configured frame without prior verification.
The frames are rewritten with the golden data stored in the golden memory.

Readback scrubbing: GRSCRUB detects and corrects errors in the configured frames. The
error detection is performed by reading a frame and checking for inconsistencies by com-
paring the read data with the golden data. The error detection can be performed through
Full Frame Check (FFC) or CRC verification. In the FFC mode, the error detection occurs
word-by-word since the GRSCRUB compares each read 32-bit frame word with the cor-
responding 32-bit golden word stored in the golden memory. At the first error detected,
the entire frame is corrected. In the CRC mode, the GRSCRUB reads the frame from the
FPGA, computes a 32-bit CRC code based on all frame words, and compares it with the
corresponding golden CRC. In case of CRC mismatches, the frame is corrected. All error
detection and correction counters are saved in the GRSCRUB registers.

External Memory Configuration

All the required data must be stored in the external memory so that GRSCRUB can properly execute
its operations. The required data depends on the applicable GRSCRUB operations planned for a
specific system. Table 2 details the required golden memory data per GRSCRUB operation. Section
5.2 describes an example of how to load the external memory data using the GR716B microcontroller.

Contract: 4000130767/20/NL/MM/gm

© Frontgrade Gaisler AB CONFIDENTIAL Deliverable: TN-7

Doc. No:

Issue: 1

Date: 2024-11-25

Status:

GRHA-AN-0001
Rev.: 0
Page: 12 of 37

Approved

rRONTGRADC

Gaisler

Table 2. Required memory data per GRSCRUB operation.

Memory
data

Prog.

Blind
scrub.

Readback
scrub.

FFC | CRC

Description

Bitstream

X

X X

FPGA configuration bitstream (.bit file
from Vivado tool) is mandatory for all
operations since it is necessary for
programming and scrubbing the FPGA. The
entire bitstream must be loaded to the
golden memory.

Mask

FPGA configuration mask (.msk file from
Vivado tool) is required for readback
scrubbing. GRSCRUB uses the mask data
to identify the dynamic bits in the FPGA
CRAM frames. Only the data related to the
scrubbed frames are needed to be stored.
For simplicity, the entire mask file can be
loaded to the golden memory.

The mask file has the same format as the
bitstream file. If the user decides to store
only the mask data related to the scrubbed
frames, the correlation between mask and
bitstream must be matched. Misalignment
will cause erroneous verification of the bits.

Frame
mapping

The frame mapping stores the addresses of
all FPGA configuration frames in the
CRAM. The frame addresses are required
in case of error correction of a specific
frame. Therefore, frame mapping is
mandatory for the readback scrubbing.

*The blind scrubbing only uses the frame
mapping if a limited number of frames is
configured to be scrubbed at once
(BLKFRAME>0) in the SETUP register. If
no maximum limit is established
(BLKFRAME=0), the frame mapping is
not required for blind scrubbing.

CRC codes

The golden CRC codes are only required to
be stored in the golden memory for the
readback scrubbing with CRC error
detection.

© Frontgrade Gaisler AB

CONFIDENTIAL

Contract: 4000130767/20/NL/MM/gm
Deliverable: TN-7

Doc. No: GRHA-AN-0001

Issue: 1 Rev.: 0 F RON‘T‘GRADE

Date: 2024-11-25 Page: 13 of 37 Gaisler
Status: Approved
5 SYSTEM CONFIGURATION

This section describes the required steps for system configuration in order to use the GRSCRUB in
GR716B microcontroller. The how to steps focuses on the golden data generation, the storage of the
data in the external memory, and the configuration of the GR716B microcontroller and GRSCRUB
registers. Section 55 of the GR716B data sheet provides further details of the GRSCRUB
configuration [AD1].

Annex A provides demonstration scripts to configure and control the GR716B and GRSCRUB. The
scripts are written in TCL and are intended to be used on the Frontgrade Gaisler’s GRMON debug
tool [AD3]. The scripts can be used as a baseline for software development.

5.1 Data Generation
5.11 FPGA Design Implementation

For the validation presented in this document, a KU060 FPGA design was implemented based on the
fault-tolerant NOEL-V processor and GRLIB IPs. The design has been triplicated using distributed
Triple Modular Redundancy (TMR) synthesis strategy. Demonstrating the design implementation is
outside the scope of this document. For further information, refer to [RD5].

Table 3 presents the KU0O60 FPGA resource usage of the triplicated NOEL-V System-on-Chip (SoC).

Table 3. Resource usage of example design implemented in the KU060 FPGA.

LUT FF Carry BRAM DSP
211,643 74,842 2,744 126 39
5.1.2 Bitstream and Mask Files

The FPGA bitstream and mask files can be generated using the AMD/Xilinx Vivado tool. It is not in
the scope of this document to demonstrate this step.

One should notice that to allow the GRSCRUB to access and control the slave SelectMap interface,
the generated FPGA bitstream must be configured following the requirements below:

Enable the mask file generation in the tool.

Do not prohibit readback in the configuration bitstream security settings.

Do not use compression or encryption in the configuration bitstream.

Set the SelectMap pins to persistent in the configuration bitstream generator.
Configure the slave SelectMap interface.

Below is an example of design constraints that can be used:

Contract: 4000130767/20/NL/MM/gm
© Frontgrade Gaisler AB CONFIDENTIAL Deliverable: TN-7

Doc. No: GRHA-AN-0001

Issue: 1 Rev.: 0 F RON‘T‘GRADE

Date: 2024-11-25 Page: 14 of 37 Gaisler
Status: Approved

Do not compress the bitstream

set_property BITSTREAM.GENERAL.COMPRESS FALSE [current design]
Configuration interface pins are persistent

set_property BITSTREAM.CONFIG.PERSIST YES [current design]

Select Slave SelectMap interface

set_property CONFIG MODE S SELECTMAP [current design]

Do not encrypt the bitstream

set_property BITSTREAM.ENCRYPTION.ENCRYPT NO [current _design]

Do not apply security

set_property BITSTREAM.READBACK.SECURITY NONE [current design]

5.13 Frame Mapping

The mapping file with the frame addresses of the KU060 FPGA was previously generated using the
GRSCRUB IP. The GRSCRUB mapped and saved the frame addresses from the KU060 into a DDR
memory. The DDR memory content was dumped to a .srec file via GRMON.

The GNU objcopy utility was used to update the memory addresses in the .srec file to the external
memory addresses used in this document (i.e., start address=0x13D0000 — more information is
provided in Section 5.2). The .srec file is stored in the package provided in Annex A.

514 Golden CRC Codes

The golden CRC codes for the FPGA configuration frames must be recomputed for each specific
bitstream and mask files since the encoding varies with the design data. A Python script was
developed to simplify the CRC code generation (see Annex A). The script computes the CRC32 code
as per GRSCRUB and each CRC32 code is related to the respective CRAM frame. The user should
input the generated bitstream and mask files (.bit and .msk files from the Vivado tool) to the script.
The output is a binary .bin file with the golden CRC codes. This file can be directly loaded to the
golden memory.

5.2 Loading External Memory Data

Before starting using the GRSCRUB in the GR716B microcontroller the user must ensure that the
external SPI Flash memory is properly loaded. As previously described in Table 2, the external
memory should store the FPGA bitstream and mask files, the frame mapping, and the golden CRC
codes, depending on the required operations executed by GRSCRUB. This section shows an example
of how to load all required data, considering an AMD/Xilinx Kintex UltraScale KU060 FPGA, to an
external SPI Flash memory connected to the GR716B microcontroller.

This example uses a TCL script to be executed on GRMON. In this setup, the target SPI Flash memory
has a density of 512 Mb (64 MB) and is connected to the SPI Memory Controller 0 (SPIMCTRLO)
of the GR716B microcontroller (refer to the GR716B data sheet for further information [AD1]).
Therefore, the SPIMCTRLO must be configured to use 4-byte addresses for the memory space.

Table 4 shows the size and the start address used to load the required data into the external SPI Flash
memory. The selected base address is 0x10D00000. For simplicity, the start addresses are selected
with enough room between the data. Additionally, the entire mask file is loaded to avoid misalignment
issues.

Contract: 4000130767/20/NL/MM/gm
© Frontgrade Gaisler AB CONFIDENTIAL Deliverable: TN-7

Doc. No: GRHA-AN-0001

Issue: 1 Rev.: 0 F RON‘T‘GRADE

Date: 2024-11-25 Page: 15 of 37 Gaisler
Status: Approved

Table 4. Size and start address of data stored in the external SPI Flash memory.

Memory data Size (KU060) Start memory address
Bitstream 23 MB 0x10D00006
Mask 23 MB 0x12500006
Frame mapping 146 kB 0x13D00000
CRC codes 146 kB 0x13F00000

One should note that the FPGA configuration bitstream and mask files include an initial header with
ASCII characters that provides some file information. The header information may vary in size and
content, which can misalign the binary data into the memory words. In order to load the binary data
to the memory with the correct alignment, one can consider shifting the start load address (e.g., the
start address shift of 0x6 for the bitstream and mask data in Table 4). To define the correct shift, the
first binary dummy word (OxXFFFFFFFF) can be used. See the AMD/Xilinx configuration user guide
[RD6] for more details about the bitstream composition.

The TCL script below shows an example of how to load the data to the SPI Flash memory. One can
source the script to GRMON using: grmon> source <script name>.tcl.

! 1 INTeTy / 1t
TTTTTTT1T 1T T 1 1

114 ITETRTRTNTNT ITETRTRTNTNT
FHH it f f 1

Script to load required data to the SPI Flash memory
One must update the required file names where defined (< >)

Tt

/ T TRTNTNTRTaTN e /]
T T T 11T Tt 7 T

7
HH i1t HH 1

Set SPI Flash memory addresses (SPIMCTRLO)
set LOADAD_BIT 0x10D00006
set LOADAD_ MSK 0x12500006
set LOADAD_MAP 0x13D00000
set LOADAD_CRC 0x13F00000

SPIMCTRLO clock gate enable

grcg enable 5 grcg0

Set SPIMCTRLO 4-byte address and alternate scaler
wmem 0xfff00100 0x131003

wmem 0xfff00104 0x0000000c

Detect memory
spim flash detect

Load bitstream data

spim flash load -erase <KUO060 bitstream>.bit SLOADAD_ BIT
verify -max 10 <KUO060_bitstream>.bit SLOADAD_BIT

Load mask data

spim flash load -erase <KU060 mask>.msk SLOADAD MSK
verify -max 10 <KU060 mask>.msk SLOADAD MSK

Load frame mapping data

spim flash load -erase <KU060 map>.srec SLOADAD MAP
verify -max 10 <KU060 map>.srec SLOADAD MAP

Load CRC data

spim flash load -erase <CRC codes>.bin SLOADAD CRC
verify -max 10 <CRC codes>.bin SLOADAD CRC

Contract: 4000130767/20/NL/MM/gm
© Frontgrade Gaisler AB CONFIDENTIAL Deliverable: TN-7

Doc. No:

GRHA-AN-0001

: - 0 rRONTGRADC

Issue:

Date: 2024-11-25 Page: 16 of 37 Gaisler
Status: Approved

5.3 GR716B Microcontroller Configuration

The GR716B microcontroller requires a few configurations after reset:

Enable clock for the SPIMCTRLO core.

Configure SPIMCTRLO for 4-byte address.

Enable the SPIMCTRLO alternate scaler for the dividing the SPI clock (optional). If the
alternate scaler is enabled, the system clock frequency is divided by 2. The default scaler is
system clock divided by 8. Note that the alternate scalar should only be enabled with internal
system clock equal or below 50 MHz (i.e., the maximum SPIMCTRLO clock is 25 MHz).
Enable clock for the GRSCRUB core.

Configure the external SelectMap clock (SCRUBBER CLK). In this example, the reference
clock divisor is set to 4.

Configure the GRSCRUB GPIOs.

Configure the GRSCRUB registers. This step is described in Section 5.4.

The example below shows a TCL script that can be used to configure the clock and registers of the
SPIMCTRLO and GRSCRUB cores. Note that the SCRUBBER_CLK is dependent on the GR716B
input system clock, and the SPIMCTRLO alternate scaler depends on the internal system clock and
Phase-Locked Loop (PLL) settings. See the GR716B data sheet for more information [AD1].

ITETRTRTNTNT ! 1 INTeTy / / ITETRTRTNTNT
f 11t 1

rrrrrrrrrrr

GR716B microcontroller configuration

ITETRTRTNTNT i INTeTy / / ITETRTRTNTNT
FHHH A H A 11t 1

SPIMCTRLO configuration

enab

le SPIMCTRLO clock

grcg enable 5 greg0

force 4 byte address mode (F4B)

set spim_reg [silent mem OxFFF00100 4]

silent wmem OxFFF00100 [expr $spim_reg | [expr 1 << 12]]
use 4 address bytes (ADDRBYTES)

set spim_reg [silent mem OxFFF00100 4]

silent wmem OxFFF00100 [expr $spim_reg & ~[expr 3 << 8]]

enab

le alternate scaler (EAS)

set spim_reg [silent mem 0xFFF00104 4]
silent wmem OxFFF00104 [expr $spim_reg | [expr 1 << 2]]

GRSCRUB configuration

enable GRSCRUB clock

grcg enable 22 gregl

configure SCRUBBER CLK config (external SYS CLK/4)
silent wmem 0x8010D010 0x04

Contract: 4000130767/20/NL/MM/gm

© Frontgrade Gaisler AB CONFIDENTIAL Deliverable: TN-7

Doc. No: GRHA-AN-0001

Issue: 1 Rev.: 0 F RON‘T‘GRADE

Date: 2024-11-25 Page: 17 of 37 Gaisler
Status: Approved

| | [| I [
111111111 7 17 1117 1 7 T HHHHH 11T

1111111111

Configure the IO matrix

set GRSCRUB GPIOs in SYS.CFG.GP3

set cfg_gp reg [silent mem 0x8000D00C 4]

set cfg_gp reg [expr $cfg_gp reg & ~OxFFFFFFFQ]
set cfg_gp reg [expr $cfg_gp reg | OXEEEEEEEOQ]
silent wmem 0x8000D00C $cfg gp reg

set GRSCRUB GPIOs in SYS.CFG.GP4

set cfg_gp reg [silent mem 0x8000D010 4]

set cfg_gp reg [expr $cfg_gp reg & ~0xOFFFFFFF]
set cfg_gp reg [expr $cfg_gp reg | 0OXOEEEEEEE]
silent wmem 0x8000D010 $cfg gp reg

no pull resistors

silent wmem 0x8000D028 0x0

silent wmem 0x8000D02C 0x0

disable schmitt trigger

silent wmem 0x8000D038 0x0

silent wmem 0x8000D03C 0x0

5.4 GRSCRUB Configuration

Before starting using the GRSCRUB, the correct configuration should be set in its registers. After its
initial configuration, the GRSCRUB can run autonomously from the microcontroller core. This
section shows some examples of how to configure the GRSCRUB registers based on the data loaded
in the golden memory and the selected operation mode. In the following example, a TCL script is
used in GRMON tool for the GRSCRUB configuration. This section refers to portions of the TCL
script, and Annex A points to its complete version.

54.1 Registers Settings

The GRSCRUB base address in GR716B is 0x80404000. For simplicity, shift addresses can be set in
a TCL script for the register’s addresses configuration, as REG in the example below.

The GRSCRUB registers must be configured based on the addresses defined in the golden memory
(e.g., the external SPI Flash memory addresses described in Section 5.2). In our example, the base
data address in the SPI Flash memory is 0x10D00000, and the start addresses are defined in Table 4.
Pre-defined variables can be stablished in TCL to be reused during the registers configuration.

Contract: 4000130767/20/NL/MM/gm
© Frontgrade Gaisler AB CONFIDENTIAL Deliverable: TN-7

Doc. No: GRHA-AN-0001
Issue: 1 Rev.: 0
Date: 2024-11-25 Page: 18 of 37
Status: Approved

rRONTGRADC

Gaisler

HHHHHHHHHHHHH R

GRSCRUB register configuration
T T R R

R

GRSCRUB registers base address and offsets
set GRSCRUB_REGADDR 0x80404000

array set REG {

GRSCRUB.STAT 0x00000000
GRSCRUB.CONFIG 0x00000004
GRSCRUB.IDCODE 0x00000008
GRSCRUB.DELAY 0x0000000C
GRSCRUB.FCR 0x00000010
GRSCRUB.LFAR 0x00000014
GRSCRUB.LGBAR 0x00000018
GRSCRUB.HGBAR 0x0000001C
GRSCRUB.LGSFAR 0x00000020

GRSCRUB.LMASKAR 0x00000024
GRSCRUB.LFMAPR 0x00000028
GRSCRUB.LGCRCAR 0x0000002C
GRSCRUB.LGRBKAR 0x00000030

GRSCRUB.ECNT 0x00000034
GRSCRUB.SETUP 0x00000038
GRSCRUB.CAP 0x0000003C

GRSCRUB.FRAMEID 0x00000040
GRSCRUB.ERRFRAMEID 0x00000044

}

Golden memory base address

set MEM_BASE 0x10D00000

configuration bitstream

set BITPARAMS(LOADAD.BIT)
mask data

set BITPARAMS(LOADAD.MSK)
frame map addresses

set BITPARAMS(LOADAD.MAP) [expr SMEM_BASE + 0x03000000]
golden CRC data (required for readback mode with CRC check)

[expr SMEM_BASE + 0x00000006]

[expr SMEM_BASE + 0x01800006]

set BITPARAMS(LOADAD.CRC)

[expr SMEM BASE + 0x03200000]

The addresses for the bitstream, mask, frame mapping, and golden CRC codes are a reference to the
golden data. Additionally, the following information must also be configured to GRSCRUB registers
(all addresses refer to the golden data in the external memory):

© Frontgrade Gaisler AB

The bitstream starting address (after header): as previously informed, the configuration
bitstream has an initial ASCII header that has readable information about the bitstream but is
not used to configure the FPGA. Therefore, the address of the first binary word (dummy word
OxFFFFFFFF) in the bitstream should be configured to the GRSCRUB LGBAR register.
The bitstream last address: the GRSCRUB HGBAR register should be set to the address of
the last word in the bitstream.

Address of the first word of the first scrubbed frame in the bitstream: the GRSCRUB
LGSFAR register should be set to the address of the first word of the first frame to be scrubbed
in the bitstream. For example, if the first frame to be scrubbed is frame id 0 (first bitstream
frame), the LGSFAR should point to the address of the first word in the 1° frame. This case
is simpler since the first frame starts just after the initial synchronization words in the
bitstream. In case the first frame to be scrubbed is frame id 9, for instance, then the LGSFAR

Contract: 4000130767/20/NL/MM/gm

CONFIDENTIAL Deliverable: TN-7

Doc. No: GRHA-AN-0001

Issue: 1 Rev.: 0 F RON‘T‘GRADE

Date: 2024-11-25 Page: 19 of 37 Gaisler
Status: Approved

should point to the address of the first word in the 10" frame. One should make sure that the
correct alignment is set.

e Address of the first mask word of the first scrubbed frame in the mask data: since the
scrubbed frames should have their corresponding mask data, the GRSCRUB LMASKAR
register should be set to the address of the first mask word of the first frame to be scrubbed.
The logic is similar to the LGSFAR register. The LMASKAR and LGSFAR must be aligned
in order to point to the same frame id, i.e., addresses in the external memory that correspond
to the same frame id in the bitstream and mask.

Since defining such addresses can be a complex task, a config gold addr procedure in a TCL script
(presented in Annex A) has been created to automatically compute them based on the base addresses
of the primary data. Below is an example of how to manually set these addresses.

lllllllllllllllllllllllllllllll

111111111111111111111111

Define the start addresses in the golden memory

Start address of the configuration bitstream in the golden memory.

The LGBAR register is set with this address.

set BITPARAMS(START.BIT) [expr SMEM_ BASE + 0x00000090]

Set the highest configuration bitstream address in the golden memory

The HGBAR register is set with this address.

set BITPARAMS(END.BIT) [expr SMEM_BASE + 0x01701e78]

Address of the first scrubbed frame in the golden memory (here is set to frame id 0)
The LGSFAR register is set with this address.

set BITPARAMS(START.GOLD) [expr SMEM BASE + 0x000001a8]

Address of the first mask data related with the first scrubbed frame in the golden memory.
The LMASKAR register is set with this address.

set BITPARAMS(START.MSK) [expr SMEM BASE + 0x018001a8]

Other configurations are also required, such as the total number of frames presented in the FPGA
(FCNT), the number of words per FPGA frame (FLEN), the number of frames to be scrubbed by
GRSCRUB (NUM_SCRUB_FRAMES), and the address of the first FPGA frame to be scrubbed. The
FPGA id code (FPGA_IDCODE) must also be configured to the GRSCRUB. The example below
shows the correct configuration for KU060 FPGA. One should refer to the specific FPGA data sheet
to find its correct configuration if a different FPGA is used.

If all frames of the FPGA configuration memory should be scrubbed by GRSCRUB, then

FSTART ADDR is set to the address of the first frame of the configuration bitstream (i.e.,

0x00000000), and the NUM_SCRUB_FRAMES is set with the number of configuration frames of
the FPGA (e.g., 37498 for the KU060 FPGA). If only a partial number of frames should be scrubbed,
then FSTART ADDR and NUM _SCRUB_FRAMES should be set accordingly.

The GRSCRUB SETUP register should be configured to reflect the FPGA correct settings. For
instance, the number of row boundaries in the FPGA frame addressing, and whether bit swapping the
data is enabled or not. The KU0O60 FPGA has the SelectMap data bit-swapped, and there are two rows
between frame regions on the FPGA mapping architecture. One can also select the GRSCRUB
waiting time for the FPGA response after starting the programming phase. A minimum of one
microsecond is recommended.

Contract: 4000130767/20/NL/MM/gm
© Frontgrade Gaisler AB CONFIDENTIAL Deliverable: TN-7

Doc. No: GRHA-AN-0001

Issue: 1 Rev.: 0 F RON‘T‘GRADE

Date: 2024-11-25 Page: 20 of 37 Gaisler
Status: Approved

The maximum number of frames to be scrubbed at once (BLKFRAME) can also be configured in the
SETUP register. This value establishes the number of frames that are read sequentially during
readback or written sequentially during blind scrubbing. If BLKFRAME > 0, the frames are scrubbed
by blocks, and a maximum of BLKFRAME frames is scrubbed each time. Therefore, the number of
frames defined in the FCNT bitfield of the Frame Configuration Register (FCR) is split into the
BLKFRAME size. This feature can be used to have more control of the FPGA configuration interface
and to reduce the impact of soft errors affecting the interface. If BLKFRAME = 0, all frames set in
the FCR are scrubbed sequentially at once.

H A lll ’Hlll JAL1] 4 4 llllllllll i llll lll ’llll INTNTNT]
GRSCRUB register configuration (cont.)

lllllllllllll

Total number of configuration frames of KU060

set FCNT 49030

Frame length of KU060

set FLEN 123

FPGA id code of KU060

set FPGA IDCODE 0x03919093

Number of frames to be scrubbed (only mapped frames can be scrubbed)
set NUM_SCRUB FRAMES 37498

address of the first FPGA frame to be scrubbed

set FSTART ADDR 0x0

set block frame constant
set SET_BLKFRAME 0 ; # (0) all frames at once; (>0) limited frames

proc set_default_setup { } {
variable REG
variable SET BLKFRAME

clear setup register
reg_write SREG(GRSCRUB.SETUP) 0

ROWBND =2
set setup [reg_read SREG(GRSCRUB.SETUP)]
reg_write SREG(GRSCRUB.SETUP) [expr $setup | [expr 2 << 4]]
TPROG = 150
set setup [reg_read SREG(GRSCRUB.SETUP)]
reg_write SREG(GRSCRUB.SETUP) [expr $setup | [expr 150 <<12]]
BITSWPEN = 1
set setup [reg_read SREG(GRSCRUB.SETUP)]
reg_write SREG(GRSCRUB.SETUP) [expr $setup | [expr 1 <<21]]
block frame config
if {$SET BLKFRAME} {
set setup [reg_read SREG(GRSCRUB.SETUP)]
reg_write SREG(GRSCRUB.SETUP) [expr $setup | [expr $SSET BLKFRAME <<22]

Contract: 4000130767/20/NL/MM/gm
© Frontgrade Gaisler AB CONFIDENTIAL Deliverable: TN-7

Doc. No: GRHA-AN-0001

Issue: 1 Rev.: 0 F RON‘T‘GRADE

Date: 2024-11-25 Page: 21 of 37 Gaisler
Status: Approved
5.4.2 Operation Control

5421 FPGA Programming

Before enabling the programming operation mode, the GRSCRUB registers must be configured. The
grscrub_init_ progmode procedure configures the GRSCRUB CONFIG, LGBAR, HGBAR, and
IDCODE registers based on the example provided in this document. The registers are configured with
values defined in Section 5.4.1.

The grscrub_progfpga procedure shows the steps required for enabling the programming operation
mode. The steps are the following:

1) ensure the GRSCRUB is disabled;

2) clear the done (OPDONE and SCRUND) and error (SCRERR) bitfields in the GRSCRUB
STATUS register;

3) configure the required registers (grscrub_init_progmode procedure); and

4) enable the GRSCRUB to execute the operation.

The programming is finished when the OPDONE bitfield of the STATUS register goes high. If an
error occurs during the execution, the SCRERR bitfield of the STATUS register goes high, and the
ERRID indicates the id of the error.

If the DONE signal of the target FPGA is mapped to a LED on the board, one can check if the LED
is ON when the target FPGA is programmed successfully.

See an example of script procedures below.

ITNTRTRTRTN TRTRTRTaTIN Ty

TITTT T T T 111717 T 1111117 T T T T T TT T 1T

Configuration for FPGA programming mode

lllllllll

proc grscrub_init progmode {} {
variable REG
variable BITPARAMS
variable FPGA_IDCODE

#configuration reg -> opmode = 0001

reg_write SREG(GRSCRUB.CONFIG) 0x00000010

#golden memory addresses

reg_write SREG(GRSCRUB.LGBAR) $BITPARAMS(START.BIT)
reg_write SREG(GRSCRUB.HGBAR) $BITPARAMS(END.BIT)

reg_write SREG(GRSCRUB.IDCODE) $FPGA_IDCODE

Contract: 4000130767/20/NL/MM/gm
© Frontgrade Gaisler AB CONFIDENTIAL Deliverable: TN-7

Doc. No: GRHA-AN-0001

Issue: 1 Rev.: 0 F RON‘T‘GRADE

Date: 2024-11-25 Page: 22 of 37 Gaisler
Status: Approved

m L 11 /1 . 11 " n | m
7 H A7 1117 1 7 T HHHHH 11T

111111111

Configuration for FPGA programming mode (cont.)

/ [
7 H A7 1117 1 7 T HHHHH 11T

1111111111

proc grscrub_progfpga {} {
variable REG
variable done

grscrub_disable
grscrub_doneclear
grscrub_errorclear
grscrub_init_progmode

GRSCRUB operation enable
grscrub_enable

wait OPDONE or SCRERR bitfield of STATUS register

while {([expr { $done & [expr [reg_read SREG(GRSCRUB.STAT) 0]]}] != $done) &&
([expr [reg_read SREG(GRSCRUB.STAT) 0]] != 0x14) &&
([expr [reg_read SREG(GRSCRUB.STAT) 0]] != 0x00000060) &&
([expr [reg_read SREG(GRSCRUB.STAT) 0]] != 0x80000060) &&
($grmon::interrupt != 1)} {
after 100 ; # wait if not done

}

check if programmed successfully

if {([expr { 0x00000060 & [expr [reg read SREG(GRSCRUB.STAT)]]}] != 0x00000060)} {
log_puts [format "GRSCRUB FPGA programmed successfully!"]

} else {
log_puts [format "ERROR to program FPGA!!!"]

}

grscrub_disable

5422 FPGA Scrubbing
5.4.2.2.1 Blind Scrubbing

Before enabling the blind scrubbing operation mode, the GRSCRUB registers must be configured.
The grscrub_init blindscrubmode procedure configures the GRSCRUB CONFIG, DELAY, LGBAR,
HGBAR, LFAR, FCR, LGSFAR, LFMAPR, and IDCODE registers based on the example provided
in this document. The registers are configured with values defined in Section 5.4.1.

The blind scrubbing can be configured to execute only once or periodically. The SCRUN bitfield of
the CONFIG register must be 1 for a periodic run. A delay can be defined between periodic scrubbing
runs. The delay period can be set in the DELAY register.

The grscrub_blindscrubbingfpga procedure shows the steps required for enabling the blind scrubbing
operation mode. The steps are the following:

1) ensure the GRSCRUB is disabled;

Contract: 4000130767/20/NL/MM/gm
© Frontgrade Gaisler AB CONFIDENTIAL Deliverable: TN-7

Doc. No: GRHA-AN-0001

Issue: 1 Rev.: 0 F RON‘T‘GRADE

Date: 2024-11-25 Page: 23 of 37 Gaisler
Status: Approved

2) clear the done (OPDONE and SCRUND) and error (SCRERR) bitfields in the STATUS
register;

3) configure the required registers (grscrub _init blindscrubmode procedure); and

4) enable the GRSCRUB to execute the operation.

The SCRUND bitfield of the STATUS register goes high after each scrubbing execution in a periodic
run. The OPDONE bitfield goes high only in one time execution. If an internal error occurs during
the scrubbing, the execution is stopped, the SCRERR bitfield of the STATUS register goes high, and
the ERRID indicates the id of the error.

During periodic scrubbing, one can check the HOLD bitfield of the STATUS register to identify the
GRSCRUB execution. The HOLD bitfield is 0 when the GRSCRUB is performing the scrubbing
operation on the target FPGA. The HOLD bitfield is 1 when the GRSCRUB is on hold waiting during
the delay period.

One can also check the FRAMEID register that represents the id of the current frame of the target
FPGA scrubbed by the GRSCRUB.

See an example of script procedures below.

H T N

Configuration for GRSCRUB blind scrubbing operation mode
| | I ‘ L] T [)y I

ITETRTRTNTNT NTRTRTRTET]

FHHH 111 I

proc grscrub_init_blindscrubmode {} {
variable definition here (removed due to limited space — see Annex A for complete example)

set one time scrubbing and no delay
reg_write SREG(GRSCRUB.CONFIG) 0x00000020
reg_write SREG(GRSCRUB.DELAY) 0x0

#golden memory addresses

reg_write SREG(GRSCRUB.LGBAR) $BITPARAMS(START.BIT)
reg_write SREG(GRSCRUB.HGBAR) $BITPARAMS(END.BIT)
reg_write SREG(GRSCRUB.LMASKAR) $BITPARAMS(START.MSK)
reg_write SREG(GRSCRUB.LGSFAR) $BITPARAMS(START.GOLD)
reg_write SREG(GRSCRUB.LFMAPR) $BITPARAMS(LOADAD.MAP)

#set frame address and configuration
reg_write SREG(GRSCRUB.LFAR) $FSTART ADDR
reg_write SREG(GRSCRUB.FCR) [expr [expr SNUM SCRUB FRAMES << 9] | [expr $FLEN << 2]]

reg_write SREG(GRSCRUB.IDCODE) $FPGA_IDCODE

Contract: 4000130767/20/NL/MM/gm
© Frontgrade Gaisler AB CONFIDENTIAL Deliverable: TN-7

Doc. No: GRHA-AN-0001

Issue: 1 Rev.: 0 F RON‘T‘GRADE

Date: 2024-11-25 Page: 24 of 37 Gaisler
Status: Approved

L . | Ll f g f A f ot fd o AL f L A] L]]
1111111111111111111111

example with continually monitoring
proc grscrub_blindscrubbingfpga {} {
variable REG
variable done

grscrub_disable
grscrub_doneclear
grscrub_errorclear
grscrub_init_blindscrubmode

GRSCRUB operation enable
grscrub_enable

wait OPDONE or SCRERR bitfield of STATUS register

while {([expr { $done & [expr [reg_read SREG(GRSCRUB.STAT) 0]]}] != $done) &&
([expr { 0x00000020 & [expr [reg_read SREG(GRSCRUB.STAT) 0]]}] != 0x00000020) &&
($grmon::interrupt !=1) } {
after 100 ; # wait if not done

}

check error
if {([expr [reg_read SREG(GRSCRUB.STAT)]] == $done) ||
([expr [reg_read SREG(GRSCRUB.STAT)]] == 0x00001010)} {
log_puts [format "GRSCRUB FPGA Blind Scrubbing successfully"]
} else {
log_puts [format "ERROR to Blind Scrubbing FPGA!!!"]

}

grscrub_disable

5.4.2.2.2 Readback Scrubbing

Before enabling the readback scrubbing operation mode, the GRSCRUB’s registers must be
configured. The grscrub init readbackmode procedure shows a configuration example of the
DELAY, LGBAR, HGBAR, LFAR, FCR, LGSFAR, LMASKAR, LFMAPR, LGCRCAR, and
IDCODE registers based on the example provided in this document. The registers are configured with
values defined in Section 5.4.1. At the initialization procedure, one can also clean the ECNT,
ERRFRAMEID, and FRAMEID registers to reset the number of detected errors and frame id of
previous runs.

The readback scrubbing can also be configured to execute only once or periodically. The SCRUN
bitfield of the CONFIG register must be 1 for a periodic run. A delay can be defined between periodic
scrubbing runs. The delay period can be set in the DELAY register.

The readback scrubbing can be configured for two modes: (1) only detect errors, or (2) detect and
correct errors. The former is configured in the grscrub readbackfpga onlydetection procedure
(shown in Annex A), and the latter is configured in the grscrub_readbackfpga_correction procedure
(shown below and in Annex A). The CORM bitfield of the CONFIG register defines the readback
mode. In both cases, the error detection can be set through FFC, CRC, or FFC and CRC checks in

Contract: 4000130767/20/NL/MM/gm
© Frontgrade Gaisler AB CONFIDENTIAL Deliverable: TN-7

Doc. No: GRHA-AN-0001

Issue: 1 Rev.: 0 F RON‘T‘GRADE

Date: 2024-11-25 Page: 25 of 37 Gaisler
Status: Approved

parallel. The FFCEN and CRCEN bitfields of the CONFIG register set the detection options.
The steps required for enabling the readback scrubbing operation mode are the following:

1) ensure the GRSCRUB is disabled;

2) clear the done (OPDONE and SCRUND) and error (SCRERR) bitfields in the STATUS
register;

3) configure the required registers (grscrub_init_readbackmode procedure);

4) configure the CONFIG register; and

5) enable the GRSCRUB to execute the operation.

The SCRUND bitfield of the STATUS register goes high after each scrubbing execution in a periodic
run. The OPDONE bitfield goes high only in one time execution. If an internal error occurs during
the scrubbing, the execution is stopped, the SCRERR bitfield of the STATUS register goes high, and
the ERRID indicates the id of the error.

During periodic scrubbing, one can check the HOLD bitfield of the STATUS register to identify the
GRSCRUB execution. The HOLD bitfield is 0 when the GRSCRUB is performing the scrubbing
operation on the target FPGA. The HOLD bitfield is 1 when the GRSCRUB is in hold waiting during
the delay period.

One can also check the FRAMEID register that represents the id of the current frame of the target
FPGA scrubbed by the GRSCRUB. The ECNT register presents the number of errors detected during
the readback scrubbing. If the error correction is enabled, the ECNT register shows the number of
correctable and uncorrectable errors. The error counters accumulate over scrubbing runs. One should
clear the register to initiate a new counting.

1l HHHHH
TITTTTTTT T1TT1 T 7 7 U T
Configuration for GRSCRUB readback scrubbing operation mode
1] m L 1 "
TTITTTT TITTT L L

A

T tHH A H A H A 1 11

) J INTRTNTNTRTNTY
11 1 1 1

T 1111117 T T T T I 1T 17

T

proc grscrub_init readbackmode {} {
variable definition here (removed due to limited space — see Annex A for complete example)

clear error counter and frame id registers

reg_write SREG(GRSCRUB.ECNT) 0x00000000
reg_write SREG(GRSCRUB.ERRFRAMEID) 0x00000000
reg_write SREG(GRSCRUB.FRAMEID) 0x00000000

no delay
reg_write SREG(GRSCRUB.DELAY) 0x0

#golden memory addresses

reg_write SREG(GRSCRUB.LGBAR) $BITPARAMS(START.BIT)
reg_write SREG(GRSCRUB.HGBAR) $BITPARAMS(END.BIT)
reg_write SREG(GRSCRUB.LMASKAR) $BITPARAMS(START.MSK)
reg_write SREG(GRSCRUB.LGSFAR) $BITPARAMS(START.GOLD)
reg_write SREG(GRSCRUB.LFMAPR) $BITPARAMS(LOADAD.MAP)
reg_write SREG(GRSCRUB.LGCRCAR) $BITPARAMS(LOADAD.CRC)

#set frame address and configuration
reg_write SREG(GRSCRUB.LFAR) $SFSTART ADDR
reg_write SREG(GRSCRUB.FCR) [expr [expr SNUM_SCRUB_FRAMES << 9] | [expr SFLEN << 2]]

reg_write SREG(GRSCRUB.IDCODE) $FPGA_IDCODE

Contract: 4000130767/20/NL/MM/gm
© Frontgrade Gaisler AB CONFIDENTIAL Deliverable: TN-7

Doc. No: GRHA-AN-0001

Issue: 1 Rev.: 0 F RON‘T‘GRADE

Date: 2024-11-25 Page: 26 of 37 Gaisler
Status: Approved

L ITRTeTaT, L 14 ITRTETaTIT ITTeTaT,
lllllllllllllllllllllllllllll T T T 1T ll

Configuration for GRSCRUB readback scrubbing operation mode (cont.)

1 / / 1 Iy I 1 o
11111111111111111111111111111111111 vars HH 1T yars 7

proc grscrub_readbackfpga correction {{datacheck "ffc"}} {
variable REG
variable done
variable scrun

grscrub_disable
grscrub_doneclear
grscrub_errorclear
grscrub_init_readbackmode

#data verification: FFC (bit 12), CRC (bit 11)
if {$datacheck == "ffc"} {

reg_write SREG(GRSCRUB.CONFIG) 0x00001024
} elseif {$datacheck == "crc"} {

reg_write SREG(GRSCRUB.CONFIG) 0x00000824
} else {

reg_write SREG(GRSCRUB.CONFIG) 0x00001824
}

GRSCRUB operation enable
grscrub_enable

wait OPDONE or SCRERR bitfield of Status register

while {([expr { 0x00000010 & [expr [reg_read SREG(GRSCRUB.STAT) 0]]}] != 0x00000010) &&
(([expr { 0x000001E0 & [expr [reg_read SREG(GRSCRUB.STAT) 0]]}] == 0x00000000) |
([expr { 0x000001E0 & [expr [reg_read SREG(GRSCRUB.STAT) 0]]}] == 0x000000A0)) &&
($grmon::interrupt != 1)} {
after 100 ; # wait if not done

}

check errors
if {(([expr { 0x00000020 & [expr [reg_read SREG(GRSCRUB.STAT)]]}] == 0x00000020) &&
([expr { 0x000001EO0 & [expr [reg_read SREG(GRSCRUB.STAT)]]}] !'= 0x000000A0))} {
log_puts [format "ERROR to readback FPGA!!!"]
} else {
set run_error [expr [reg_read SREG(GRSCRUB.ECNT)] & 0x0000FFFF]
set uncor_error [expr [expr [reg_read SREG(GRSCRUB.ECNT)] & 0xFFFF0000] >> 16]
set correct_errors [expr run_error-uncor_error]
log_puts [format "GRSCRUB FPGA readback successfully"]
log_puts [format "GRSCRUB Last readback mismatches: $run_error"]
log_puts [format "GRSCRUB Correctable errors: $correct errors"]
log_puts [format "GRSCRUB Uncorrectable errors: $uncor_error"]
log_puts [format "FPGA readback time: %s ms" [expr end_time-start_time]]

}

grscrub_disable

Contract: 4000130767/20/NL/MM/gm
© Frontgrade Gaisler AB CONFIDENTIAL Deliverable: TN-7

Doc. No: GRHA-AN-0001

Issue: 1 Rev.: 0 F RON‘T‘GRADE

Date: 2024-11-25 Page: 27 of 37 Gaisler
Status: Approved
6 EXPERIMENTAL SETUP

This section provides an overview of the test setups and conditions used during the validation of the
GRSCRUB feature in the GR716B microcontroller.

6.1 Validation Test Setup

Two validation test setups have been used to verify the GRSCRUB functionalities in the GR716B
microcontroller.

6.1.1 Setup I: Preliminary Test Setup

The preliminary test setup, hereafter called Setup I, is composed of a GR716B board featuring the
GR716B microcontroller connected to a GR-CPCIS-XCKU board featuring a KU0O60 FPGA. Figure
3 shows a block diagram of Setup 1.

The GR716B board [AD4] is an updated version (rev. 1.5) of the GR716-BOARD development board.
Besides the GR716B microcontroller, the GR716B board features a 512 Mbit SPI Flash memory,
power supply configuration and monitoring, communication interfaces, and two 2x32 pin stackable
0.1 headers allowing access to all GR716B I/O pins. The on-board SPI Flash memory is used as the
GRSCRUB golden memory, and it is configured as per Section 5.2. A GR716-DSU-USB adapter is
connected to the GR716B board to interface the DSU and GRMON software via UART. The TCL
scripts described in the previous sections run over the GRMON in the test computer and control the
GR716B and GRSCRUB.

The GR-CPCIS-XCKU board [ADS5] features an AMD/Xilinx KU060 Kintex UltraScale FPGA
(FCBGA package), external access to the FPGA SMAP interface (I/O header), FPGA interface to
DDR3 SDRAM via two SODIMM connectors, SPI and Parallel Flash memory, and embedded power
control and monitoring circuitry. This board also provides the possibility to fit a GR716
microcontroller, being compatible with both GR716A and GR716B versions. The board version (rev.
1.0) used in Setup I has a GR716A mounted.

A custom flat cable is used to connect the SelectMap signals between the I/O headers of the GR716B
board and the GR-CPCIS-XCKU board. Both boards are simultaneously powered up by an external
Power Supply Unit (PSU) to avoid power connection issues.

GR-CPCIS-XCKU060 board (rev. 1.0)

GR716B board

SPI Flash

GR716B
memory fiat cable KU060 FPGA

(SMAP signals)

DSU UART

GRMON3 UART I

Test computer

Figure 3. Block diagram of Setup I: GR716B board (rev. 1.5) connected to the GR-CPCIS-XCKU
board (rev. 1.0).

Contract: 4000130767/20/NL/MM/gm
© Frontgrade Gaisler AB CONFIDENTIAL Deliverable: TN-7

Doc. No: GRHA-AN-0001

Issue: 1 Rev.: 0 FRON?GRADE

Date: 2024-11-25 Page: 28 of 37 Gaisler
Status: Approved

On the GR716B board, the GR716B input system clock (SYS CLK) and SpaceWire clock
(SPW_CLK) are defined by the crystal oscillator (XO) output, which is 20 MHz. The PLL is
configured to provide a 50 MHz internal system clock, and the SPI memory controller is set to use
the alternate scaler, which leads to a 25 MHz clock (maximum value). The SelectMap clock is
generated from the SYS CLK and is set to 10 MHz (maximum value based on the SYS CLK input).
One should refer to the GR716B data sheet for further information on how to configure the clocks
[AD1]. Table 5 gives an overview of the clock configuration used in Setup I.

Table 5. GR716B clock configuration in Setup 1.

SYS CLK | SPW_CLK | PLL internal system clock | SPI memory clock | SMAP clock

20 MHz 20 MHz 50 MHz 25 MHz 10 MHz

6.1.2 Setup II: Final Test Setup

The final test setup, hereafter called Setup II, is composed of a GR-CPCIS-XCKU board featuring a
KU060 FPGA and a GR716B microcontroller. The GR716B microcontroller has been assembled on
the GR-CPCIS-XCKU board (rev. 2.1). On this board version, the GR716B has direct on-board
connection to the FPGA SelectMap signals. Therefore, the SelectMap I/O header is no longer needed
but it is still useful for signalling monitoring and debugging. Figure 4 shows a block diagram of Setup
II, and Figure 5 depicts a view of the GR-CPCIS-XCKU board (rev. 2.1).

GR-CPCIS-XCKUO060 board (rev. 2.1)

SPI Flash
memory GR716B T KU060 FPGA

signals

DSU UART

GRMON3 UART

Test computer

Figure 4. Block diagram of Setup II: GR-CPCIS-XCKU board (rev. 2.1) featuring a KU060 FPGA
and a GR716B microcontroller.

Contract: 4000130767/20/NL/MM/gm
© Frontgrade Gaisler AB CONFIDENTIAL Deliverable: TN-7

Doc. No: GRHA-AN-0001

rRONTGRADLE

Issue: 1 Rev.: 0
Date: 2024-11-25 Page: 29 of 37 Gaisler
Status: Approved

Figure 5. View of the GR-CPCIS-XCKU board (rev. 2.1).

The GR716B is also connected to a SPI Flash memory that is used as the GRSCRUB golden memory,
and it is configured as per Section 5.2. The GR-CPCIS-XCKU board has an on-board FTDI chip that
allows UART connection to the GR716B DSU. Like the preliminary setup, the TCL scripts described
in the previous sections run over the GRMON in the test computer and control the GR716B and
GRSCRUB.

On the GR-CPCIS-XCKU board, the GR716B input SYS CLK and SPW_CLK are defined by the
on-board oscillators, which are 100 and 200 MHz, respectively. The PLL is configured to provide a
50 MHz internal system clock, and the SPI memory controller is set to use the alternate scaler, which
leads to a 25 MHz clock (maximum value). The SelectMap clock is generated from the SYS CLK
and is set to 25 MHz (maximum recommended value in GR716B). One should refer to the GR716B
data sheet for further information on how to configure the clocks [AD1]. Table 6 gives an overview
of the clock configuration used in Setup II.

Table 6. GR716B clock configuration in Setup I1.

SYS CLK | SPW_CLK | PLL internal system clock | SPI memory clock | SMAP clock
100 MHz | 200 MHz 50 MHz 25 MHz 25 MHz
Contract: 4000130767/20/NL/MM/gm
© Frontgrade Gaisler AB CONFIDENTIAL Deliverable: TN-7

Doc. No: GRHA-AN-0001

Issue: 1 Rev.: 0 FRON?GRADE

Date: 2024-11-25 Page: 30 of 37 Gaisler
Status: Approved
6.2 Error Injection Setup

An error injection system has been prepared to validate the scrubbing capabilities of GRSCRUB in
the GR716B microcontroller. The error injection targets to flip bits in the FPGA design in order to
simulate SEUs in the CRAM. Two distinct setups have been configured depending on the Setup I and
B characteristics.

6.2.1 Setup I - Error Injection

An error injection framework (EIFW) [ADG6] has been developed by Frontgrade Gaisler that allows
emulating errors on the CRAM via the SelectMap interface. The EIFW is implemented in VHDL and
can run on an external FPGA for validation purposes. The injection engine is controlled via Python
scripts running on the test computer and communicating over UART. More information about the
EIFW is provided in its user manual [ADG6].

In order to use the EIFW in Setup I, an external FPGA has been added to the system. A GR-XC6S
board, featuring an AMD/Xilinx Spartan-6 FPGA, is used as a test controller (TC) to implement the
EIFW engine and manage a multiplexing of the SelectMap signals. Since both GRSCRUB and the
EIFW use the SelectMap to access the FPGA configuration memory, they cannot be used in parallel.
Therefore, the GR716B GPIOs have been connected to the GR-XC6S board, and the signals are
routed through the TC FPGA. An /O header from the TC FPGA is connected to the SelectMap
interface of the KU060 on the GR-CPCIS-XCKU board. The I/O signals are multiplexed between the
GR716B and the EIFW. Figure 6 shows the block diagram of the test setup.

Additional TCL scripts have been integrated to the primary scripts presented in the previous sections
to coordinate the error injection and the GRSCRUB scrubbing cycles. The error injection control
scripts are presented in Annex A. The error injection can be performed deterministically or randomly,
and errors are injected only between the scrubbing cycles. Since both GRSCRUB and EIFW use the
SelectMap interface to access the FPGA configuration memory, only one can be enabled at a time.

For the example presented in this document, only random bit errors are injected since they better
reproduce real scenarios. For each injection run, one or more random errors can be injected at once.
In sequence, the GRSCRUB is released to scrub the entire FPGA CRAM. At the end of the scrubbing
execution, the GRSCRUB counters are checked and logged (in case of readback scrubbing). In
sequence, a new injection run starts, and the loop is repeated.

GR-XC6S board GR-CPCIS-XCKU060 board (rev. 1.0)

GR716B board TC FPGA

CTRL FSM

EIFW

UART ETH

DSU UART
EIFW UART
GRMON3 UART

—————— GRMON3 ETH
Test computer

SPI Flash 2

memory

GR716B KU060 FPGA

flat cable
(SMAP signals)

flat cable
(SMAP signals)

Figure 6. Block diagram of error injection in Setup I: GR-XC6S board connected between the
GR716B board and the GR-CPCIS-XCKU board.

Contract: 4000130767/20/NL/MM/gm
© Frontgrade Gaisler AB CONFIDENTIAL Deliverable: TN-7

Doc. No: GRHA-AN-0001

Issue: 1 Rev.: 0 F RON‘T‘GRADE

Date: 2024-11-25 Page: 31 of 37 Gaisler
Status: Approved
6.2.2 Setup II - Error Injection

The GR716B on the GR-CPCIS-XCKU board (rev. 2.1) is tied to the FPGA SelectMap pins, which
makes it unfeasible to use the SelectMap 1/O header for signal connection. In this scenario, the EIFW
presented in the previous section cannot be used.

For validation purposes, a workaround has been implemented to inject errors into the FPGA CRAM
using the GRSCRUB itself. Additional TCL scripts have been developed to control the GRSCRUB
in the GR716B to emulate errors in selected CRAM frames. The error injection control scripts are
presented in Annex A.

Similar to the EIFW, errors can be injected deterministically or randomly, and errors are injected only
between the scrubbing cycles. For the example presented in this document, only random bit errors
are injected since they better reproduce real scenarios. One random error is injected per injection run.
In sequence, the GRSCRUB is released to scrub the entire FPGA CRAM. At the end of the scrubbing
execution, the GRSCRUB counters are checked and logged (in case of readback scrubbing). In
sequence, a new injection run starts, and the loop is repeated.

The random error injection using the GRSCRUB follows the approach below:

1) A random target frame is selected considering all the CRAM frames (i.e., a random id from
the 37498 frames — total KUO60 CRAM frames).

2) Arandom target bit is selected in the frame (i.e., a random bit from the 3936 bits in a frame —
each KU060 frame has 123 32-bit words).

3) The target frame is read back from the FPGA CRAM using GRSCRUB and saved in the
GR716B LEON3 on-chip RAM (start address 0x30000000).

4) The target bit is flipped on the on-chip RAM.

5) The GRSCRUB is configured to write back the target frame from the on-chip RAM into the
FPGA CRAM.

Contract: 4000130767/20/NL/MM/gm
© Frontgrade Gaisler AB CONFIDENTIAL Deliverable: TN-7

Doc. No: GRHA-AN-0001

Issue: 1 Rev.: 0 F RON‘T‘GRADE

Date: 2024-11-25 Page: 32 0f 37 Gaisler
Status: Approved

7 EXPERIMENTAL RESULTS

7.1 Validation Results

The GRSCRUB features have been successfully validated on the GR716B microcontroller. All modes
and configurations presented in this document are functional on Setup I and Setup II.

The KU060 FPGA can be programmed as expected. After programming the FPGA using GRSCRUB,
the design implemented in the KU060 has been dynamically validated by accessing the DSU of the
NOEL-V SoC using GRMON and running test software.

All the scrubbing modes are functional. The blind and readback modes have been primarily validated
by targeting the entire CRAM. Tests have also been performed targeting partial scrubbing. Different
tests have been made with BLKFRAME equal to 0 (all frames scrubbed at once) and to 1 (one frame
scrubbed at a time).

Table 7 presents the approximated performance, in milliseconds, of the GRSCRUB operations
targeting the KU060 FPGA in the final test setup (Setup II - GR-CPCIS-XCKU board rev. 2.1). This
performance data is gathered using the GRMON monitoring the GR716B. All configuration memory
frames are scrubbed at once (BLKFRAME=0) during blind and readback modes. The performance
of the readback scrubbing operation is related to error-free configuration memory. Longer periods
may be observed depending on the number of errors being corrected at a specific scrubbing cycle.

The performance of the GRSCRUB operations may be improved if the external SPI Flash memory
has a higher clock frequency.

Table 7. Performance of GRSCRUB operations targeting the KU060 FPGA on the GR-CPCIS-
XCKU board (rev. 2.1) — final test setup (Setup I1).

Operation Performance
FPGA programming 25609 ms
Blind scrubbing 19408 ms
FFC 31651 ms
Readback scrubbing CRC 15928 ms
FFC and CRC | 31856 ms

7.2 Error Injection Results

During the error injection tests on both setups, the FPGA design was kept in static mode, i.e., the
NOEL-V SoC was kept in reset. However, no difference in the outcome results is expected when the
FPGA design is in a dynamic state.

Table 8 presents the error injection results using the EIFW to inject bitflips in the KU060 CRAM in
Setup I. The blind and readback scrubbing modes of the GRSCRUB were evaluated. Both modes
were configured for scrubbing all CRAM frames at once (BLKFRAME=0). The readback scrubbing
was configured for FFC and CRC parallel checks. Campaigns of 10 and 100 random errors per run
were executed. In all tests, the GRSCRUB was able to detect and correct all injected errors.

Contract: 4000130767/20/NL/MM/gm
© Frontgrade Gaisler AB CONFIDENTIAL Deliverable: TN-7

Doc. No:

Issue: 1

Date: 2024-11-25
Status:

Rev.:

Page:

GRHA-AN-0001

0
33 of 37
Approved

rRONTGRADC

Gaisler

Table 8. Error injection results using the EIFW in Setup I with different GRSCRUB scrubbing

modes. All injected faults were successfully corrected.

BLKFRAME Scrubbing mode _ #errors # total All faults
injected per run errors corrected
Blind scrubbing 10; 100 10400 PASS
0 (all frames Readback FFC and
scrubbed at once) scrubbing CRC 10; 100 38100 PASS

Table 9 shows the error injection results using the GRSCRUB to flip bits in the KU060 CRAM in
Setup II. The blind and readback scrubbing modes of the GRSCRUB were evaluated. Both modes
were tested with different block frame configurations: scrubbing all frames at once (BLKFRAME=0),
scrubbing one frame at a time (BLKFRAME=1), and scrubbing a hundred frames at a time
(BLKFRAME=100). All CRAM frames were scrubbed in all modes. The readback scrubbing was
configured for FFC check, CRC check, and FFC and CRC parallel checks. One error was injected per
run in all tests. In all tests, the GRSCRUB was able to detect and correct all injected errors.

Table 9. Error injection results using the GRSCRUB error injection in Setup Il with different
GRSCRUB scrubbing modes. All injected faults were successfully corrected.

BLKFRAME Scrubbing mode | . . " errors #total | All faults
injected per run errors corrected
Blind scrubbing 1 10000 PASS
0 (all frames FFC 1 1000 PASS
Readback CRC 1 1000 PASS
scrubbed at once) scrubbing FFC and
CRC 1 10000 PASS
I (one frame Blind scrubbing 1 1000 PASS
. Readback FFC and
scrubbed at a time) scrubbing CRC 1 1000 PASS
100 (hundred frames Blind scrubbing 1 1000 PASS
scrubbed at a time) Readbgck FFC and 1 1000 PASS
scrubbing CRC
Contract: 4000130767/20/NL/MM/gm
© Frontgrade Gaisler AB CONFIDENTIAL Deliverable: TN-7

Doc. No: GRHA-AN-0001

Issue: 1 Rev.: 0 F RON‘T‘GRADE

Date: 2024-11-25 Page: 34 of 37 Gaisler
Status: Approved
8 CONCLUSION

The Frontgrade Gaisler’s GR716B rad-hard microcontroller, featuring the FPGA scrubber controller
— GRSCRUB, has been functionally validated targeting an AMD/Xilinx KU060 Kintex UltraScale
FPGA. This document provides examples of how to configure the GR716B and GRSCRUB and
demonstrates the configuration steps for each operational mode.

The GRSCRUB programming and scrubbing capabilities have been exercised under two different
setups. The first preliminary setup uses a GR716B board connected via custom cabling to a GR-
CPCIS-XCKU board (rev 1.0). The second final setup is a reworked GR-CPCIS-XCKU board (rev
2.1) featuring a GR716B directly connected to the SelectMap signals of the KU0O60 FPGA. The
GRSCRUB functionalities have been successfully validated on both setups. Error injection has also
been performed to ensure the GRSCRUB error correction capability during scrubbing. In all tests, the
GRSCRUB successfully detected and corrected all injected errors, demonstrating the effective
implementation of the solution.

Contract: 4000130767/20/NL/MM/gm
© Frontgrade Gaisler AB CONFIDENTIAL Deliverable: TN-7

Doc. No:

GRHA-AN-0001

0 rRONTGRADC

Issue: 1

Date: 2024-11-25 Page: 35 of 37 Gaisler
Status: Approved

9 ANNEX A — SCRIPTS PACKAGE

This annex points to example scripts used to demonstrate the GRSCRUB capabilities on the GR716B
rad-hard microcontroller. The scripts provide the possibility to reproduce the user-case scenario
described in this application note. It includes scripts to program and scrub the target FPGA using the
GR716B microcontroller. Scripts to perform error injection in the FPGA configuration memory
(CRAM), simulating radiation-induced upsets, are also included.

The demonstration scripts to configure and control the GR716B and GRSCRUB are written in TCL
and are intended to be used on GRMON. The scripts can be used as a baseline for software

development.

The scripts package is available for download from the GR716B website (www.gaisler.com/gr716b).

Figure 7 shows a view of the package contents and Table 10 describes the files.

DUT 29 bytes Folder

ku060_map 450.3kB Folder

logs 20 bytes Folder

scripts_eifw 78.3kB Folder

scripts_misc 30.0kB Folder

README.txt 7.6 kB plain text document
© run_ctrl_ei.sh 217 bytes shell script
@ run_pll_fix.sh 74 bytes shell script

Figure 7. View of the GR716B_GRSCRUB_AppNote EXTERNAL package.

Table 10. Content description of the scripts package.

Folder/File

Description

Reference
section

DUT

This folder is for the user to optionally store the
FPGA design files, such as bitstream, mask, and CRC
data that should be loaded to the external SPI Flash
memory.

0,5.1.4,52

ku060 map

The addresses of the AMD/Xilinx KU060 FPGA
configuration memory are saved in a .srec file, which
should be loaded to the external SPI Flash memory.
Note that the .srec file is configured to be loaded at
address 0x13D00000. One can use the GNU objcopy
utility to update the memory address if needed.

5.13,52

logs

This folder stores the log files for each subrun. The
README file describes the content of each log file.

scripts_eifw

Scripts used for GRSCRUB validation with error
injection.

ctrl.tcl

scripts_eifw/grscrub-

Script that configures the GR716B and GRSCRUB

53,54

scripts_eifw/

Scripts used in the Setup I only. The TCL script

6.1.1,6.2.1

© Frontgrade Gaisler AB

Contract: 4000130767/20/NL/MM/gm

CONFIDENTIAL

Deliverable: TN-7

http://www.gaisler.com/gr716b

Doc. No:

GRHA-AN-0001

0 rRONTGRADC

Issue: 1 Rev.:
Date: 2024-11-25 Page: 36 0f37 Gaisler
Status: Approved
fpgaei ctrl.tcl and configures the error injection campaign, and the
fpgaei campaign.py Python script controls the error injection framework
(EIFW).
scripts_eifw/grscrub- | Script used in the Setup II only. The TCL script 6.1.2,6.2.2
ei.tcl controls the error injection using GRSCRUB.
scripts_eifw/gr-log.tcl | Script to save logs.
scripts_eifw/gr- Top TCL script. It sources the other scripts from the
start.tcl scripts_eifw folder. One can update this script to
either source fpgaei_ctrl.tcl (for Setup I) or grscrub-
ei.tcl (for Setup II).
scripts_misc Miscellaneous scripts.
scripts_misc/ Script used to configure the GR716B PLL. 6.1.1,6.1.2

gr716b pll fix.tcl

defined FPGA bitstream.

scripts_misc/ Script used to load the data to the external SPI Flash | 5.2
load spi flash.tcl memory.
scripts_misc/crc_gen | Scripts used to generate the CRC codes of the user- 5.14

REAME.txt

README file for reference.

run_ctrl ei.sh

Bash script to automatically launch GRMON and run
the TCL scripts.

run_pll fix.sh

Bash script to automatically launch GRMON and run
the PLL configuration script.

© Frontgrade Gaisler AB

Contract: 4000130767/20/NL/MM/gm

CONFIDENTIAL

Deliverable: TN-7

Doc. No: GRHA-AN-0001

Issue: 1 Rev.:
Date: 2024-11-25 Page:
Status:

rRONTGRADLE

Gaisler

Copyright © 2024 Frontgrade Gaisler AB

© Frontgrade Gaisler AB

CONFIDENTIAL

Contract: 4000130767/20/NL/MM/gm
Deliverable: TN-7

