
© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

GR716B FPGA Scrubber Controller Application Note

Application Note 2024-11-25

Doc. No GRHA-AN-0001

Issue 1.0 Contract 4000130767/20/NL/MM/gm
Deliverable TN-7

 Function Name Signature and date

Prepared

Radiation Effects Ádria B. de Oliveira

Approved

Radiation Effects Lucas A. Tambara

Checked

Hardware Anandhavel Sakthivel

2024-11-25

2024-11-26

2024-11-26

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 2 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

CHANGE RECORD

Issue Date Section / Page Description

1.0 2024-11-25 First issue of this document.

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 3 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

TABLE OF CONTENTS

1 Introduction .. 5

1.1 Purpose and Scope of the Document ... 5

1.2 Applicable Documents .. 5

1.3 Reference Documents.. 5

2 Abbreviations ... 6

3 Background .. 7

3.1 Soft Error Mitigation in SRAM-based FPGAs ... 7

4 GR716B Microcontroller ... 9

4.1 FPGA Scrubber Controller .. 10

4.1.1 Operation Modes .. 11

4.1.2 External Memory Configuration .. 11

5 System Configuration .. 13

5.1 Data Generation ... 13

5.1.1 FPGA Design Implementation ... 13

5.1.2 Bitstream and Mask Files ... 13

5.1.3 Frame Mapping .. 14

5.1.4 Golden CRC Codes .. 14

5.2 Loading External Memory Data .. 14

5.3 GR716B Microcontroller Configuration ... 16

5.4 GRSCRUB Configuration ... 17

5.4.1 Registers Settings ... 17

5.4.2 Operation Control .. 21

6 Experimental Setup .. 27

6.1 Validation Test Setup ... 27

6.1.1 Setup I: Preliminary Test Setup .. 27

6.1.2 Setup II: Final Test Setup ... 28

6.2 Error Injection Setup ... 30

6.2.1 Setup I - Error Injection ... 30

6.2.2 Setup II - Error Injection .. 31

7 Experimental Results ... 32

7.1 Validation Results .. 32

7.2 Error Injection Results... 32

8 Conclusion ... 34

9 Annex A – Scripts Package .. 35

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 4 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 5 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

1 INTRODUCTION

1.1 Purpose and Scope of the Document

This document presents the application note for the Field Programmable Gate Array (FPGA) scrubber

controller featured in the Frontgrade Gaisler’s GR716B radiation-hardened microcontroller [AD1].

The scope of this document is limited to demonstrating the programming and scrubbing capabilities

of GR716B targeting an AMD/Xilinx Kintex UltraScale KU060 FPGA.

This document is part of the deliverables within the activity “GR716B Rad-Hard Microcontroller for

Space Applications” initiated by the European Space Agency (ESA) under Advanced Research in

Telecommunications Systems (ARTES) Competitiveness & Growth, contract

4000130767/20/NL/MM/gm.

The work has been performed by Frontgrade Gaisler AB, Göteborg, Sweden.

1.2 Applicable Documents

The following documents, listed in order of precedence, contain requirements applicable to the

contents of the document:

[AD1] Frontgrade Gaisler, “GR716B Advanced Data Sheet and User’s Manual”, version 0.8,

2024.

[AD2] Frontgrade Gaisler, “GRLIB VHDL IP Core Library”, version 2024.2, July 2024.

[AD3] Frontgrade Gaisler, “GRMON4 User’s Manual”, version 4.0.1, 2024.

[AD4] Frontgrade Gaisler, “GR716B Preliminary User's Manual”, GR716B-BOARD-UM,

version 0.1, July 2024.

[AD5] Frontgrade Gaisler, “GR-CPCIS-XCKU Data Sheet and User's Manual”, GR-CPCIS-

XCKU-DSUM, version 1.5, Nov. 2023.

[AD6] Frontgrade Gaisler, “GRSCRUB FPGA Error Injection Framework User Manual”,

GRSCRUB-SPEC-0001, issue 1.0, Dec. 2022.

1.3 Reference Documents

The following documents are referred as they contain relevant information:

[RD1] J. Heiner et al., “Fault Tolerant ICAP Controller for High-Reliable Internal Scrubbing,”

2008 IEEE Aerospace Conference, Big Sky, MT, 2008, pp. 1-10.

[RD2] F. Brosser et al., “Assessing scrubbing techniques for Xilinx SRAM-based FPGAs in

space applications,” 2014 International Conference on FPT, Shanghai, 2014, pp. 296-299.

[RD3] A. Stoddard et al., “A Hybrid Approach to FPGA Configuration Scrubbing,” in IEEE

TNS, vol 64, no 1, pp 497-503, Jan 2017.

[RD4] AMD/Xilinx, “UltraScale Architecture Soft Error Mitigation Controller LogiCORE IP

Product Guide,” PG187, June 2024.

[RD5] Á. Oliveira et al., “NOEL-V FT and GRSCRUB IP: Fault Tolerance Characterization of

a Complex System-on-Chip on Xilinx Kintex UltraScale FPGA,” 2022 RADECS, Venice,

Italy, 2022, pp. 1-5, doi: 10.1109/RADECS55911.2022.10412477.

[RD6] AMD/Xilinx, “UltraScale Architecture Configuration User Guide,” UG570 (v1.19), June

2024.

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 6 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

2 ABBREVIATIONS

ARTES Advanced Research in Telecommunications Systems

CMOS Complementary Metal Oxide Semiconductor

CRAM Configuration memory RAM

CRC Cyclic Redundancy Check

DSU Debug Support Unit

ECC Error Correction Code

EDAC Error Detection and Correction

EIFW Error Injection Framework

ESA European Space Agency

ESTEC European Space Research and Technology Center

FF Flip-Flop

FFC Full Frame Check

FPGA Field Programmable Gate Array

GPIO General-Purpose Input/Output

I/O Input and Output

IP Intellectual Property

LUT Lookup Table

NDSEE Non-Destructive Single Event Effects

PLL Phase-Locked Loop

PSU Power Supply Unit

SDC Silent Data Corruption

SEE Single Event Effects

SEFI Single Event Functional Interrupt

SEM-IP Soft Error Mitigation Intellectual Property

SET Single Events Transient

SEU Single Event Upset

SMAP SelectMap

SoC System-on-Chip

SPI Serial Peripheral Interface

SPIMCTRL SPI Memory Controller

TMR Triple Modular Redundancy

XO Crystal Oscillator

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 7 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

3 BACKGROUND

This section provides a background of Non-Destructive Single Event Effects (NDSEE) in SRAM-

based FPGAs and possible mitigation methods.

3.1 Soft Error Mitigation in SRAM-based FPGAs

The FPGA configuration memory defines the architecture of the design implemented in lookup tables

(LUT), flip-flops (FF), input and output (I/O) interconnections, routing tables, and clock lines, for

instance. To map such elements, the configuration memory is usually divided into frames that contains

32-bit word data. The number of words in a frame and the number of frames in the configuration

memory varies depending on the FPGA family.

NDSEEs are radiation-induced soft errors provoked by ionized particles that affect the system without

damaging the device permanently. FPGAs are susceptible to Single Event Effects (SEE) that may

affect not only the user data but also the configuration memory of the device. SRAM-based FPGAs

are particularly susceptible to soft errors on their configuration memory RAM (CRAM) due to the

memory elements used to configure the design logic.

Single Event Upsets (SEU) affecting the CRAM may lead to persistent errors in the system, changing

the architectural implementation of the design. Single Events Transients (SET) are transient pulses

that propagate through the combinational logic and may be captured by a memory cell, changing the

storage data. Soft errors can also directly affect the memory data, latches, and flip-flops, and cause

Silent Data Corruptions (SDC), which are incorrect application results. The Single Event Functional

Interrupt (SEFI) occurs when a soft error affects the control logic or a state register and leads to a

hang or a crash in the design.

CRAM scrubbing is a well-known fault tolerance technique responsible for coping with errors in the

configuration memory and avoiding their accumulation. It restores the CRAM frames by rewriting

the correct configuration frame-by-frame. The scrubbing operation does not interfere in the design

execution since it targets the static layer of the FPGA configuration memory. There are two scrubbing

approaches. The blind scrubbing rewrites the CRAM frames without a prior error check, which means

that all frames are refreshed whether they present an error or not. On the other hand, the readback

scrubbing first reads a frame, check for errors (error detection), and the frame is refreshed only in

case of bit-flip detection (error correction). The primary difference between both approaches is that

readback provides the error rate per scrubbing cycle.

A scrubbing is defined as internal when the scrubber engine is embedded inside the FPGA being

monitored. An external scrubbing is performed when the scrubber engine is located externally to the

target FPGA. The literature presents several scrubbing implementations that mainly differ in error

detection, power consumption, resource usage, and correction speed [RD1, RD2, RD3]. The

AMD/Xilinx Soft Error Mitigation Intellectual Property (SEM-IP) core [RD4] is an example of

internal scrubbing included in most AMD/Xilinx FPGAs.

One must notice that the scrubbing technique does not avoid bit-flips from happening or its effects

on the design. Additionally, memory elements that store dynamic data, such as Block RAMs (BRAM),

distributed memory, and flip-flops, are not protected by the CRAM scrubbing technique. Soft errors

affecting the dynamic elements can be mitigated by applying fault tolerance techniques such as

redundancy or Error Correction Code (ECC). Triplicating the logic is also an efficient method to cope

with the effects of single faults in the design. Additional user level techniques can also be applied to

deal with SDCs. Moreover, a periodic reset may be required to reestablish the system state and restore

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 8 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

the initial state of flip-flops. Since SEFIs may also affect internal control elements of the FPGA or

the configuration interface, a complete reprogramming or power cycle might be required to restore

the system.

In this context, the GR716B microcontroller features an FPGA scrubber controller with programming

and scrubbing capabilities that aims at monitoring the target FPGA configuration memory, correcting

errors, and avoiding the accumulation of upsets. The next section details the features of the GR716B

FPGA scrubber controller.

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 9 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

4 GR716B MICROCONTROLLER

The Frontgrade Gaisler’s GR716B is a fault-tolerant mixed-signal microcontroller implemented using

Imec’s DARE180 radiation-hardened cell library in a 180nm Complementary Metal Oxide

Semiconductor (CMOS) technology. Figure 1 shows the GR716B block diagram. The GR716B

microcontroller is based on the fault-tolerant LEON3FT SPARC V8 processor featuring a 128KiB

Error Detection and Correction (EDAC) protected tightly coupled memory, and a double precision

IEEE-754 floating point unit (FPU). The GR716B also features memory protection units, non-

intrusive advanced on-chip debug support unit (DSU), real-time accelerators, 2-port SpaceWire router,

MIL-STD-1553B interface, CAN FD interface, 10/100 Ethernet, FPGA scrubber controller,

programmable PWM interface, DACs and ADCs, and fast analog comparators. More information is

presented in the GR716B data sheet and user’s manual [AD1].

This document focuses on the FPGA supervisor and scrubber controller feature of the GR716B

microcontroller. The FPGA supervisor is highlighted in red in Figure 1 and is further described in the

following sections.

Figure 1. GR716B block diagram.

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 10 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

4.1 FPGA Scrubber Controller

The GR716B FPGA scrubber controller is based on the GRSCRUB IP core from the GRLIB [AD2].

For simplicity, the GR716B FPGA scrubber controller is hereafter referred to as GRSCRUB. One

should refer to the GR716B data sheet [AD1] for further information about the GRSCRUB usage in

the GR716B microcontroller.

The GRSCRUB is an external FPGA configuration monitor that features programming and scrubbing

capabilities. After the initial configuration, the GRSCRUB is self-standing, which releases the

processor core to perform other tasks. The GRSCRUB is compatible with the AMD/Xilinx Kintex

UltraScale and Virtex-5 FPGA families. It accesses the target FPGA configuration memory externally

through the SelectMap (SMAP) interface.

As previously introduced, CRAM scrubbing prevents the accumulation of radiation-induced soft

errors in the configuration memory of SRAM-based FPGAs. The GRSCRUB can detect and correct

single and multiple errors affecting the FPGA configuration memory. However, the scrubbing

technique does not prevent upsets from happening or its effects on the design. Therefore, additional

mitigation techniques at the design level are recommended to decrease the number of single points of

failure in the system and increase the fault masking, as described in Section 3.

Figure 2. Simplified example of user-case setup.

Figure 2 shows a simplified example of a setup using the GRSCRUB feature of the GR716B

microcontroller for supervising a target FPGA. Note that the FPGA M[2:0] pins must be pre-

configured to Slave SelectMap mode (i.e., M[2:0]=”110”). The GR716B is connected to the

SelectMap interface of the FPGA via General-Purpose Input/Output (GPIO) pins (from GPIO[25] to

GPIO[38]). The GR716B allows using 8-bit data and all control pins required to program and scrub

the target FPGA. Table 1 describes the functionality of the GR716B GPIOs used to interface the

SelectMap. The proper configuration of the GR716B GPIO pins are presented later in this document.

An external Serial Peripheral Interface (SPI) Flash memory stores the bitstream used to program and

scrub the target FPGA. The external memory is referred to as golden memory since it stores all the

golden data required for the FPGA supervising functions. Besides the bitstream, the external memory

should store the FPGA mask data, the FPGA frame addresses (mapping information), and the Cyclic

Redundancy Check (CRC) codes (used for error detection during scrubbing). The external memory

must have enough storage space and be loaded prior to the usage of GRSCRUB. More information

about the required data to be stored in the external memory is available later in this document. One

should refer to the GR716B data sheet [AD1] for further information about the usage of the SPI

memory controller and memory connections.

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 11 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

Table 1. GR716B GPIO pins description.

GR716B GPIO Pin direction Interface name Function

GPIO[25] Input INITN FPGA initialization

GPIO[26] Input DONE FPGA programming done

GPIO[34:27] Input/Output DATA[7:0] In/out 8-bit data

GPIO[35] Output PROGN FPGA configuration clear

GPIO[36] Output RDWR SelectMap read/write

GPIO[37] Output CSIN SelectMap chip select

GPIO[38] Output SCLK SelectMap clock

4.1.1 Operation Modes

The main operation modes of GRSCRUB in the GR716B microcontroller are:

• Programming mode: GRSCRUB programs the configuration bitstream into the target FPGA.

• Scrubbing mode: GRSCRUB executes a scrubbing operation. Two scrubbing methods are sup-

ported: blind and readback scrubbing. In both cases, the scrubbing can be performed targeting

the entire FPGA configuration memory or just selected frames, and the execution can be one-

time or periodic.

• Blind scrubbing: GRSCRUB rewrites each configured frame without prior verification.

The frames are rewritten with the golden data stored in the golden memory.

• Readback scrubbing: GRSCRUB detects and corrects errors in the configured frames. The

error detection is performed by reading a frame and checking for inconsistencies by com-

paring the read data with the golden data. The error detection can be performed through

Full Frame Check (FFC) or CRC verification. In the FFC mode, the error detection occurs

word-by-word since the GRSCRUB compares each read 32-bit frame word with the cor-

responding 32-bit golden word stored in the golden memory. At the first error detected,

the entire frame is corrected. In the CRC mode, the GRSCRUB reads the frame from the

FPGA, computes a 32-bit CRC code based on all frame words, and compares it with the

corresponding golden CRC. In case of CRC mismatches, the frame is corrected. All error

detection and correction counters are saved in the GRSCRUB registers.

4.1.2 External Memory Configuration

All the required data must be stored in the external memory so that GRSCRUB can properly execute

its operations. The required data depends on the applicable GRSCRUB operations planned for a

specific system. Table 2 details the required golden memory data per GRSCRUB operation. Section

5.2 describes an example of how to load the external memory data using the GR716B microcontroller.

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 12 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

Table 2. Required memory data per GRSCRUB operation.

Memory

data
Prog.

Blind

scrub.

Readback

scrub. Description

FFC CRC

Bitstream X X X X FPGA configuration bitstream (.bit file

from Vivado tool) is mandatory for all

operations since it is necessary for

programming and scrubbing the FPGA. The

entire bitstream must be loaded to the

golden memory.

Mask X X FPGA configuration mask (.msk file from

Vivado tool) is required for readback

scrubbing. GRSCRUB uses the mask data

to identify the dynamic bits in the FPGA

CRAM frames. Only the data related to the

scrubbed frames are needed to be stored.

For simplicity, the entire mask file can be

loaded to the golden memory.

The mask file has the same format as the

bitstream file. If the user decides to store

only the mask data related to the scrubbed

frames, the correlation between mask and

bitstream must be matched. Misalignment

will cause erroneous verification of the bits.

Frame

mapping

 X* X X The frame mapping stores the addresses of

all FPGA configuration frames in the

CRAM. The frame addresses are required

in case of error correction of a specific

frame. Therefore, frame mapping is

mandatory for the readback scrubbing.

*The blind scrubbing only uses the frame

mapping if a limited number of frames is

configured to be scrubbed at once

(BLKFRAME>0) in the SETUP register. If

no maximum limit is established

(BLKFRAME=0), the frame mapping is

not required for blind scrubbing.

CRC codes X The golden CRC codes are only required to

be stored in the golden memory for the

readback scrubbing with CRC error

detection.

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 13 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

5 SYSTEM CONFIGURATION

This section describes the required steps for system configuration in order to use the GRSCRUB in

GR716B microcontroller. The how to steps focuses on the golden data generation, the storage of the

data in the external memory, and the configuration of the GR716B microcontroller and GRSCRUB

registers. Section 55 of the GR716B data sheet provides further details of the GRSCRUB

configuration [AD1].

Annex A provides demonstration scripts to configure and control the GR716B and GRSCRUB. The

scripts are written in TCL and are intended to be used on the Frontgrade Gaisler’s GRMON debug

tool [AD3]. The scripts can be used as a baseline for software development.

5.1 Data Generation

5.1.1 FPGA Design Implementation

For the validation presented in this document, a KU060 FPGA design was implemented based on the

fault-tolerant NOEL-V processor and GRLIB IPs. The design has been triplicated using distributed

Triple Modular Redundancy (TMR) synthesis strategy. Demonstrating the design implementation is

outside the scope of this document. For further information, refer to [RD5].

Table 3 presents the KU060 FPGA resource usage of the triplicated NOEL-V System-on-Chip (SoC).

Table 3. Resource usage of example design implemented in the KU060 FPGA.

LUT FF Carry BRAM DSP

211,643 74,842 2,744 126 39

5.1.2 Bitstream and Mask Files

The FPGA bitstream and mask files can be generated using the AMD/Xilinx Vivado tool. It is not in

the scope of this document to demonstrate this step.

One should notice that to allow the GRSCRUB to access and control the slave SelectMap interface,

the generated FPGA bitstream must be configured following the requirements below:

• Enable the mask file generation in the tool.

• Do not prohibit readback in the configuration bitstream security settings.

• Do not use compression or encryption in the configuration bitstream.

• Set the SelectMap pins to persistent in the configuration bitstream generator.

• Configure the slave SelectMap interface.

Below is an example of design constraints that can be used:

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 14 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

5.1.3 Frame Mapping

The mapping file with the frame addresses of the KU060 FPGA was previously generated using the

GRSCRUB IP. The GRSCRUB mapped and saved the frame addresses from the KU060 into a DDR

memory. The DDR memory content was dumped to a .srec file via GRMON.

The GNU objcopy utility was used to update the memory addresses in the .srec file to the external

memory addresses used in this document (i.e., start address=0x13D0000 – more information is

provided in Section 5.2). The .srec file is stored in the package provided in Annex A.

5.1.4 Golden CRC Codes

The golden CRC codes for the FPGA configuration frames must be recomputed for each specific

bitstream and mask files since the encoding varies with the design data. A Python script was

developed to simplify the CRC code generation (see Annex A). The script computes the CRC32 code

as per GRSCRUB and each CRC32 code is related to the respective CRAM frame. The user should

input the generated bitstream and mask files (.bit and .msk files from the Vivado tool) to the script.

The output is a binary .bin file with the golden CRC codes. This file can be directly loaded to the

golden memory.

5.2 Loading External Memory Data

Before starting using the GRSCRUB in the GR716B microcontroller the user must ensure that the

external SPI Flash memory is properly loaded. As previously described in Table 2, the external

memory should store the FPGA bitstream and mask files, the frame mapping, and the golden CRC

codes, depending on the required operations executed by GRSCRUB. This section shows an example

of how to load all required data, considering an AMD/Xilinx Kintex UltraScale KU060 FPGA, to an

external SPI Flash memory connected to the GR716B microcontroller.

This example uses a TCL script to be executed on GRMON. In this setup, the target SPI Flash memory

has a density of 512 Mb (64 MB) and is connected to the SPI Memory Controller 0 (SPIMCTRL0)

of the GR716B microcontroller (refer to the GR716B data sheet for further information [AD1]).

Therefore, the SPIMCTRL0 must be configured to use 4-byte addresses for the memory space.

Table 4 shows the size and the start address used to load the required data into the external SPI Flash

memory. The selected base address is 0x10D00000. For simplicity, the start addresses are selected

with enough room between the data. Additionally, the entire mask file is loaded to avoid misalignment

issues.

Do not compress the bitstream

set_property BITSTREAM.GENERAL.COMPRESS FALSE [current_design]

Configuration interface pins are persistent

set_property BITSTREAM.CONFIG.PERSIST YES [current_design]

Select Slave SelectMap interface

set_property CONFIG_MODE S_SELECTMAP [current_design]

Do not encrypt the bitstream

set_property BITSTREAM.ENCRYPTION.ENCRYPT NO [current_design]

Do not apply security

set_property BITSTREAM.READBACK.SECURITY NONE [current_design]

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 15 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

Table 4. Size and start address of data stored in the external SPI Flash memory.

Memory data Size (KU060) Start memory address

Bitstream 23 MB 0x10D00006

Mask 23 MB 0x12500006

Frame mapping 146 kB 0x13D00000

CRC codes 146 kB 0x13F00000

One should note that the FPGA configuration bitstream and mask files include an initial header with

ASCII characters that provides some file information. The header information may vary in size and

content, which can misalign the binary data into the memory words. In order to load the binary data

to the memory with the correct alignment, one can consider shifting the start load address (e.g., the

start address shift of 0x6 for the bitstream and mask data in Table 4). To define the correct shift, the

first binary dummy word (0xFFFFFFFF) can be used. See the AMD/Xilinx configuration user guide

[RD6] for more details about the bitstream composition.

The TCL script below shows an example of how to load the data to the SPI Flash memory. One can

source the script to GRMON using: grmon> source <script_name>.tcl.

Script to load required data to the SPI Flash memory

One must update the required file names where defined (< >)

Set SPI Flash memory addresses (SPIMCTRL0)

set LOADAD_BIT 0x10D00006

set LOADAD_MSK 0x12500006

set LOADAD_MAP 0x13D00000

set LOADAD_CRC 0x13F00000

SPIMCTRL0 clock gate enable

grcg enable 5 grcg0

Set SPIMCTRL0 4-byte address and alternate scaler

wmem 0xfff00100 0x131003

wmem 0xfff00104 0x0000000c

Detect memory

spim flash detect

Load bitstream data

spim flash load -erase <KU060_bitstream>.bit $LOADAD_BIT

verify -max 10 <KU060_bitstream>.bit $LOADAD_BIT

Load mask data

spim flash load -erase <KU060_mask>.msk $LOADAD_MSK

verify -max 10 <KU060_mask>.msk $LOADAD_MSK

Load frame mapping data

spim flash load -erase <KU060_map>.srec $LOADAD_MAP

verify -max 10 <KU060_map>.srec $LOADAD_MAP

Load CRC data

spim flash load -erase <CRC_codes>.bin $LOADAD_CRC

verify -max 10 <CRC_codes>.bin $LOADAD_CRC

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 16 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

5.3 GR716B Microcontroller Configuration

The GR716B microcontroller requires a few configurations after reset:

• Enable clock for the SPIMCTRL0 core.

• Configure SPIMCTRL0 for 4-byte address.

• Enable the SPIMCTRL0 alternate scaler for the dividing the SPI clock (optional). If the

alternate scaler is enabled, the system clock frequency is divided by 2. The default scaler is

system clock divided by 8. Note that the alternate scalar should only be enabled with internal

system clock equal or below 50 MHz (i.e., the maximum SPIMCTRL0 clock is 25 MHz).

• Enable clock for the GRSCRUB core.

• Configure the external SelectMap clock (SCRUBBER_CLK). In this example, the reference

clock divisor is set to 4.

• Configure the GRSCRUB GPIOs.

• Configure the GRSCRUB registers. This step is described in Section 5.4.

The example below shows a TCL script that can be used to configure the clock and registers of the

SPIMCTRL0 and GRSCRUB cores. Note that the SCRUBBER_CLK is dependent on the GR716B

input system clock, and the SPIMCTRL0 alternate scaler depends on the internal system clock and

Phase-Locked Loop (PLL) settings. See the GR716B data sheet for more information [AD1].

GR716B microcontroller configuration

SPIMCTRL0 configuration

enable SPIMCTRL0 clock

grcg enable 5 grcg0

force 4 byte address mode (F4B)

set spim_reg [silent mem 0xFFF00100 4]

silent wmem 0xFFF00100 [expr $spim_reg | [expr 1 << 12]]

use 4 address bytes (ADDRBYTES)

set spim_reg [silent mem 0xFFF00100 4]

silent wmem 0xFFF00100 [expr $spim_reg & ~[expr 3 << 8]]

enable alternate scaler (EAS)

set spim_reg [silent mem 0xFFF00104 4]

silent wmem 0xFFF00104 [expr $spim_reg | [expr 1 << 2]]

GRSCRUB configuration

enable GRSCRUB clock

grcg enable 22 grcg1

configure SCRUBBER_CLK config (external SYS_CLK/4)

silent wmem 0x8010D010 0x04

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 17 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

5.4 GRSCRUB Configuration

Before starting using the GRSCRUB, the correct configuration should be set in its registers. After its

initial configuration, the GRSCRUB can run autonomously from the microcontroller core. This

section shows some examples of how to configure the GRSCRUB registers based on the data loaded

in the golden memory and the selected operation mode. In the following example, a TCL script is

used in GRMON tool for the GRSCRUB configuration. This section refers to portions of the TCL

script, and Annex A points to its complete version.

5.4.1 Registers Settings

The GRSCRUB base address in GR716B is 0x80404000. For simplicity, shift addresses can be set in

a TCL script for the register’s addresses configuration, as REG in the example below.

The GRSCRUB registers must be configured based on the addresses defined in the golden memory

(e.g., the external SPI Flash memory addresses described in Section 5.2). In our example, the base

data address in the SPI Flash memory is 0x10D00000, and the start addresses are defined in Table 4.

Pre-defined variables can be stablished in TCL to be reused during the registers configuration.

GR716B microcontroller configuration (cont.)

Configure the IO matrix

set GRSCRUB GPIOs in SYS.CFG.GP3

set cfg_gp_reg [silent mem 0x8000D00C 4]

set cfg_gp_reg [expr $cfg_gp_reg & ~0xFFFFFFF0]

set cfg_gp_reg [expr $cfg_gp_reg | 0xEEEEEEE0]

silent wmem 0x8000D00C $cfg_gp_reg

set GRSCRUB GPIOs in SYS.CFG.GP4

set cfg_gp_reg [silent mem 0x8000D010 4]

set cfg_gp_reg [expr $cfg_gp_reg & ~0x0FFFFFFF]

set cfg_gp_reg [expr $cfg_gp_reg | 0x0EEEEEEE]

silent wmem 0x8000D010 $cfg_gp_reg

no pull resistors

silent wmem 0x8000D028 0x0

silent wmem 0x8000D02C 0x0

disable schmitt trigger

silent wmem 0x8000D038 0x0

silent wmem 0x8000D03C 0x0

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 18 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

The addresses for the bitstream, mask, frame mapping, and golden CRC codes are a reference to the

golden data. Additionally, the following information must also be configured to GRSCRUB registers

(all addresses refer to the golden data in the external memory):

• The bitstream starting address (after header): as previously informed, the configuration

bitstream has an initial ASCII header that has readable information about the bitstream but is

not used to configure the FPGA. Therefore, the address of the first binary word (dummy word

0xFFFFFFFF) in the bitstream should be configured to the GRSCRUB LGBAR register.

• The bitstream last address: the GRSCRUB HGBAR register should be set to the address of

the last word in the bitstream.

• Address of the first word of the first scrubbed frame in the bitstream: the GRSCRUB

LGSFAR register should be set to the address of the first word of the first frame to be scrubbed

in the bitstream. For example, if the first frame to be scrubbed is frame id 0 (first bitstream

frame), the LGSFAR should point to the address of the first word in the 1st frame. This case

is simpler since the first frame starts just after the initial synchronization words in the

bitstream. In case the first frame to be scrubbed is frame id 9, for instance, then the LGSFAR

GRSCRUB register configuration

GRSCRUB registers base address and offsets

set GRSCRUB_REGADDR 0x80404000

array set REG {

 GRSCRUB.STAT 0x00000000

 GRSCRUB.CONFIG 0x00000004

 GRSCRUB.IDCODE 0x00000008

 GRSCRUB.DELAY 0x0000000C

 GRSCRUB.FCR 0x00000010

 GRSCRUB.LFAR 0x00000014

 GRSCRUB.LGBAR 0x00000018

 GRSCRUB.HGBAR 0x0000001C

 GRSCRUB.LGSFAR 0x00000020

 GRSCRUB.LMASKAR 0x00000024

 GRSCRUB.LFMAPR 0x00000028

 GRSCRUB.LGCRCAR 0x0000002C

 GRSCRUB.LGRBKAR 0x00000030

 GRSCRUB.ECNT 0x00000034

 GRSCRUB.SETUP 0x00000038

 GRSCRUB.CAP 0x0000003C

 GRSCRUB.FRAMEID 0x00000040

 GRSCRUB.ERRFRAMEID 0x00000044

 }

Golden memory base address

set MEM_BASE 0x10D00000

configuration bitstream

set BITPARAMS(LOADAD.BIT) [expr $MEM_BASE + 0x00000006]

mask data

set BITPARAMS(LOADAD.MSK) [expr $MEM_BASE + 0x01800006]

frame map addresses

set BITPARAMS(LOADAD.MAP) [expr $MEM_BASE + 0x03000000]

golden CRC data (required for readback mode with CRC check)

set BITPARAMS(LOADAD.CRC) [expr $MEM_BASE + 0x03200000]

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 19 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

should point to the address of the first word in the 10th frame. One should make sure that the

correct alignment is set.

• Address of the first mask word of the first scrubbed frame in the mask data: since the

scrubbed frames should have their corresponding mask data, the GRSCRUB LMASKAR

register should be set to the address of the first mask word of the first frame to be scrubbed.

The logic is similar to the LGSFAR register. The LMASKAR and LGSFAR must be aligned

in order to point to the same frame id, i.e., addresses in the external memory that correspond

to the same frame id in the bitstream and mask.

Since defining such addresses can be a complex task, a config_gold_addr procedure in a TCL script

(presented in Annex A) has been created to automatically compute them based on the base addresses

of the primary data. Below is an example of how to manually set these addresses.

Other configurations are also required, such as the total number of frames presented in the FPGA

(FCNT), the number of words per FPGA frame (FLEN), the number of frames to be scrubbed by

GRSCRUB (NUM_SCRUB_FRAMES), and the address of the first FPGA frame to be scrubbed. The

FPGA id code (FPGA_IDCODE) must also be configured to the GRSCRUB. The example below

shows the correct configuration for KU060 FPGA. One should refer to the specific FPGA data sheet

to find its correct configuration if a different FPGA is used.

If all frames of the FPGA configuration memory should be scrubbed by GRSCRUB, then

FSTART_ADDR is set to the address of the first frame of the configuration bitstream (i.e.,

0x00000000), and the NUM_SCRUB_FRAMES is set with the number of configuration frames of

the FPGA (e.g., 37498 for the KU060 FPGA). If only a partial number of frames should be scrubbed,

then FSTART_ADDR and NUM_SCRUB_FRAMES should be set accordingly.

The GRSCRUB SETUP register should be configured to reflect the FPGA correct settings. For

instance, the number of row boundaries in the FPGA frame addressing, and whether bit swapping the

data is enabled or not. The KU060 FPGA has the SelectMap data bit-swapped, and there are two rows

between frame regions on the FPGA mapping architecture. One can also select the GRSCRUB

waiting time for the FPGA response after starting the programming phase. A minimum of one

microsecond is recommended.

GRSCRUB register configuration (cont.)

Define the start addresses in the golden memory

Start address of the configuration bitstream in the golden memory.

The LGBAR register is set with this address.

set BITPARAMS(START.BIT) [expr $MEM_BASE + 0x00000090]

Set the highest configuration bitstream address in the golden memory

The HGBAR register is set with this address.

set BITPARAMS(END.BIT) [expr $MEM_BASE + 0x01701e78]

Address of the first scrubbed frame in the golden memory (here is set to frame id 0)

The LGSFAR register is set with this address.

set BITPARAMS(START.GOLD) [expr $MEM_BASE + 0x000001a8]

Address of the first mask data related with the first scrubbed frame in the golden memory.

The LMASKAR register is set with this address.

set BITPARAMS(START.MSK) [expr $MEM_BASE + 0x018001a8]

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 20 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

The maximum number of frames to be scrubbed at once (BLKFRAME) can also be configured in the

SETUP register. This value establishes the number of frames that are read sequentially during

readback or written sequentially during blind scrubbing. If BLKFRAME > 0, the frames are scrubbed

by blocks, and a maximum of BLKFRAME frames is scrubbed each time. Therefore, the number of

frames defined in the FCNT bitfield of the Frame Configuration Register (FCR) is split into the

BLKFRAME size. This feature can be used to have more control of the FPGA configuration interface

and to reduce the impact of soft errors affecting the interface. If BLKFRAME = 0, all frames set in

the FCR are scrubbed sequentially at once.

GRSCRUB register configuration (cont.)

Total number of configuration frames of KU060

set FCNT 49030

Frame length of KU060

set FLEN 123

FPGA id code of KU060

set FPGA_IDCODE 0x03919093

Number of frames to be scrubbed (only mapped frames can be scrubbed)

set NUM_SCRUB_FRAMES 37498

address of the first FPGA frame to be scrubbed

set FSTART_ADDR 0x0

set block frame constant

set SET_BLKFRAME 0 ; # (0) all frames at once; (>0) limited frames

proc set_default_setup { } {

 variable REG

 variable SET_BLKFRAME

 # clear setup register

 reg_write $REG(GRSCRUB.SETUP) 0

 # ROWBND = 2

 set setup [reg_read $REG(GRSCRUB.SETUP)]

 reg_write $REG(GRSCRUB.SETUP) [expr $setup | [expr 2 << 4]]

 # TPROG = 150

 set setup [reg_read $REG(GRSCRUB.SETUP)]

 reg_write $REG(GRSCRUB.SETUP) [expr $setup | [expr 150 <<12]]

 # BITSWPEN = 1

 set setup [reg_read $REG(GRSCRUB.SETUP)]

 reg_write $REG(GRSCRUB.SETUP) [expr $setup | [expr 1 <<21]]

 # block frame config

 if {$SET_BLKFRAME} {

 set setup [reg_read $REG(GRSCRUB.SETUP)]

 reg_write $REG(GRSCRUB.SETUP) [expr $setup | [expr $SET_BLKFRAME <<22]

 }

}

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 21 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

5.4.2 Operation Control

5.4.2.1 FPGA Programming

Before enabling the programming operation mode, the GRSCRUB registers must be configured. The

grscrub_init_progmode procedure configures the GRSCRUB CONFIG, LGBAR, HGBAR, and

IDCODE registers based on the example provided in this document. The registers are configured with

values defined in Section 5.4.1.

The grscrub_progfpga procedure shows the steps required for enabling the programming operation

mode. The steps are the following:

1) ensure the GRSCRUB is disabled;

2) clear the done (OPDONE and SCRUND) and error (SCRERR) bitfields in the GRSCRUB

STATUS register;

3) configure the required registers (grscrub_init_progmode procedure); and

4) enable the GRSCRUB to execute the operation.

The programming is finished when the OPDONE bitfield of the STATUS register goes high. If an

error occurs during the execution, the SCRERR bitfield of the STATUS register goes high, and the

ERRID indicates the id of the error.

If the DONE signal of the target FPGA is mapped to a LED on the board, one can check if the LED

is ON when the target FPGA is programmed successfully.

See an example of script procedures below.

Configuration for FPGA programming mode

proc grscrub_init_progmode {} {

 variable REG

 variable BITPARAMS

 variable FPGA_IDCODE

 #configuration reg -> opmode = 0001

 reg_write $REG(GRSCRUB.CONFIG) 0x00000010

 #golden memory addresses

 reg_write $REG(GRSCRUB.LGBAR) $BITPARAMS(START.BIT)

 reg_write $REG(GRSCRUB.HGBAR) $BITPARAMS(END.BIT)

 reg_write $REG(GRSCRUB.IDCODE) $FPGA_IDCODE

}

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 22 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

5.4.2.2 FPGA Scrubbing

5.4.2.2.1 Blind Scrubbing

Before enabling the blind scrubbing operation mode, the GRSCRUB registers must be configured.

The grscrub_init_blindscrubmode procedure configures the GRSCRUB CONFIG, DELAY, LGBAR,

HGBAR, LFAR, FCR, LGSFAR, LFMAPR, and IDCODE registers based on the example provided

in this document. The registers are configured with values defined in Section 5.4.1.

The blind scrubbing can be configured to execute only once or periodically. The SCRUN bitfield of

the CONFIG register must be 1 for a periodic run. A delay can be defined between periodic scrubbing

runs. The delay period can be set in the DELAY register.

The grscrub_blindscrubbingfpga procedure shows the steps required for enabling the blind scrubbing

operation mode. The steps are the following:

1) ensure the GRSCRUB is disabled;

Configuration for FPGA programming mode (cont.)

proc grscrub_progfpga {} {

 variable REG

 variable done

 grscrub_disable

 grscrub_doneclear

 grscrub_errorclear

 grscrub_init_progmode

 # GRSCRUB operation enable

 grscrub_enable

 # wait OPDONE or SCRERR bitfield of STATUS register

 while {([expr { $done & [expr [reg_read $REG(GRSCRUB.STAT) 0]]}] != $done) &&

 ([expr [reg_read $REG(GRSCRUB.STAT) 0]] != 0x14) &&

 ([expr [reg_read $REG(GRSCRUB.STAT) 0]] != 0x00000060) &&

 ([expr [reg_read $REG(GRSCRUB.STAT) 0]] != 0x80000060) &&

 ($grmon::interrupt != 1)} {

 after 100 ; # wait if not done

 }

 # check if programmed successfully

 if {([expr { 0x00000060 & [expr [reg_read $REG(GRSCRUB.STAT)]]}] != 0x00000060)} {

 log_puts [format "GRSCRUB FPGA programmed successfully!"]

 } else {

 log_puts [format "ERROR to program FPGA!!!"]

 }

 grscrub_disable

}

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 23 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

2) clear the done (OPDONE and SCRUND) and error (SCRERR) bitfields in the STATUS

register;

3) configure the required registers (grscrub_init_blindscrubmode procedure); and

4) enable the GRSCRUB to execute the operation.

The SCRUND bitfield of the STATUS register goes high after each scrubbing execution in a periodic

run. The OPDONE bitfield goes high only in one time execution. If an internal error occurs during

the scrubbing, the execution is stopped, the SCRERR bitfield of the STATUS register goes high, and

the ERRID indicates the id of the error.

During periodic scrubbing, one can check the HOLD bitfield of the STATUS register to identify the

GRSCRUB execution. The HOLD bitfield is 0 when the GRSCRUB is performing the scrubbing

operation on the target FPGA. The HOLD bitfield is 1 when the GRSCRUB is on hold waiting during

the delay period.

One can also check the FRAMEID register that represents the id of the current frame of the target

FPGA scrubbed by the GRSCRUB.

See an example of script procedures below.

Configuration for GRSCRUB blind scrubbing operation mode

proc grscrub_init_blindscrubmode {} {

 ## variable definition here (removed due to limited space – see Annex A for complete example) ##

 # set one time scrubbing and no delay

 reg_write $REG(GRSCRUB.CONFIG) 0x00000020

 reg_write $REG(GRSCRUB.DELAY) 0x0

 #golden memory addresses

 reg_write $REG(GRSCRUB.LGBAR) $BITPARAMS(START.BIT)

 reg_write $REG(GRSCRUB.HGBAR) $BITPARAMS(END.BIT)

 reg_write $REG(GRSCRUB.LMASKAR) $BITPARAMS(START.MSK)

 reg_write $REG(GRSCRUB.LGSFAR) $BITPARAMS(START.GOLD)

 reg_write $REG(GRSCRUB.LFMAPR) $BITPARAMS(LOADAD.MAP)

 #set frame address and configuration

 reg_write $REG(GRSCRUB.LFAR) $FSTART_ADDR

 reg_write $REG(GRSCRUB.FCR) [expr [expr $NUM_SCRUB_FRAMES << 9] | [expr $FLEN << 2]]

 reg_write $REG(GRSCRUB.IDCODE) $FPGA_IDCODE

}

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 24 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

5.4.2.2.2 Readback Scrubbing

Before enabling the readback scrubbing operation mode, the GRSCRUB’s registers must be

configured. The grscrub_init_readbackmode procedure shows a configuration example of the

DELAY, LGBAR, HGBAR, LFAR, FCR, LGSFAR, LMASKAR, LFMAPR, LGCRCAR, and

IDCODE registers based on the example provided in this document. The registers are configured with

values defined in Section 5.4.1. At the initialization procedure, one can also clean the ECNT,

ERRFRAMEID, and FRAMEID registers to reset the number of detected errors and frame id of

previous runs.

The readback scrubbing can also be configured to execute only once or periodically. The SCRUN

bitfield of the CONFIG register must be 1 for a periodic run. A delay can be defined between periodic

scrubbing runs. The delay period can be set in the DELAY register.

The readback scrubbing can be configured for two modes: (1) only detect errors, or (2) detect and

correct errors. The former is configured in the grscrub_readbackfpga_onlydetection procedure

(shown in Annex A), and the latter is configured in the grscrub_readbackfpga_correction procedure

(shown below and in Annex A). The CORM bitfield of the CONFIG register defines the readback

mode. In both cases, the error detection can be set through FFC, CRC, or FFC and CRC checks in

Configuration for GRSCRUB blind scrubbing operation mode (cont.)

example with continually monitoring

proc grscrub_blindscrubbingfpga {} {

 variable REG

 variable done

 grscrub_disable

 grscrub_doneclear

 grscrub_errorclear

 grscrub_init_blindscrubmode

 # GRSCRUB operation enable

 grscrub_enable

 # wait OPDONE or SCRERR bitfield of STATUS register

 while {([expr { $done & [expr [reg_read $REG(GRSCRUB.STAT) 0]]}] != $done) &&

 ([expr { 0x00000020 & [expr [reg_read $REG(GRSCRUB.STAT) 0]]}] != 0x00000020) &&

($grmon::interrupt != 1) } {

 after 100 ; # wait if not done

 }

 # check error

 if {([expr [reg_read $REG(GRSCRUB.STAT)]] == $done) ||

 ([expr [reg_read $REG(GRSCRUB.STAT)]] == 0x00001010)} {

 log_puts [format "GRSCRUB FPGA Blind Scrubbing successfully"]

 } else {

 log_puts [format "ERROR to Blind Scrubbing FPGA!!!"]

 }

 grscrub_disable

}

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 25 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

parallel. The FFCEN and CRCEN bitfields of the CONFIG register set the detection options.

The steps required for enabling the readback scrubbing operation mode are the following:

1) ensure the GRSCRUB is disabled;

2) clear the done (OPDONE and SCRUND) and error (SCRERR) bitfields in the STATUS

register;

3) configure the required registers (grscrub_init_readbackmode procedure);

4) configure the CONFIG register; and

5) enable the GRSCRUB to execute the operation.

The SCRUND bitfield of the STATUS register goes high after each scrubbing execution in a periodic

run. The OPDONE bitfield goes high only in one time execution. If an internal error occurs during

the scrubbing, the execution is stopped, the SCRERR bitfield of the STATUS register goes high, and

the ERRID indicates the id of the error.

During periodic scrubbing, one can check the HOLD bitfield of the STATUS register to identify the

GRSCRUB execution. The HOLD bitfield is 0 when the GRSCRUB is performing the scrubbing

operation on the target FPGA. The HOLD bitfield is 1 when the GRSCRUB is in hold waiting during

the delay period.

One can also check the FRAMEID register that represents the id of the current frame of the target

FPGA scrubbed by the GRSCRUB. The ECNT register presents the number of errors detected during

the readback scrubbing. If the error correction is enabled, the ECNT register shows the number of

correctable and uncorrectable errors. The error counters accumulate over scrubbing runs. One should

clear the register to initiate a new counting.

Configuration for GRSCRUB readback scrubbing operation mode

proc grscrub_init_readbackmode {} {

 ## variable definition here (removed due to limited space – see Annex A for complete example) ##

 # clear error counter and frame id registers

 reg_write $REG(GRSCRUB.ECNT) 0x00000000

 reg_write $REG(GRSCRUB.ERRFRAMEID) 0x00000000

 reg_write $REG(GRSCRUB.FRAMEID) 0x00000000

 # no delay

 reg_write $REG(GRSCRUB.DELAY) 0x0

 #golden memory addresses

 reg_write $REG(GRSCRUB.LGBAR) $BITPARAMS(START.BIT)

 reg_write $REG(GRSCRUB.HGBAR) $BITPARAMS(END.BIT)

 reg_write $REG(GRSCRUB.LMASKAR) $BITPARAMS(START.MSK)

 reg_write $REG(GRSCRUB.LGSFAR) $BITPARAMS(START.GOLD)

 reg_write $REG(GRSCRUB.LFMAPR) $BITPARAMS(LOADAD.MAP)

 reg_write $REG(GRSCRUB.LGCRCAR) $BITPARAMS(LOADAD.CRC)

 #set frame address and configuration

 reg_write $REG(GRSCRUB.LFAR) $FSTART_ADDR

 reg_write $REG(GRSCRUB.FCR) [expr [expr $NUM_SCRUB_FRAMES << 9] | [expr $FLEN << 2]]

 reg_write $REG(GRSCRUB.IDCODE) $FPGA_IDCODE

}

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 26 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

Configuration for GRSCRUB readback scrubbing operation mode (cont.)

proc grscrub_readbackfpga_correction {{datacheck "ffc"}} {

 variable REG

 variable done

 variable scrun

 grscrub_disable

 grscrub_doneclear

 grscrub_errorclear

 grscrub_init_readbackmode

 #data verification: FFC (bit 12), CRC (bit 11)

 if {$datacheck == "ffc"} {

 reg_write $REG(GRSCRUB.CONFIG) 0x00001024

 } elseif {$datacheck == "crc"} {

 reg_write $REG(GRSCRUB.CONFIG) 0x00000824

 } else {

 reg_write $REG(GRSCRUB.CONFIG) 0x00001824

 }

 # GRSCRUB operation enable

 grscrub_enable

 # wait OPDONE or SCRERR bitfield of Status register

 while {([expr { 0x00000010 & [expr [reg_read $REG(GRSCRUB.STAT) 0]]}] != 0x00000010) &&

 (([expr { 0x000001E0 & [expr [reg_read $REG(GRSCRUB.STAT) 0]]}] == 0x00000000) ||

 ([expr { 0x000001E0 & [expr [reg_read $REG(GRSCRUB.STAT) 0]]}] == 0x000000A0)) &&

($grmon::interrupt != 1)} {

 after 100 ; # wait if not done

 }

 # check errors

 if {(([expr { 0x00000020 & [expr [reg_read $REG(GRSCRUB.STAT)]]}] == 0x00000020) &&

 ([expr { 0x000001E0 & [expr [reg_read $REG(GRSCRUB.STAT)]]}] != 0x000000A0))} {

 log_puts [format "ERROR to readback FPGA!!!"]

 } else {

 set run_error [expr [reg_read $REG(GRSCRUB.ECNT)] & 0x0000FFFF]

 set uncor_error [expr [expr [reg_read $REG(GRSCRUB.ECNT)] & 0xFFFF0000] >> 16]

 set correct_errors [expr run_error-uncor_error]

 log_puts [format "GRSCRUB FPGA readback successfully"]

 log_puts [format "GRSCRUB Last readback mismatches: $run_error"]

 log_puts [format "GRSCRUB Correctable errors: $correct_errors"]

 log_puts [format "GRSCRUB Uncorrectable errors: $uncor_error"]

 log_puts [format "FPGA readback time: %s ms" [expr end_time-start_time]]

 }

 grscrub_disable

}

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 27 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

6 EXPERIMENTAL SETUP

This section provides an overview of the test setups and conditions used during the validation of the

GRSCRUB feature in the GR716B microcontroller.

6.1 Validation Test Setup

Two validation test setups have been used to verify the GRSCRUB functionalities in the GR716B

microcontroller.

6.1.1 Setup I: Preliminary Test Setup

The preliminary test setup, hereafter called Setup I, is composed of a GR716B board featuring the

GR716B microcontroller connected to a GR-CPCIS-XCKU board featuring a KU060 FPGA. Figure

3 shows a block diagram of Setup I.

The GR716B board [AD4] is an updated version (rev. 1.5) of the GR716-BOARD development board.

Besides the GR716B microcontroller, the GR716B board features a 512 Mbit SPI Flash memory,

power supply configuration and monitoring, communication interfaces, and two 2x32 pin stackable

0.1” headers allowing access to all GR716B I/O pins. The on-board SPI Flash memory is used as the

GRSCRUB golden memory, and it is configured as per Section 5.2. A GR716-DSU-USB adapter is

connected to the GR716B board to interface the DSU and GRMON software via UART. The TCL

scripts described in the previous sections run over the GRMON in the test computer and control the

GR716B and GRSCRUB.

The GR-CPCIS-XCKU board [AD5] features an AMD/Xilinx KU060 Kintex UltraScale FPGA

(FCBGA package), external access to the FPGA SMAP interface (I/O header), FPGA interface to

DDR3 SDRAM via two SODIMM connectors, SPI and Parallel Flash memory, and embedded power

control and monitoring circuitry. This board also provides the possibility to fit a GR716

microcontroller, being compatible with both GR716A and GR716B versions. The board version (rev.

1.0) used in Setup I has a GR716A mounted.

A custom flat cable is used to connect the SelectMap signals between the I/O headers of the GR716B

board and the GR-CPCIS-XCKU board. Both boards are simultaneously powered up by an external

Power Supply Unit (PSU) to avoid power connection issues.

Figure 3. Block diagram of Setup I: GR716B board (rev. 1.5) connected to the GR-CPCIS-XCKU

board (rev. 1.0).

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 28 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

On the GR716B board, the GR716B input system clock (SYS_CLK) and SpaceWire clock

(SPW_CLK) are defined by the crystal oscillator (XO) output, which is 20 MHz. The PLL is

configured to provide a 50 MHz internal system clock, and the SPI memory controller is set to use

the alternate scaler, which leads to a 25 MHz clock (maximum value). The SelectMap clock is

generated from the SYS_CLK and is set to 10 MHz (maximum value based on the SYS_CLK input).

One should refer to the GR716B data sheet for further information on how to configure the clocks

[AD1]. Table 5 gives an overview of the clock configuration used in Setup I.

Table 5. GR716B clock configuration in Setup I.

SYS_CLK SPW_CLK PLL internal system clock SPI memory clock SMAP clock

20 MHz 20 MHz 50 MHz 25 MHz 10 MHz

6.1.2 Setup II: Final Test Setup

The final test setup, hereafter called Setup II, is composed of a GR-CPCIS-XCKU board featuring a

KU060 FPGA and a GR716B microcontroller. The GR716B microcontroller has been assembled on

the GR-CPCIS-XCKU board (rev. 2.1). On this board version, the GR716B has direct on-board

connection to the FPGA SelectMap signals. Therefore, the SelectMap I/O header is no longer needed

but it is still useful for signalling monitoring and debugging. Figure 4 shows a block diagram of Setup

II, and Figure 5 depicts a view of the GR-CPCIS-XCKU board (rev. 2.1).

Figure 4. Block diagram of Setup II: GR-CPCIS-XCKU board (rev. 2.1) featuring a KU060 FPGA

and a GR716B microcontroller.

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 29 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

Figure 5. View of the GR-CPCIS-XCKU board (rev. 2.1).

The GR716B is also connected to a SPI Flash memory that is used as the GRSCRUB golden memory,

and it is configured as per Section 5.2. The GR-CPCIS-XCKU board has an on-board FTDI chip that

allows UART connection to the GR716B DSU. Like the preliminary setup, the TCL scripts described

in the previous sections run over the GRMON in the test computer and control the GR716B and

GRSCRUB.

On the GR-CPCIS-XCKU board, the GR716B input SYS_CLK and SPW_CLK are defined by the

on-board oscillators, which are 100 and 200 MHz, respectively. The PLL is configured to provide a

50 MHz internal system clock, and the SPI memory controller is set to use the alternate scaler, which

leads to a 25 MHz clock (maximum value). The SelectMap clock is generated from the SYS_CLK

and is set to 25 MHz (maximum recommended value in GR716B). One should refer to the GR716B

data sheet for further information on how to configure the clocks [AD1]. Table 6 gives an overview

of the clock configuration used in Setup II.

Table 6. GR716B clock configuration in Setup II.

SYS_CLK SPW_CLK PLL internal system clock SPI memory clock SMAP clock

100 MHz 200 MHz 50 MHz 25 MHz 25 MHz

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 30 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

6.2 Error Injection Setup

An error injection system has been prepared to validate the scrubbing capabilities of GRSCRUB in

the GR716B microcontroller. The error injection targets to flip bits in the FPGA design in order to

simulate SEUs in the CRAM. Two distinct setups have been configured depending on the Setup I and

B characteristics.

6.2.1 Setup I - Error Injection

An error injection framework (EIFW) [AD6] has been developed by Frontgrade Gaisler that allows

emulating errors on the CRAM via the SelectMap interface. The EIFW is implemented in VHDL and

can run on an external FPGA for validation purposes. The injection engine is controlled via Python

scripts running on the test computer and communicating over UART. More information about the

EIFW is provided in its user manual [AD6].

In order to use the EIFW in Setup I, an external FPGA has been added to the system. A GR-XC6S

board, featuring an AMD/Xilinx Spartan-6 FPGA, is used as a test controller (TC) to implement the

EIFW engine and manage a multiplexing of the SelectMap signals. Since both GRSCRUB and the

EIFW use the SelectMap to access the FPGA configuration memory, they cannot be used in parallel.

Therefore, the GR716B GPIOs have been connected to the GR-XC6S board, and the signals are

routed through the TC FPGA. An I/O header from the TC FPGA is connected to the SelectMap

interface of the KU060 on the GR-CPCIS-XCKU board. The I/O signals are multiplexed between the

GR716B and the EIFW. Figure 6 shows the block diagram of the test setup.

Additional TCL scripts have been integrated to the primary scripts presented in the previous sections

to coordinate the error injection and the GRSCRUB scrubbing cycles. The error injection control

scripts are presented in Annex A. The error injection can be performed deterministically or randomly,

and errors are injected only between the scrubbing cycles. Since both GRSCRUB and EIFW use the

SelectMap interface to access the FPGA configuration memory, only one can be enabled at a time.

For the example presented in this document, only random bit errors are injected since they better

reproduce real scenarios. For each injection run, one or more random errors can be injected at once.

In sequence, the GRSCRUB is released to scrub the entire FPGA CRAM. At the end of the scrubbing

execution, the GRSCRUB counters are checked and logged (in case of readback scrubbing). In

sequence, a new injection run starts, and the loop is repeated.

Figure 6. Block diagram of error injection in Setup I: GR-XC6S board connected between the

GR716B board and the GR-CPCIS-XCKU board.

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 31 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

6.2.2 Setup II - Error Injection

The GR716B on the GR-CPCIS-XCKU board (rev. 2.1) is tied to the FPGA SelectMap pins, which

makes it unfeasible to use the SelectMap I/O header for signal connection. In this scenario, the EIFW

presented in the previous section cannot be used.

For validation purposes, a workaround has been implemented to inject errors into the FPGA CRAM

using the GRSCRUB itself. Additional TCL scripts have been developed to control the GRSCRUB

in the GR716B to emulate errors in selected CRAM frames. The error injection control scripts are

presented in Annex A.

Similar to the EIFW, errors can be injected deterministically or randomly, and errors are injected only

between the scrubbing cycles. For the example presented in this document, only random bit errors

are injected since they better reproduce real scenarios. One random error is injected per injection run.

In sequence, the GRSCRUB is released to scrub the entire FPGA CRAM. At the end of the scrubbing

execution, the GRSCRUB counters are checked and logged (in case of readback scrubbing). In

sequence, a new injection run starts, and the loop is repeated.

The random error injection using the GRSCRUB follows the approach below:

1) A random target frame is selected considering all the CRAM frames (i.e., a random id from

the 37498 frames – total KU060 CRAM frames).

2) A random target bit is selected in the frame (i.e., a random bit from the 3936 bits in a frame –

each KU060 frame has 123 32-bit words).

3) The target frame is read back from the FPGA CRAM using GRSCRUB and saved in the

GR716B LEON3 on-chip RAM (start address 0x30000000).

4) The target bit is flipped on the on-chip RAM.

5) The GRSCRUB is configured to write back the target frame from the on-chip RAM into the

FPGA CRAM.

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 32 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

7 EXPERIMENTAL RESULTS

7.1 Validation Results

The GRSCRUB features have been successfully validated on the GR716B microcontroller. All modes

and configurations presented in this document are functional on Setup I and Setup II.

The KU060 FPGA can be programmed as expected. After programming the FPGA using GRSCRUB,

the design implemented in the KU060 has been dynamically validated by accessing the DSU of the

NOEL-V SoC using GRMON and running test software.

All the scrubbing modes are functional. The blind and readback modes have been primarily validated

by targeting the entire CRAM. Tests have also been performed targeting partial scrubbing. Different

tests have been made with BLKFRAME equal to 0 (all frames scrubbed at once) and to 1 (one frame

scrubbed at a time).

Table 7 presents the approximated performance, in milliseconds, of the GRSCRUB operations

targeting the KU060 FPGA in the final test setup (Setup II – GR-CPCIS-XCKU board rev. 2.1). This

performance data is gathered using the GRMON monitoring the GR716B. All configuration memory

frames are scrubbed at once (BLKFRAME=0) during blind and readback modes. The performance

of the readback scrubbing operation is related to error-free configuration memory. Longer periods

may be observed depending on the number of errors being corrected at a specific scrubbing cycle.

The performance of the GRSCRUB operations may be improved if the external SPI Flash memory

has a higher clock frequency.

Table 7. Performance of GRSCRUB operations targeting the KU060 FPGA on the GR-CPCIS-

XCKU board (rev. 2.1) – final test setup (Setup II).

Operation Performance

FPGA programming 25609 ms

Blind scrubbing 19408 ms

Readback scrubbing

FFC 31651 ms

CRC 15928 ms

FFC and CRC 31856 ms

7.2 Error Injection Results

During the error injection tests on both setups, the FPGA design was kept in static mode, i.e., the

NOEL-V SoC was kept in reset. However, no difference in the outcome results is expected when the

FPGA design is in a dynamic state.

Table 8 presents the error injection results using the EIFW to inject bitflips in the KU060 CRAM in

Setup I. The blind and readback scrubbing modes of the GRSCRUB were evaluated. Both modes

were configured for scrubbing all CRAM frames at once (BLKFRAME=0). The readback scrubbing

was configured for FFC and CRC parallel checks. Campaigns of 10 and 100 random errors per run

were executed. In all tests, the GRSCRUB was able to detect and correct all injected errors.

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 33 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

Table 8. Error injection results using the EIFW in Setup I with different GRSCRUB scrubbing

modes. All injected faults were successfully corrected.

BLKFRAME Scrubbing mode
errors

injected per run

total

errors

All faults

corrected

0 (all frames

scrubbed at once)

Blind scrubbing 10; 100 10400 PASS

Readback

scrubbing

FFC and

CRC
10; 100 38100 PASS

Table 9 shows the error injection results using the GRSCRUB to flip bits in the KU060 CRAM in

Setup II. The blind and readback scrubbing modes of the GRSCRUB were evaluated. Both modes

were tested with different block frame configurations: scrubbing all frames at once (BLKFRAME=0),

scrubbing one frame at a time (BLKFRAME=1), and scrubbing a hundred frames at a time

(BLKFRAME=100). All CRAM frames were scrubbed in all modes. The readback scrubbing was

configured for FFC check, CRC check, and FFC and CRC parallel checks. One error was injected per

run in all tests. In all tests, the GRSCRUB was able to detect and correct all injected errors.

Table 9. Error injection results using the GRSCRUB error injection in Setup II with different

GRSCRUB scrubbing modes. All injected faults were successfully corrected.

BLKFRAME Scrubbing mode
errors

injected per run

total

errors

All faults

corrected

0 (all frames

scrubbed at once)

Blind scrubbing 1 10000 PASS

Readback

scrubbing

FFC 1 1000 PASS

CRC 1 1000 PASS

FFC and

CRC
1 10000 PASS

1 (one frame

scrubbed at a time)

Blind scrubbing 1 1000 PASS

Readback

scrubbing

FFC and

CRC
1 1000 PASS

100 (hundred frames

scrubbed at a time)

Blind scrubbing 1 1000 PASS

Readback

scrubbing

FFC and

CRC
1 1000 PASS

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 34 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

8 CONCLUSION

The Frontgrade Gaisler’s GR716B rad-hard microcontroller, featuring the FPGA scrubber controller

– GRSCRUB, has been functionally validated targeting an AMD/Xilinx KU060 Kintex UltraScale

FPGA. This document provides examples of how to configure the GR716B and GRSCRUB and

demonstrates the configuration steps for each operational mode.

The GRSCRUB programming and scrubbing capabilities have been exercised under two different

setups. The first preliminary setup uses a GR716B board connected via custom cabling to a GR-

CPCIS-XCKU board (rev 1.0). The second final setup is a reworked GR-CPCIS-XCKU board (rev

2.1) featuring a GR716B directly connected to the SelectMap signals of the KU060 FPGA. The

GRSCRUB functionalities have been successfully validated on both setups. Error injection has also

been performed to ensure the GRSCRUB error correction capability during scrubbing. In all tests, the

GRSCRUB successfully detected and corrected all injected errors, demonstrating the effective

implementation of the solution.

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 35 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

9 ANNEX A – SCRIPTS PACKAGE

This annex points to example scripts used to demonstrate the GRSCRUB capabilities on the GR716B

rad-hard microcontroller. The scripts provide the possibility to reproduce the user-case scenario

described in this application note. It includes scripts to program and scrub the target FPGA using the

GR716B microcontroller. Scripts to perform error injection in the FPGA configuration memory

(CRAM), simulating radiation-induced upsets, are also included.

The demonstration scripts to configure and control the GR716B and GRSCRUB are written in TCL

and are intended to be used on GRMON. The scripts can be used as a baseline for software

development.

The scripts package is available for download from the GR716B website (www.gaisler.com/gr716b).

Figure 7 shows a view of the package contents and Table 10 describes the files.

Figure 7. View of the GR716B_GRSCRUB_AppNote_EXTERNAL package.

Table 10. Content description of the scripts package.

Folder/File Description
Reference

section

DUT This folder is for the user to optionally store the

FPGA design files, such as bitstream, mask, and CRC

data that should be loaded to the external SPI Flash

memory.

0, 5.1.4, 5.2

ku060_map The addresses of the AMD/Xilinx KU060 FPGA

configuration memory are saved in a .srec file, which

should be loaded to the external SPI Flash memory.

Note that the .srec file is configured to be loaded at

address 0x13D00000. One can use the GNU objcopy

utility to update the memory address if needed.

5.1.3, 5.2

logs This folder stores the log files for each subrun. The

README file describes the content of each log file.

scripts_eifw Scripts used for GRSCRUB validation with error

injection.

scripts_eifw/grscrub-

ctrl.tcl

Script that configures the GR716B and GRSCRUB 5.3, 5.4

scripts_eifw/ Scripts used in the Setup I only. The TCL script 6.1.1, 6.2.1

http://www.gaisler.com/gr716b

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 36 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

fpgaei_ctrl.tcl and

fpgaei_campaign.py

configures the error injection campaign, and the

Python script controls the error injection framework

(EIFW).

scripts_eifw/grscrub-

ei.tcl

Script used in the Setup II only. The TCL script

controls the error injection using GRSCRUB.

6.1.2, 6.2.2

scripts_eifw/gr-log.tcl Script to save logs.

scripts_eifw/gr-

start.tcl

Top TCL script. It sources the other scripts from the

scripts_eifw folder. One can update this script to

either source fpgaei_ctrl.tcl (for Setup I) or grscrub-

ei.tcl (for Setup II).

scripts_misc Miscellaneous scripts.

scripts_misc/

gr716b_pll_fix.tcl

Script used to configure the GR716B PLL. 6.1.1, 6.1.2

scripts_misc/

load_spi_flash.tcl

Script used to load the data to the external SPI Flash

memory.

5.2

scripts_misc/crc_gen Scripts used to generate the CRC codes of the user-

defined FPGA bitstream.

5.1.4

REAME.txt README file for reference.

run_ctrl_ei.sh Bash script to automatically launch GRMON and run

the TCL scripts.

run_pll_fix.sh Bash script to automatically launch GRMON and run

the PLL configuration script.

Doc. No: GRHA-AN-0001

 Issue: 1 Rev.: 0

Date: 2024-11-25 Page: 37 of 37

Status: Approved

© Frontgrade Gaisler AB CONFIDENTIAL
Contract: 4000130767/20/NL/MM/gm

Deliverable: TN-7

Copyright © 2024 Frontgrade Gaisler AB

