
RASTA RTEMS Documentation
RASTA BSP and Drivers for RTEMS 4.6.5 RTEMS-RASTA

Version 1.0.1
Written by Kristoffer Glembo and Daniel Hellström October 2007

Första Långgatan 19
413 27 Göteborg
Sweden

tel +46 317758650
fax +46 31 421407
homepage: www.gaisler.com

http://www.gaisler.com/
http://www.gaisler.com/

RTEMS-RASTA 2

Table of Contents

1 INTRODUCTION...4
1.1 RASTA support in RTEMS...4
1.2 Source Structure...5
1.3 PCI...5
1.4 RASTA Initialization..6
1.5 Build Options...6

2 CAN DRIVER INTERFACE (GRCAN)..8
2.1 User interface..8
2.1.1 Driver registration...8
2.1.2 Opening the device..8
2.1.3 Closing the device...9
2.1.4 I/O Control interface...9
2.1.4.1 Data structures..9
2.1.4.2 Configuration...12
2.1.5 Transmission..16
2.1.6 Reception...17

3 Gaisler B1553BRM DRIVER (BRM)..19
3.1 INTRODUCTION...19
3.1.1 BRM Hardware..19
3.1.2 Software Driver...19
3.1.3 Supported OS..19
3.1.4 Examples..19
3.2 User interface..19
3.2.1 Driver registration...20
3.2.2 Opening the device..20
3.2.3 Closing the device...21
3.2.4 I/O Control interface...21
3.2.4.1 Data structures..21
3.2.5 Configuration...25
3.2.5.1 SET_MODE..26
3.2.5.2 SET_BUS..27
3.2.5.3 SET_MSGTO..27
3.2.5.4 SET_RT_ADDR...27
3.2.5.5 BRM_SET_STD..27
3.2.5.6 BRM_SET_BCE..27
3.2.5.7 BRM_TX_BLOCK..27
3.2.5.8 BRM_RX_BLOCK...27
3.2.5.9 BRM_CLR_STATUS...27
3.2.5.10 BRM_GET_STATUS...27
3.2.5.11 BRM_SET_EVENTID...28
3.2.6 Remote Terminal operation..28
3.2.7 Bus Controller operation...29
3.2.8 Bus monitor operation...30

4 RAW UART DRIVER INTERFACE (APBUART)...31
4.1 User interface..31
4.1.1 Driver registration...31
4.1.2 Opening the device..31
4.1.3 Closing the device...32
4.1.4 I/O Control interface...32

RTEMS-RASTA 3

4.1.4.1 Configuration...32
4.1.5 Transmission..35
4.1.6 Reception...35

5 Gaisler SpaceWire (GRSPW)...37
5.1 Introduction...37
5.1.1 Software driver..37
5.1.2 Examples..37
5.1.3 Support..37
5.2 User interface..37
5.2.1 Driver registration...37
5.2.2 Opening the device..38
5.2.3 Closing the device...38
5.2.4 I/O Control interface...38
5.2.4.1 Data structures..39
5.2.4.2 Configuration...42
5.2.5 Transmission..48
5.2.6 Reception...49
5.3 Receiver example..50

6 GPIO...51

7 Changes...52
7.1 Shared drivers Between LEON2 and LEON3 BSPs...52
7.2 GRCAN driver Interface Changes...52
7.3 GRSPW driver Interface Changes...52
7.4 APBUART Driver Interface Changes..52

RTEMS-RASTA 4

1 INTRODUCTION

This document introduces the reader to development with the RASTA board

The RTEMS Cross Compilation System (RCC) is a cross-compilation system for LEON2 and
LEON3 processors. The following components are included:

● GNU C/C++ compiler

● Linker, assembler, archiver etc.

● Newlib standalone C-library

● RTEMS real-time kernel with network support

● Boot-prom utility (mkprom)

● GDB cross-debugger for SPARC

RCC allows cross-compilation of RTEMS C/C++ applications for LEON2. Using the gdb
debugger, it is possible to perform source-level symbolic debugging, either on an instruction
simulator or using real target hardware. The compiler system is provided free of charge under
the GNU GPL/LGPL licenses. Gaisler Research is the official ESA maintainer of the RTEMS port
for the LEON2 processor and has been providing support to several developments.

1.1 RASTA SUPPORT IN RTEMS

The RASTA board does not contain a processor itself so the support has been focused on
providing drivers for controlling the RASTA board over PCI. The RASTA board is the PCI Target
and a LEON2 as PCI Bus Master controlling the RASTA board.

PCI drivers for the following cores on the RASTA interface board has been added to the LEON2
RTEMS BSP:

● CAN

● 1553

● SpaceWire

● UART

● GPIO

● Interrupt controller

The PCI layer itself has also been added supporting the AT697 PCI core.

Note that this document refers to the core registers. For their definition see the RASTA users
manual.

All user applications using any of these drivers need to include rasta.h.

RTEMS-RASTA 5

1.2 SOURCE STRUCTURE

The file locations presented in the table below are relative c/src/lib/libbsp/sparc to the source
base directory.

File Location Description

leon2 LEON2 BSP

leon2/rasta/rasta.c LEON2 RASTA Initialization and Interrupt and GPIO routines

leon2/include/rasta.h RASTA Register definitions

leon2/pci/pci.c LEON2 AT697 PCI driver

shared/include/pci.h LEON PCI definitions

shared/1553/b1553brm_rasta.c RASTA version of the common 1553 BRM driver

shared/include/b1553brm_rasta.h RASTA 1553 Driver Interface

shared/can/grcan_rasta.c RASTA version of the common GRCAN driver

shared/include/grcan_rasta.h RASTA CAN Driver Interface

shared/spw/grspw_rasta.c RASTA version of the common GRSPW driver

shared/include/grspw_rasta.h RASTA SpaceWire Driver Interface

shared/uart/apbuart_rasta.c RASTA version of the common APB UART driver

shared/include/apbuart_rasta.h RASTA UART Driver Interface

Table 1: RASTA Source Structure

1.3 PCI

The function call init_pci() has been added to the LEON2 BSP which configures the PCI core and
assigns resources to all found PCI devices. Note that it only does resource management for PCI
memory BARs and not IO BARs. The BARs are assigned beginning at address 0xA0000000
starting with the largest resource.

If PCI_INFO is defined in pci.c the found devices and their allocated resources are printed by
init_pci().

The SRAM on the AT697 board is mapped on PCI address 0x40000000 and the SDRAM on
0x60000000.

Two functions for using the built in PCI DMA are provided:

int dma_to_pci(unsigned int addr, unsigned int paddr, unsigned int len)
int dma_from_pci(unsigned int addr, unsigned int paddr, unsigned int len)

Both functions transfer len number of words between pci address paddr and AHB address addr.

The RASTA interface board design uses ESAs vendor id 0x16E3 and device id 0x210. BAR0 of the
RASTA design is mapped to 0x80000000. Through it all registers can be accessed (see the
memory map in RASTA users manual). BAR1 is mapped to 0x40000000 and is used to access
either SRAM or SDRAM on the RASTA board.

RTEMS-RASTA 6

1.4 RASTA INITIALIZATION

After PCI resource allocation has been done using init_pci() the RASTA drivers can be registered
using rasta_register(). It returns 0 on success or -1 if no PCI device matching the RASTA board
was found. On success the following devices will be registered:

Device node Description

/dev/grcan0 CAN device

/dev/brmrasta0 B1553BRM device

/dev/grspwrasta0 GRSPW link0

/dev/grspwrasta1 GRSPW link1

/dev/grspwrasta2 GRSPW link2

/dev/apbuartrasta0 APBUART 1

/dev/apbuartrasta1 APBUART 2

Table 2: RASTA devices in filesystem

All devices are registered as RTEMS I/O drivers and accept the standard open, close, read, write
and control calls. Any device can only be opened once.

Other tasks done by rasta_register() are setting up the PCI controller, the memory controller, and
the interrupt controller on the RASTA IF board. It also configures the AT697 GPIO port to use bit
7 to generate IRQ 4 for PCI interrupts and sets rasta_interrupt() as the interrupt service routine.
The ISR then dispatches received interrupts to the ISR of the respective driver.

1.5 BUILD OPTIONS

Certain parameters in the drivers can only be changed at compile time using defines in the
source code.

Some of them are summarized here.

rasta.c:

#define RASTA_SRAM 1

If RASTA_SRAM is defined the memory controller in the RASTA IF board is configured to use
only

SRAM and map it to 0x40000000. If not defined only the SDRAM is used and mapped to

0x40000000.

grcan_rasta.c:

#define USE_AT697_RAM 0

#define USE_AT697_DMA 1

#define RX_QUEUE_SIZE 1024

If USE_AT697_RAM is defined the RAM on the AT697 board will be used for DMA buffers (but
the RX message queue is always in AT697 ram).

RTEMS-RASTA 7

USE_AT697_DMA specifies whether the messages will be fetched using DMA or PIO.

RX_QUEUE_SIZE defines the number of messages that fits in the RX message queue. On RX
interrupts

the messages in the DMA buffer are copied into the message queue.

b1553brm_rasta.c:

#define EVENT_QUEUE_SIZE 1024

EVENT_QUEUE_SIZE sets the size of the event queue in number of events.

RTEMS-RASTA 8

2 CAN DRIVER INTERFACE (GRCAN)

2.1 USER INTERFACE

The RTEMS CAN driver supports the standard accesses to file descriptors such as read, write
and ioctl. User applications include the grcan driver's header file (grcan.h) which contains
definitions of all necessary data structures and bit masks used when accessing the driver.

2.1.1 Driver registration

The registration of the driver is crucial for threads and processes to be able to access the driver
using standard means, such as open. The function grcan_register whose prototype is provided in
grcan.h is used for registering the driver. It returns 0 on success and 1 on failure. A typical
register call from the initialization routines from a LEON2 Init task:

amba_confarea_type amba_bus;

/* Scan AMBA bus Plug&Play */
amba_scan(&amba_bus,0xfff00000,NULL);

if (grcan_register(&amba_bus))
printf(“GRCAN register Failed\n”);

For LEON3 targets it is enough to call grcan_register directly because the AMBA bus that the
processor is attached to is already scanned by the LEON3 BSP:

if (grcan_register(&amba_conf))
printf(“GRCAN register Failed\n”);

2.1.2 Opening the device

Opening the device enables the user to access the hardware of a certain CAN device. The driver
is used for all GRCAN devices available. The devices are separated by assigning each device a
unique name and a number called minor. The name is passed during the opening of the driver.
The first 3 names are printed out:

Device number Filesystem name

0 /dev/grcan0

1 /dev/grcan1

2 /dev/grcan2

Table 3: Device number to device name conversion.

An example of an RTEMS open call is shown below.

fd = open("/dev/grcan0", O_RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set as
indicated in table 2.

RTEMS-RASTA 9

Errno Description

ENODEV Illegal device name or not available

EBUSY Device already opened

ENOMEM Driver failed to allocate necessary
memory.

Table 4: Open errno values.

2.1.3 Closing the device

The device is closed using the close call. An example is shown below.

res = close(fd)

Close always returns 0 (success) for the grcan driver.

2.1.4 I/O Control interface

Changing the behaviour of the driver for a device is done via the standard system call ioctl. Two
arguments must be provided to ioctl, the first being an integer which selects ioctl function and
secondly a pointer to data that may be interpreted uniquely for each function. A typical ioctl call
definition:

int ioctl(int fd, int cmd, void *arg);

The return value is 0 on success and -1 on failure and the global errno variable is set accordingly.

All supported commands and their data structures are defined in the CAN driver's header file
grcan.h. In functions where only one argument is needed the pointer (void *arg) may be
converted to an integer and interpreted directly, thus simplifying the code.

2.1.4.1 Data structures

The grcan_filter structure is used when changing acceptance filter of the CAN receiver and the
SYNC Rx/Tx Filter.

Note that the two different ioctl commands use this data structure differently.

struct grcan_filter {
 unsigned int mask;
 unsigned int code;
};

RTEMS-RASTA 10

Member Description

code Specifies the pattern to match, only the unmasked bits are used in the
filter.

mask Selects what bits in code will be used or not. A set bit is interpreted as
don't care.

Table 5: grcan_filter member description

The CANMsg struct is used when reading and writing messages. The structure describes the
drivers view of a CAN message. The structure is used for writing and reading. See the
transmission and reception section for more information.

typedef struct {
 char extended;
 char rtr;
 char unused;
 unsigned char len;
 unsigned char data[8];
 unsigned int id;
} CANMsg;

Member Description

extended Indicates whether message has 29 or 11 bits ID tag. Extended or Standard frame.

rtr Remote Transmission Request bit.

len Length of data.

data Message data, data[0] is the most significant byte – the first byte.

Id The ID field of the message. An extended frame has 29 bits whereas a standard
frame has only 11-bits. The most significant bits are not used.

Table 6: CANMsg member description

The grcan_stats data structure contains various statistics gathered by the CAN hardware.

typedef struct {
/* tx/rx stats */
unsigned int passive_cnt;
unsigned int overrun_cnt;
unsigned int rxsync_cnt;
unsigned int txsync_cnt;
unsigned int ints;

} grcan_stats;

RTEMS-RASTA 11

Member Description

passive_cnt Number of error passive mode detected.

overrun_cnt Number of reception over runs.

rxsync_cnt Number of received SYNC messages (matching SYNC filter)

txsync_cnt Number of transmitted SYNC messages (matching SYNC filter)

ints Number of times the interrupt handler has been invoked.

Table 7: grcan_stats member description

The grcan_timing data structure is used when setting the configuration register manually of the
CAN core. The timing parameters are used when hardware generates the baud rate and sampling
points.

struct grcan_timing {
 unsigned char scaler;
 unsigned char ps1;
 unsigned char ps2;
 unsigned int rsj;
 unsigned char bpr;
};

Member Description

scaler Prescaler

ps1 Phase segment 1

ps2 Phase segment 2

rsj Resynchronization jumps, 1..4

bpr Value Baud rate

0 system clock / (scaler+1) / 1

1 system clock / (scaler+1) / 2

2 system clock / (scaler+1) / 4

3 system clock / (scaler+1) / 8

Table 8: grcan_timing member description

The grcan_selection data structure is used to select active channel. Each channel has one
transceiver that can be inactivated or activated using this data structure. The hardware can
however be configured active low or active high making it impossible for the driver to know how
to set the configuration register in order to select a predefined channel.

struct grcan_selection {
 unsigned char selection;
 unsigned char enable0;
 unsigned char enable1;
};

RTEMS-RASTA 12

Member Description

selection Select receiver input and transmitter output.

enable0 Set value of output 1 enable

enable1 Set value of output 1 enable

Table 9: grcan_selection member description

2.1.4.2 Configuration

The CAN core and driver are configured using ioctl calls. The table 9 below lists all supported
ioctl calls. GRCAN_IOC_ must be concatenated with the call number from the table to get the
actual constant used in the code. Return values for all calls are 0 for success and -1 on failure.
Errno is set after a failure as indicated in table 8.

An example is shown below where the driver's read call changes behaviour. After this call the
driver will block the calling thread until free space in the receiver's circular buffer are available:

result = ioctl(fd, GRCAN_IOC_SET_RXBLOCK, 1);

ERRNO Description

EINVAL Null pointer or an out of range value was given as the argument.

EBUSY The CAN hardware is not in the correct state. Many ioctl calls need the CAN
device to be in reset mode. One can switch state by calling START or STOP.

ENOMEM Not enough memory to complete operation. This may cause other ioctl commands
to fail.

ENODEV The call has been aborted by another call or due to a state change. Is returned
when the driver has blocked the calling thread but needs to wake it in order to
avoid a dead lock. This may be due to another thread closing the driver or a
detected hardware error.

Table 10: ERRNO values for ioctl calls

RTEMS-RASTA 13

Call Number Call Mode Description

START Stopped Exit paused mode, brings up the link. Enables read and write.
Called after bus-off or open.

STOP Running Exit operating mode, enter reset mode. Most of the settings can
only be set when in reset mode.

ISSTARTED Don't Care Return error status when not running and success when driver is
in running mode.

FLUSH Running Wait until all messages are transmitted.

SET_SILENT Stopped Enable/disable silent mode, it is possible to read messages but not
write messages to the CAN bus.

SET_ABORT Don't Care Stop or continue on AMBA AHB transaction error.

SET_SELECTION Stopped Redundant channel selection. Pass a pointer to a grcan_selection
data structure when calling this command.

SET_SPEED Stopped Not implemented. (Set baud rate from frequency)

SET_BTRS Stopped Sets timing parameters which control the baud rate using the
grcan_timing data structure.

SET_RXBLOCK Don't Care Set read blocking/non-blocking mode

SET_TXBLOCK Don't Care Set write blocking/non-blocking mode

SET_TXCOMPLETE Don't Care Set option to complete the write request, making write returning
after all data has been written to buffer.
Note: Has an effect only in blocking mode.

SET_RXCOMPLETE Don't Care Set option to complete the read request, making read returning
after requested data has been read to buffer.
Note: Has an effect only in blocking mode.

GET_STATS Don't care Get current statistics collected by driver.

CLR_STATS Don't Care Clear statistics collected by driver.

SET_AFILTER Don't Care Set acceptance filter. Let the second argument to the ioctl
command point to a grcan_filter data structure.

SET_SFILTER Don't Care Set Rx/Tx SYNC filter. Let the second argument to the ioctl
command point to a grcan_filter data structure.

GET_STATUS Don't care Get the status register. Bus off among others can be read out.

Table 11: ioctl calls supported by the CAN driver.

2.1.4.2.1 START

This ioctl command places the CAN core in running mode. Settings previously set by other ioctl
commands are written to hardware just before leaving reset mode. It is necessary to enter
running mode to be able to read or write messages on the CAN bus.

The command will fail if receive or transmit buffers are not correctly allocated or if the CAN core
already is in running mode.

2.1.4.2.2 STOP

This call makes the CAN core leave operating mode and enter reset mode. After calling STOP

RTEMS-RASTA 14

further calls to read and write will result in errors.

It is necessary to enter reset mode to change operating parameters of the CAN core such as the
baud rate and for the driver to safely change configuration such as FIFO buffer lengths.

The command will fail if the CAN core already is in reset mode.

2.1.4.2.3 ISSTARTED

Is used to determine the driver state. Returns the error state EBUSY when the driver is in
stopped mode. It returns 0 and errno is not set when the driver is started.

2.1.4.2.4 FLUSH

This call blocks the calling thread until all messages in the driver's buffers has been processed
by the CAN hardware.

The flush command may fail if the state is changed, the driver is closed, or an error is detected
by hardware. Errno is set to ENODEV to identify such a case.

2.1.4.2.5 SET_SILENT

This command set the SILENT bit in the configuration register of the CAN hardware. If the
SILENT bit is set the CAN core operates in listen only mode. Write calls fails and read calls
proceed.

This call fail if the driver is in running mode. Errno is set to EBUSY when in running mode.

2.1.4.2.6 SET_ABORT

This command set the ABORT bit in the configuration register of the CAN hardware. The ABORT
bit is used to cause the hardware to stop the receiver and transmitter when an AMBA AHB error
is detected by hardware.

This call never fail.

2.1.4.2.7 SET_SELECTION

This command selects active channel used during communication. The SET_SELECTION
command takes a second argument, a pointer to a grcan_selection data structure described in
the data structures section.

This call will fail if the driver is in running mode. The errno variable will be set to EBUSY and -1
is returned from ioctl.

2.1.4.2.8 SET_BTRS

This call sets the timing registers manually. See the CAN hardware documentation for a detailed
description of the timing parameters. The SET_BTRS call takes a pointer to a grcan_timing data
structure containing all available timing parameters. The grcan_timing data structure is
described in the data structure section.

This call fail if the CAN core is in running mode, in that case errno will be set to EBUSY and ioctl
will return -1.

RTEMS-RASTA 15

2.1.4.2.9 SET_RXBLOCK

This call changes the behaviour of read calls to blocking or non-blocking mode. When in blocking
mode the calling thread will be blocked until there is data available to read. It may return after
any number of bytes has been read. Use the RXCOMPLETE for controlling the driver's blocking
mode behaviour further.

For non-blocking mode the calling thread will never be blocked returning a zero length of data.
The RXCOMPLETE has no effect during non-blocking mode.

This call never fails, it is valid to call this command in any mode.

2.1.4.2.10 SET_TXBLOCK

This call changes the behaviour of write calls to blocking or non-blocking mode. When in blocking
mode the calling thread will be blocked until at least one message can be written to the driver's
circular buffer. It may return after any number of messages has been written. Use the
TXCOMPLETE for controlling the driver's blocking mode behaviour further.

For non-blocking mode the calling thread will never be blocked which may result in write
returning a zero length when the driver's internal buffers are full. The TXCOMPLETE has no
effect during non-blocking mode.

This call never fails, it is valid to call this command in any mode.

2.1.4.2.11 SET_TXCOMPLETE

This command disables or enables the write command to block until all messages specified by the
caller are copied to driver's internal buffers before returning.

Note: This option is only relevant in TX blocking mode.

This call never fail.

2.1.4.2.12 SET_RXCOMPLETE

This command disables or enables the read command to block until all messages specified by the
caller are read into the user specified buffer.

Note: This option is only relevant in RX blocking mode.

This call never fail.

2.1.4.2.13 GET_STATS

This call copies the driver's internal counters to a user provided data area. The format of the data
written is described in the data structure subsection. See the grcan_stats data structure.

The call will fail if the pointer to the data is invalid.

2.1.4.2.14 CLR_STATS

Clears the driver's collected statistics.

This call never fail.

RTEMS-RASTA 16

2.1.4.2.15 SET_AFILTER

Set Acceptance filter matched by receiver for every message that is received. Let the second
argument point to a grcan_filter data structure or NULL to disable filtering to let all messages
pass the filter. Messages matching the below function are passed and possible to read from user
space:

(Id XOR Code) AND Mask = 0

This command never fail.

2.1.4.2.16 SET_SFILTER

Set Rx/Tx SYNC filter matched by receiver for every message that is received. Let the second
argument point to a grcan_filter data structure or NULL to disable filtering to let all messages
pass the filter. Messages matching the below function are treated as SYNC messages:

(Id XOR Code) AND Mask = 0

This command never fail.

2.1.4.2.17 GET_STATUS

This call stores the current status of the CAN core to the address pointed to by the argument
given to ioctl. This call is typically used to determine the error state of the CAN core. The 4 byte
status bit mask can be interpreted as in table above.

Mask Description

GRCAN_STAT_PASS Error-passive condition

GRCAN_STAT_OFF Bus-off condition

GRCAN_STAT_OR Overrun during reception

GRCAN_STAT_AHBERR AMBA AHB error

GRCAN_STAT_ACTIVE Transmission ongoing

GRCAN_STAT_RXERRCNT Reception error counter value, 8-bit

GRCAN_STAT_TXERRCNT Transmission error counter value, 8-bit

Table 12: Status bit mask

This call never fail.

2.1.5 Transmission

Transmitting messages are done with the write call. It is possible to write multiple packets in one
call. An example of a write call is shown below:

result = write(fd, &tx_msgs[0], sizeof(CANMsg)*msgcnt));

On success the number of transmitted bytes is returned and -1 on failure. Errno is also set in the
latter case. Tx_msgs points to the beginning of the CANMsg structure which includes id, type of
message, data and data length. The last parameter sets the number of CAN messages that will be
transmitted it must be a multiple of CANMsg structure size.

RTEMS-RASTA 17

The write call can be configured to block when the software fifo is full. In non-blocking mode
write will immediately return either return -1 indicating that no messages were written or the
total number of bytes written (always a multiple of CANMsg structure size). Note that 3 message
write request may end up in only 2 written, the caller is responsible to check the number of
messages actually written in non-blocking mode.

If no resources are available in non-blocking mode the call will return with an error. The errno
variable is set according to the table given below.

ERRNO Description

EINVAL An invalid argument was passed. The buffer length was less than a single
CANMsg structure size.

EBUSY The link is not in operating mode, but in reset mode. Nothing done.

ETIMEDOUT In non-blocking mode

ENODEV Calling task was woken up from blocking mode by a bus off error. The CAN core
has entered reset mode. Further calls to read or write will fail until the ioctl
command START is issued again.

Table 13: ERRNO values for write

Each Message has an individual set of options controlled in the CANMsg structure. See the data
structure subsection for structure member descriptions.

2.1.6 Reception

Reception of CAN messages from the CAN bus can be done using the read call. An example is
shown below:

CANMsg rx_msgs[5];

len = read(fd, rx_msgs, sizeof(rx_msgs));

The requested number of bytes to be read is given in the third argument. The messages will be
stored in rx_msgs. The actual number of received bytes (a multiple of sizeof(CANMsg)) is
returned by the function on success and -1 on failure. In the latter case errno is also set.

The CANMsg data structure is described in the data structure subsection.

The call will fail if a null pointer is passed, invalid buffer length, the CAN core is in stopped mode
or due to a bus off error in blocking mode.

The blocking behaviour can be set using ioctl calls. In blocking mode the call will block until at
least one message has been received. In non-blocking mode, the call will return immediately and
if no message was available -1 is returned and errno set appropriately. The table below shows the
different errno values returned.

RTEMS-RASTA 18

ERRNO Description

EINVAL A NULL pointer was passed as the data pointer or the length was illegal.

EBUSY CAN core is in reset mode. Swtich to operating mode by issuing a START ioctl
command.

ETIMEDOUT In non-blocking mode no messages were available in the software receive
FIFO.

EIO A blocking read was interrupted by a bus off error. The CAN core has entered
reset mode. Further calls to read or write will fail until the ioctl command
START is issued again.

Table 14: ERRNO values for read calls.

RTEMS-RASTA 19

3 Gaisler B1553BRM DRIVER (BRM)

3.1 INTRODUCTION

This document is intended as an aid in getting started developing with Gaisler GRLIB B1553BRM
core using the driver described in this document. It briefly takes the reader through some of the
most important steps in using the driver such as setting up a connection, configuring the driver,
reading and writing messages between Bus Controllers (BC), Remote Terminals (RT) and Bus
Monitors (BM). The reader is assumed to be well acquainted with MIL-STD-1553 and RTEMS.

3.1.1 BRM Hardware

See the B1553BRM Hardware manual available at www.gaisler.com.

3.1.2 Software Driver

The driver provides means for processes and threads to send, receive and monitor messages.

The driver supports three different operating modes:

• Bus Controller
• Remote Terminal
• Bus monitor

3.1.3 Supported OS

Currently the driver is available for RTEMS.

3.1.4 Examples

There is a simple example available it illustrates how to set up a connection between a BC and a
RT monitored by a BM. The BC sends the RT receive and transmit messages for a number of
different sub addresses. The BM is set up to print messages from the BC and the RT. To be able
to run the example one must have at least two boards connected together via the B1553BRM
interfaces. To fully run the example three BRM boards is needed.

The example is part of the Gaisler RTEMS distribution, it can be found under /opt/rtems-
4.6/src/examples/samples/rtems-brm.c, brm_lib.c and brm_lib.h.

The example can be built by running:

cd /opt/rtems-4.6/src/examples/samples
make clean rtems-brm_rt rtems-brm_bc rtems-brm_bm

3.2 USER INTERFACE

The RTEMS MIL-STD-1553 B BRM driver supports standard accesses to file descriptors such as
read, write and ioctl. User applications include the brm driver's header file which contains
definitions of all necessary data structures and bit masks used when accessing the driver. An
example application using the driver is provided in the examples directory.

The driver for the MIL-STD-1553 B BRM has three different operating modes, Remote Terminal,
Bus Controller or Bus Monitor. It defaults to Remote Terminal (RT) with address 1, MIL-STD-

RTEMS-RASTA 20

1553 B standard, both buses enabled, and broadcasts enabled. The operating mode and settings
can be changed with ioctl calls as described later.

3.2.1 Driver registration

The registration of the driver is crucial for threads and processes to be able to access the driver
using standard means, such as open. The function brm_register whose prototype is provided in
brm.h is used for registering the driver. It returns 0 on success and 1 on failure. A typical
register call from a LEON3 Init task:

if (brm_register(&amba_conf,2,0,3))
printf(“BRM register Failed\n”);

The first argument is a pointer to the AMBA bus, the rest of the parameters are used to control
the clocking of the BRM device. See table below for a description.

Arg No Arg Name Description

1 bus pointer to a scanned AMBA bus, always &amba_conf.

2 clksel Selects clock source (input value to the clock MUX)

3 clkdiv Selects clock prescaler, may not be available for all clock sources

4 brm_freq The input clock frequency to the BRM core. 0 = 12MHz, 1 = 16MHz, 2=
20MHz, 3 = 24MHz.

Table 15: brm_register argument description

During the registration process all BRM devices in the system will be registered as indicated in
table 16. The registration function is called once.

3.2.2 Opening the device

Opening the device enables the user to access the hardware of a certain BRM device. The driver
is used for all BRM devices available. The devices is separated by assigning each device a unique
name and a number called minor. The name is passed during the opening of the driver. The first
3 names are printed out:

Device number Filesystem name

0 /dev/brm0

1 /dev/brm1

2 /dev/brm2

Table 16: Device number to device name conversion.

An example of an RTEMS open call is shown below.

fd = open("/dev/brm0", O_RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set as
indicated in table .

RTEMS-RASTA 21

Errno Description

ENODEV Illegal device name or not available

EBUSY Device already opened

Table 17: Open errno values.

3.2.3 Closing the device

The device is closed using the close call. An example is shown below.

res = close(fd)

Close always returns 0 (success) for the brm driver.

3.2.4 I/O Control interface

Changing the behaviour of the driver for a device is done via the standard system call ioctl. Most
operating systems support at least two arguments to ioctl, the first being an integer which
selects ioctl function and secondly a pointer to data that may be interpreted uniquely for each
function. A typical ioctl call definition:

int ioctl(int fd, int cmd, void *arg);

The return value is 0 on success and -1 on failure and the global errno variable is set accordingly.

All supported commands and their data structures are defined in the BRM driver's header file
brm.h. In functions where only one argument is needed the pointer (...,void *arg) may be
converted to an integer and interpreted directly, thus simplifying the code.

3.2.4.1 Data structures

3.2.4.1.1 Remote Terminal operating mode

The structure below is used for RT operating mode for all received events as well as to put data
in the transmit buffer.

struct rt_msg {
 unsigned short miw;
 unsigned short time;
 unsigned short data[32];
 unsigned short desc;
};

RTEMS-RASTA 22

Member Description

miw Message Information Word.

Bit(s) Description

15-11 Word count / mode code - For subaddresses this is the number of
received words. For mode codes it is the receive/transmit mode
code.

10 -

9 A/B - 1 if message receive on bus A, 0 if received on bus B.

8 RTRT - 1 if message is part of an RT to RT transfer

7 ME - 1 if an error was encountered during message processing. Bit
4-0 gives the details of the error.

6-5 -

4 ILL - 1 if received command is illegalized.

3 TO - If set, the number of received words was less than the amount
specified by the word count.

2 OVR - If set, the number of received words was more than amount
specified by the word count.

1 PRTY - 1 if the RT detected a parity error in the received data.

0 MAN - 1 if a Manchester decoding error was detected during data
reception.

time Time Tag - Contains the value of the internal timer register when the message
was received.

data An array of 32 16 bit words. The word count specifies how many data words
that are valid. For receive
mode codes with data the first data word is valid.

desc Bit 6-0 is the descriptor used.

Table 18: rt_msg member descriptions.

The last variable in the struct rt_msg shows which descriptor (i.e rx subaddress, tx subaddress,
rx mode code or tx mode code) that the message was for. They are defined as shown in the table
below:

RTEMS-RASTA 23

Descriptor Description

0 Reserved for RX mode codes

1-30 Receive subaddress 1-30

31 Reserved for RX mode codes

32 Reserved for TX mode codes

33-62 Transmit subaddress 1-30

63 Reserved for TX mode codes

64-95 Receive mode code

96-127 Transmit mode code

Table 19: Descriptor table

If there has occurred an event queue overrun bit 15 of this variable will be set in the first event
read out. All events received when the queue is full are lost.

3.2.4.1.2 Bus Controller operating mode

When operating as BC the command list that the BC is to process is described in an array of BC
messages as defined by the struct bc_msg.

RTEMS-RASTA 24

struct bc_msg {
 unsigned char rtaddr[2];
 unsigned char subaddr[2];
 unsigned short wc;
 unsigned short ctrl;
 unsigned short tsw[2];
 unsigned short data[32];
};

Member Description

rtaddr Remote terminal address - For non RT to RT message only rtaddr[0] is used. It specifies
the address of the remote terminal to which the message should be sent.
For RT to RT messages rtaddr[0] specifies the receive address and rtaddr[1] the transmit
address.

subaddr The subaddr array works in the same manner as rtaddr but for the subaddresses.

wc Word Count - Specifies the word count, or mode code if subaddress is 0 or 31.

ctrl Bit(s) Description

15 Message Error. Set by BRM while traversing list if protocol error is
detected.

14-6 -

5 END. Indicates end of list

4-3 Retry, Number of retries, 0=4, 1=1, 2=2, 3=3. BC will alternate buses
during retries.

2 AB, 1 – Bus B, 0 - Bus A

1 1 RT to RT

0 normal

0 0 RT Transmit

1 RT receive (ignored for RT to RT)

tsw Status words

data Data in message, not used for RT receive (ctrl.0 = 1).

Table 20: struct bc_msg member description

3.2.4.1.3 Bus Monitor operating mode

The structure below is used for BM operating mode for all received events as well as to put data
in the transmit buffer.

RTEMS-RASTA 25

struct bm_msg {
 unsigned short miw;
 unsigned short cw1;
 unsigned short cw2;
 unsigned short sw1;
 unsigned short sw2;
 unsigned short time;
 unsigned short data[32];
};

Member Description

miw Bit(s) Description

15 Overrun- Indicates that the monitor message queue has been overrun.

14-10 -

9 Channel A/B -1 if message captured on bus A, 0 if captured on bus B.

8 RT to RT transfer - 1 if message is part of an RT to RT transfer

7 Message Error - 1 if an error was encountered during message processing.
Bit 4-0 gives the details of the error.

6 Mode code without data - 1 if a mode code without data word was captured.

5 Broadcast - 1 if a broadcast message was captured.

4 -

3 Time out - If set, the number of captured data words was less than the
amount specified by the word count.

2 Overrun -If set, the number of captured data words was more than amount
specified by the word count.

1 Parity- 1 if the BM detected a parity error in the received data.

0 Manchester error - 1 if a Manchester decoding error was detected during
data reception.

cw1 1553 Command word 1

cw2 1553 Command word 2, only used for RT to RT transfers and then holds the transmit
command.

sw1 1553 Status word 1

sw2 1553 Status word 2, is only used for RT to RT transfers and then holds the status word
from the transmitting RT.

time Time tag (time) Contains the value of the internal timer register when the message was
captured.

data An array of 32 16 bit words. The command word specifies how many data words that are
valid. For receive mode codes with data the first data word is valid.

Table 21: struct bm_msg member description

3.2.5 Configuration

The BRM core and driver are configured using ioctl calls. The table 17 below lists all supported
ioctl calls. BRM_ should be concatenated with the call number from the table to get the actual
constant used in the code. Return values for all calls are 0 for success and -1 on failure. Errno is
set after a failure as indicated in table 18.

RTEMS-RASTA 26

An example is shown below where the operating mode is set to Bus Controller (BC) by using an
ioctl call:

unsigned int mode = BRM_MODE_BC;
result = ioctl(fd, BRM_SET_MODE, &mode);

ERRNO Description

EINVAL Null pointer or an out of range value was given as the argument.

EBUSY The BRM hardware is not in the correct state to accept this command. Errno is
set to EBUSY when issuing a BRM_DO_LIST before the last BRM_DO_LIST
command has finished its execution.

ENOMEM Not enough memory for driver to complete request.

Table 22: ERRNO values for ioctl calls.

Call Number Description ERRNO

SET_MODE Set operating mode (0=BC, 1=RT, 2=BM) EINVAL, ENOMEM

SET_BUS Enable/disable buses

SET_MSGTO Set message timeout

SET_RT_ADDR Get Remote Terminal address

SET_STD Get bus standard

SET_BCE Enable/disable broadcasts

TX_BLOCK Set blocking/non-blocking mode for RT write calls and BC
DO_LIST commands.

RX_BLOCK Set blocking/non-blocking mode for RT and BM read calls

CLR_STATUS Clear status flag

GET_STATUS Read status flag EINVAL

SET_EVENTID Set event id

DO_LIST Execute list (BC mode) EINVAL, EBUSY

LIST_DONE Wait for list to finish execution (BC mode) EINVAL, EBUSY

Table 23: ioctl calls supported by the BRM driver.

All ioctl requests takes as parameter the address to an unsigned int where data will be read from
or written to depending on the request.

There are two more ioctl requests but they are not for configuration and are described later in
Bus Controller Operation.

3.2.5.1 SET_MODE

Sets the operating mode of the BRM. Data should be 0 for BC, 1 for RT and 2 for BM.

RTEMS-RASTA 27

3.2.5.2 SET_BUS

For RT mode only. Sets which buses that are enabled.

0 - none, 1 - bus B, 2 - bus A and 3 both bus A and B.

3.2.5.3 SET_MSGTO

For BC and BM mode. Sets the RT no response time out. If in MIL-STD-1553 B mode it is either
14 us or 30 us. In MIL-STD-1553 A mode either 9 us or 21 us.

3.2.5.4 SET_RT_ADDR

Sets the remote address for the RT. 0 - 30 if broadcasts enabled, 0 - 31 otherwise.

3.2.5.5 BRM_SET_STD

Sets the bus standard. 0 for MIL-STD-1553 B, 1 for MIL-STD-1553 A.

3.2.5.6 BRM_SET_BCE

Enable/disable broadcasts. 1 enables them, 0 disables.

3.2.5.7 BRM_TX_BLOCK

Set blocking/non blocking mode for RT write calls and BC ioctls. Blocking is default.

3.2.5.8 BRM_RX_BLOCK

Set blocking/non blocking mode for RT read calls. Blocking is default.

3.2.5.9 BRM_CLR_STATUS

Clears status bit mask. No input is needed it always succeeds.

3.2.5.10 BRM_GET_STATUS

Reads the status bit mask. The status bit mask is modified when an error interrupt is received.
This ioctl command can be used to poll the error status by setting the argument to an unsigned
int pointer.

RTEMS-RASTA 28

Bit(s) Description Modes

31-16 The last descriptor that caused an error. Is not set for hardware
errors.

BC, RT

BRM_DMAF_IRQ DMA Fail all

BRM_WRAPF_IRQ Wrap Fail BC, RT

BRM_TAPF_IRQ Terminal Address Parity Fail RT

BRM_MERR_IRQ Message Error all

BRM_RT_ILLCMD_IRQ Illegal Command RT

BRM_BC_ILLCMD_IRQ Illogical Command BC

BRM_ILLOP_IRQ Illogical Opcode BC

Table 24: Status bit mask

3.2.5.11 BRM_SET_EVENTID

Sets the event id to an event id external to the driver. It is possible to stop the event signalling by
setting the event id to zero.

When the driver notifies the user (using the event id) the bit mask that caused the interrupt is
sent along as an argument. Note that it may be different from the status mask read with
BRM_GET_STATUS since previous error interrupts may have changed the status mask. Thus
there is no need to clear the status mask after an event notification if only the notification
argument is read.

See table 15 for the description of the notification argument.

3.2.6 Remote Terminal operation

When operating as Remote Terminal (RT) the driver maintains a receive event queue. All events
such as receive commands, transmit commands, broadcasts, and mode codes are put into the
event queue. Each event is described using a struct rt_msg as defined earlier in the data
structure subsection.

The events are read of the queue using the read() call. The buffer should point to the beginning
of one or several struct rt_msg. The number of events that can be received is specified with the
length argument. E.g:

struct rt_msg msg[2];
n = read(brm_fd, msg, 2);

The above call will return the number of events actually placed in msg. If in non-blocking mode -1
will be returned if the receive queue is empty and errno set to EBUSY. Note that it is possible
also in blocking mode that not all events specified will be received by one call since the read call
will seize to block as soon as there is one event available.

What kind of event that was received can be determined by looking at the desc member of a
rt_msg. It should be interpreted according to table 8. How the rest of the fields should be
interpreted depends on what kind of event it was, e.g if the event was a reception to subaddress
1 to 30 the word count field in the message information word gives the number of received words
and the data array contains the received data words.

To place data in the transmit buffers the write() call is used. The buffer should point to the

RTEMS-RASTA 29

beginning of one or several struct rt_msg. The number of messages is specified with the length
argument. E.g:

struct rt_msg msg;
msg.desc = 33; /* transmit for subaddress 1 */
msg.miw = (16 << 11) | (1 << 9) /* 16 words on bus A */
msg.data[0] = 0x1234;
...
msg.data[15] = 0xAABB;
n = write(brm_fd, msg, 1);

The number of messages actually placed in the transmit queue is returned. If the device is in
blocking mode it will block until there is room for at least one message. When the buffer is full
and the device is in non-blocking mode -1 will be returned and errno set to EBUSY. Note that it is
possible also in blocking mode that not all messages specified will be transmitted by one call
since the write call will seize to block as soon as there is room for one message.

The transmit buffer is implemented as a circular buffer with room for 8 messages with 32 data
words each. Each write() call appends a message to the buffer.

3.2.7 Bus Controller operation

To use the BRM as Bus Controller one first has to use an ioctl() call to set BC mode. Command
lists that the BC should process are then built using arrays of struct bc_msg described earlier in
the data structure subsection. To start the list processing the ioctl() request BRM_DO_LIST is
used. The ioctl() request BRM_LIST_DONE is used to check when the list processing is done. It
returns 1 in the supplied argument if operation has finished. Note that BRM_LIST_DONE must be
called before traversing the list to check results since this operation also copies the results into
the array. Errno is set to EBUSY when issuing a BRM_DO_LIST before the last BRM_DO_LIST
command has finished its execution.

Example use:

struct bc_msg msg[2];
int done, data, k;

data = 0;
ioctl(brm_fd, BRM_SET_MODE, &data); /* set BC mode */

bc_msg[0].rtaddr[0] = 1;
bc_msg[0].subaddr[0] = 1;
bc_msg[0].wc = 32;
bc_msg[0].ctrl = BC_BUSA; /* rt receive on bus a */

for (k = 0; k < 32; k++)
 bc_msg[0].data[k] = k;

bc_msg[1].ctrl |= BC_EOL; /* end of list */

ioctl(brm_fd, BRM_DO_LIST, bc_msg);

ioctl(brm_fd, BRM_LIST_DONE, &done);

If in blocking mode the BRM_LIST_DONE ioctl will block until the BC has processed the list.

RTEMS-RASTA 30

When the BC is finished and BRM_LIST_DONE has returned 1 in the argument the status words
and received data can be interpreted by the application. During blocking mode BRM_LIST_DONE
may set errno to EINVAL if an illogical opcode or an illogical command is detected by the
hardware during the list execution.

3.2.8 Bus monitor operation

When operating as Bus Monitor (BM) the driver maintains a capture event queue. All events such
as receive commands, transmit commands, broadcasts, and mode codes are put into the event
queue. Each event is described using a struct bm_msg as defined in the data structure
subsection.

The events are read of the queue using the read() call. The buffer should point to the beginning
of one or several struct bm_msg. The number of events that can be received is specified with the
length argument. E.g:

struct bm_msg msg[2];
n = read(brm_fd, msg, 2);

The above call will return the number of events actually placed in msg. If in non-blocking mode -1
will be returned if the receive queue is empty and errno set to EBUSY. Note that it is possible
also in blocking mode that not all events specified will be received by one call since the read call
will seize to block as soon as there is one event available.

RTEMS-RASTA 31

4 RAW UART DRIVER INTERFACE (APBUART)

4.1 USER INTERFACE

The RTEMS "Raw" UART driver supports the standard accesses to file descriptors such as read,
write and ioctl. User applications include the apbuart driver's header file (apbuart.h) which
contains definitions of all necessary data structures and bit masks used when accessing the
driver.

The UART driver is an interrupt driven "raw" character stream driver with the ability to add a
"carriage return" (\r in C) after a "new line" (\n in C) has been detected in the output stream.

The UART interrupt handler copies received characters to a receive FIFO buffer placed in RAM
to avoid overruns. Characters are then read from the RAM buffer by calling read.

Writing a number of characters when the hardware transmitter is full results in that the driver
puts the characters into a software FIFO buffer located in RAM to be sent later on by the
transmitter interrupt handler.

4.1.1 Driver registration

The registration of the driver is crucial for threads and processes to be able to access the driver
using standard means, such as open. The function apbuart_register whose prototype is provided
in apbuart.h is used for registering the driver. It returns 0 on success and 1 on failure. A typical
register call from the initialization routines from a LEON2 Init task:

amba_confarea_type amba_bus;

/* Scan AMBA bus Plug&Play */
amba_scan(&amba_bus,0xfff00000,NULL);

if (apbuart_register(&amba_bus))
printf(“APBUART register Failed\n”);

For LEON3 targets it is enough to call apbuart_register directly because the AMBA bus that the
processor is attached to is already scanned by the LEON3 BSP:

if (apbuart_register(&amba_conf))
printf(“APBUART register Failed\n”);

4.1.2 Opening the device

Opening the device enables the user to access the hardware of a certain APBUART device. The
driver is used for all APBUART devices available. The devices are separated by assigning each
device a unique name and a number called minor. The name is passed during the opening of the
driver. The first 3 names are printed out:

RTEMS-RASTA 32

Device number Filesystem name

0 /dev/apbuart0

1 /dev/apbuart1

2 /dev/apbuart2

Table 25: Device number to device name conversion.

An example of an RTEMS open call is shown below.

fd = open("/dev/apbuart0", O_RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set as
indicated in table 25.

Errno Description

ENODEV Illegal device name or not available

EBUSY Device already opened

ENOMEM Driver failed to allocate necessary
memory.

Table 26: Open errno values.

4.1.3 Closing the device

The device is closed using the close call. An example is shown below.

res = close(fd)

Close always returns 0 (success) for the apbuart driver.

4.1.4 I/O Control interface

Changing the behaviour of the driver for a device is done via the standard system call ioctl. Two
arguments must be provided to ioctl, the first being an integer which selects ioctl function and
secondly a pointer to data that may be interpreted uniquely for each function. A typical ioctl call
definition:

int ioctl(int fd, int cmd, void *arg);

The return value is 0 on success and -1 on failure and the global errno variable is set accordingly.

All supported commands and their data structures are defined in the UART driver's header file
apbuart.h. In functions where only one argument is needed the pointer (void *arg) may be
converted to an integer and interpreted directly, thus simplifying the code.

4.1.4.1 Configuration

The UART core and driver are configured using ioctl calls. The table 27 below lists all supported
ioctl calls. APBUART_IOC_ must be concatenated with the call number from the table to get the

RTEMS-RASTA 33

actual constant used in the code. Return values for all calls are 0 for success and -1 on failure.
Errno is set after a failure as indicated in table 26.

An example is shown below where the driver's read call changes behaviour. After this call the
driver will block the calling thread until free space in the receiver's circular buffer are available:

result = ioctl(fd, APBUART_IOC_SET_BAUDRATE, 115200);

ERRNO Description

EINVAL Null pointer or an out of range value was given as the argument.

EBUSY The APBUART hardware is not in the correct state. ioctl calls may need the UART
to be in stopped mode to function correctly. One can switch state by calling
START or STOP.

ENOMEM Not enough memory to complete operation. This may cause other ioctl commands
to fail.

Table 27: ERRNO values for ioctl calls

Call Number Call Mode Description

START Stopped Exit paused mode, brings enables receiver and transmitter.
Enables read and write.

STOP Running Exit operating mode. Disables read and write, but enables user to
change FIFO depth.

SET_RX_FIFO_LEN Stopped Sets software receiver FIFO length in number of bytes.

SET_TX_FIFO_LEN Stopped Sets software transmitter FIFO length in number of bytes.

SET_BAUDRATE Don't Care Sets baud rate of a UART channel.

SET_SCALER Don't Care Sets the baud rate manually by setting the scaler register of the
APBUART core.

SET_BLOCKING Don't Care Set receive (read), transmit (write) blocking mode and TX-Flush
mode which blocks until all characters have bee put into software
transmit FIFO.

GET_STATS Don't Care Store UART driver statistics to a user defined buffer.

CLR_STATS Don't Care Resets the statistic counters.

SET_ASCII_MODE Don't Care Set/unset ASCII mode. When ASCII mode is enabled a new line is
replaced with a new line and a carriage return. '\n' => '\n\r'

Table 28: ioctl calls supported by the APBUART driver.

4.1.4.1.1 START

This ioctl command enables the receiver and transmitter of the UART core. Settings previously
set by other ioctl commands are written to hardware just before entering running mode. It is
necessary to enter running mode to be able to read or write to/from the UART.

The command will fail if software receive or transmit buffers are not correctly allocated or if the
UART driver already is in running mode.

RTEMS-RASTA 34

4.1.4.1.2 STOP

This call makes the UART hardware leave running mode and enter stopped mode. After calling
STOP further calls to read and write will result in errors.

It is necessary to enter stopped mode to change operating parameters of the UART driver to
safely change configuration such as FIFO buffer lengths.

The command will fail if the driver already is in stopped mode.

4.1.4.1.3 SET_RXFIFO_LEN

Sets the software receive FIFO length. The argument specifies the number of bytes for the new
RX FIFO buffer.

This command may return ENOMEM if not enough memory was available to complete the
request, this will make calls to START fail until a new buffer is allocated with
SET_RX_FIFO_LEN.

4.1.4.1.4 SET_TX_FIFO_LEN

Sets the software transmit FIFO length. The argument specifies the number of bytes for the new
TX FIFO buffer.

This command may return ENOMEM if not enough memory was available to complete the
request, this will make calls to START fail until a new buffer is allocated with
SET_TX_FIFO_LEN.

4.1.4.1.5 SET_BAUDRATE

Sets the baud rate of the UART hardware by specifying the rate in number of bits/second as
argument. The SCALER register of the UART hardware is calculated by the driver using the
UART core frequency and the requested baud rate.

This command fails if an out of range baud rate is given, maximum 115200 bits/second.

4.1.4.1.6 SET_SCALER

Makes it possible for the user to set the baud rate of the UART hardware manually. The UART
SCALER register is documented in the IP Core manual. The new scaler register value is given as
argument to this command.

4.1.4.1.7 SET_BLOCKING

Sets receive, transmit or transmit flush blocking mode. The argument to SET_BLOCKING is a
bitmask as described in the table below.

Bit mask name Function

BLK_RX If set, enables blocking mode for read calls.

BLK_TX If set, enables blocking mode for write calls.

BLK_FLUSH If set, enables TX Flush mode. Blocks thread calling write until all requested data
has been put into hardware transmission FIFO or software transmit FIFO.

Table 29: SET_BLOCKING Argument Bit Mask

RTEMS-RASTA 35

4.1.4.1.8 GET_STATS

Stores the current driver statistics counters to a user defined data area. A pointer to the data
area must be provided as argument. -1 will be returned and errno set to EINVAL if a invalid
pointer is given.

4.1.4.1.9 CLR_STATS

Resets drivers statistics counters.

4.1.4.1.10 SET_ASCII_MODE

Sets ASCII mode of the driver. A non-zero argument enabled ASCII mode. In ASCII mode a "new
line" character is replace with a "carriage return" and a "new line". This makes it easier to work
with terminals.

4.1.5 Transmission

Transmitting characters to the UART serial line can be done with the write call. It is possible to
write multiple bytes in one call. An example of a write call is shown below:

result = write(fd, &buffer[0], sizeof(buffer));

On success the number of transmitted bytes is returned and -1 on failure. Errno is also set in the
latter case. buffer points to the beginning of the character byte array. The last parameter sets the
number of bytes taken from buffer that will be transmitted.

The write call can be configured to block when the software FIFO is full. In non-blocking mode
write will immediately return either return -1 indicating that no data were written or the total
number of bytes written are returned. Note that a write request of 3 characters may end up in
only 2 written, the caller is responsible to check the number of messages actually written.

If no resources are available the call will return with an error in non-blocking mode. The errno
variable is set according to the table given below.

ERRNO Description

EINVAL An invalid argument was passed. The buffer length was less than a single
CANMsg structure size.

EBUSY The link is not in operating mode, but in reset mode. Nothing done.

ETIMEDOUT In non-blocking mode and driver was unable to put any bytes into the software
transmit FIFO or the hardware transmit buffer.

Table 30: ERRNO values for write

4.1.6 Reception

Reception of characters from the UART serial line can be done using the read call. An example is
shown below:

RTEMS-RASTA 36

char buffer[16];

len = read(fd, buffer, 16);

The requested number of bytes to be read is given in the third argument. The received bytes will
be stored in buffer. The actual number of received bytes is returned by the function on success
and -1 on failure. In the latter case errno is also set.

The call will fail if a null pointer is passed, invalid buffer length, the UART core is in stopped
mode or because the UART receive FIFO is empty in non-blocking mode.

The blocking behaviour can be set using ioctl calls. In blocking mode the call will block until at
least one byte has been received. In non-blocking mode, the call will return immediately and if no
message was available -1 is returned and errno set appropriately. The table below shows the
different errno values returned.

ERRNO Description

EINVAL A NULL pointer was passed as the data pointer or the length was illegal.

EBUSY CAN core is in reset mode. Switch to started mode by issuing a START ioctl
command.

ETIMEDOUT In non-blocking mode no messages were available in the software receive
FIFO.

Table 31: ERRNO values for read calls.

RTEMS-RASTA 37

5 Gaisler SpaceWire (GRSPW)

5.1 INTRODUCTION

This document is intended as an aid in getting started developing with Gaisler GRSPW
SpaceWire core using the GRSPW driver for RTEMS. It briefly takes the reader through some of
the most important steps in using the driver such as setting up a connection, configuring the
driver, reading and writing packets. The reader is assumed to be well acquainted with SpaceWire
and RTEMS.

See the GRLIB IP Core User's Manual for GRSPW hardware details.

5.1.1 Software driver

The driver provides means for processes and threads to send and receive packets. Link errors
can be detected by polling or by using a dedicated task sleeping until a link error is detected.

The driver is somewhat similar to an Ethernet driver. However, an Ethernet driver is referenced
by an IP stack layer. The IP stack can detect missing or erroneous packets, since the user talks
directly with the GRSPW driver it is up to the user to handle errors. The driver aims to be fully
user space controllable in contrast to Ethernet drivers.

5.1.2 Examples

There is a example of how to use the GRSPW driver distributed together with the driver. The
example demonstrates some fundamental approaches to access and use the driver. It is made up
of two tasks communicating with each other through two SpaceWire devices. To be able to run
the example one must have two GRSPW devices connected together on the same board or two
boards with at least one GRSPW core on each board.

5.1.3 Support

For support, contact the Gaisler Research support team at support@gaisler.com

5.2 USER INTERFACE

The RTEMS GRSPW driver supports the standard accesses to file descriptors such as read, write
and ioctl. User applications should include the grspw driver's header file which contains
definitions of all necessary data structures used when accessing the driver. The RTEMS GRSPW
sample is called rtems-spwtest-2boards.c and it is provided in the Gaisler Research RTEMS
distribution.

5.2.1 Driver registration

The registration of the driver is crucial for threads and processes to be able to access the driver
using standard means, such as open. The registration is performed by a call to grspw_register
with appropriate arguments. The function grspw_register whose prototype is provided in grspw.h
returns 0 on success and 1 on failure. The function takes one argument, a pointer to a data
structure describing the AMBA PnP bus that the driver should expect the GRSPW core to be
found. For LEON3 systems this is almost always &amba_conf. However, if the GRSPW is attached
to an external AMBA bus for example on another chip accessed over PCI one need to create
another data structure describing that bus. The function amba_scan is used to scan AMBA buses,

mailto:support@gaisler.com

RTEMS-RASTA 38

it is used in the RASTA and the Companion Chip drivers for example.

5.2.2 Opening the device

Opening the device enables the user to access the hardware of a certain GRSPW device. Open
reset the SpaceWire core and reads reset values of certain registers. With the ioctl command
START it is possible to wait for the link to enter run state. The same driver is used for all GRSPW
devices available. The devices are separated by assigning each device a unique name, the name
is passed during the opening of the driver. The first 3 names are printed out:

Device number Filesystem name

0 /dev/grspw0

1 /dev/grspw1

2 /dev/grspw2

Table 32: Device number to device name conversion.

An example of an RTEMS open call is shown below.

fd = open("/dev/grspw0", O_RDWR)

A file descriptor is returned on success and -1 otherwise. In the latter case errno is set as
indicated in table 32.

Errno Description

EINVAL Illegal device name or not available

EBUSY Device already opened

EIO Error when writing to grspw registers.

Table 33: Open errno values.

5.2.3 Closing the device

The device is closed using the close call. An example is shown below.

res = close(fd)

Close always returns 0 (success) for the SpaceWire driver.

5.2.4 I/O Control interface

Changing the behaviour of the driver for a device is done via the standard system call ioctl. Most
operating systems support at least two arguments to ioctl, the first being an integer which
selects ioctl function and secondly a pointer to data that may be interpreted uniquely for each
function. A typical ioctl call definition:

int ioctl(int fd, int cmd, void *arg);

The return value is 0 on success and -1 on failure and the global errno variable is set accordingly.

RTEMS-RASTA 39

The commands may differ slightly between the operating systems but is mainly the same. The
unique ioctl commands are described last in this section.

All supported commands and their data structures are defined in the GRSPW driver's header file
grspw.h. In functions where only one argument in needed the pointer (void *arg) may be
converted to an integer and interpreted directly, thus simplifying the code.

5.2.4.1 Data structures

The spw_ioctl_packetsize data structure is used when changing the size of the driver's receive
and transmit buffers.

typedef struct {
 unsigned int rxsize;
 unsigned int txdsize;
 unsigned int txhsize;
} spw_ioctl_packetsize;

Member Description

rxsize Sets the size of the receiver descriptor buffers.

txdsize Sets the size of the transmitter data buffers.

txhsize Sets the size of the transmitter header buffers.

Table 34: spw_ioctl_packetsize member descriptions.

The spw_ioctl_pkt_send struct is used for transmissions through the ioctl call. Se the
transmission section for more information. The sent variable is set by the driver when returning
from the ioctl call while the other are set by the caller.

typedef struct {
 unsigned int hlen;
 char *hdr;
 unsigned int dlen;
 char *data;
 unsigned int sent;
} spw_ioctl_pkt_send;

Member Description

hlen Number of bytes that shall be transmitted from the header buffer

hdr Pointer to the header buffer.

dlen Number of bytes that shall be transmitted from the data buffer.

data Pointer to the data buffer.

sent Number of bytes transmitted.

Table 35: spw_ioctl_pkt_send member descriptions.

RTEMS-RASTA 40

The spw_stats struct contains various statistics gathered from the GRSPW.

typedef struct {
 unsigned int tx_link_err;
 unsigned int rx_rmap_header_crc_err;
 unsigned int rx_rmap_data_crc_err;
 unsigned int rx_eep_err;
 unsigned int rx_truncated;
 unsigned int parity_err;
 unsigned int escape_err;
 unsigned int credit_err;
 unsigned int write_sync_err;
 unsigned int disconnect_err;
 unsigned int early_ep;
 unsigned int invalid_address;
 unsigned int packets_sent;
 unsigned int packets_received;
} spw_stats;

Member Description

tx_link_err Number of link-errors detected during transmission.

rx_rmap_header_crc_err Number of RMAP header CRC errors detected in received
packets.

rx_rmap_data_crc_err Number of RMAP data CRC errors detected in received packets.

rx_eep_err Number of EEPs detected in received packets.

rx_truncated Number of truncated packets received.

parity_err Number of parity errors detected.

escape_err Number of escape errors detected.

credit_err Number of credit errors detected.

write_sync_err Number of write synchronization errors detected.

disconnect_err Number of disconnect errors detected.

early_ep Number of packets received with an early EOP/EEP.

invalid_address Number of packets received with an invalid destination address.

packets_sent Number of packets transmitted.

packets_received Number of packets received.

Table 36: spw_stats member descriptions.

The spw_config structure holds the current configuration of the GRSPW.

RTEMS-RASTA 41

typedef struct {
 unsigned int nodeaddr;
 unsigned int destkey;
 unsigned int clkdiv;
 unsigned int rxmaxlen;
 unsigned int timer;
 unsigned int disconnect;
 unsigned int promiscuous;
 unsigned int timetxen;
 unsigned int timerxen;
 unsigned int rmapen;
 unsigned int rmapbufdis;
 unsigned int linkdisabled;
 unsigned int linkstart;

 unsigned int check_rmap_err;
 unsigned int rm_prot_id;
 unsigned int tx_blocking;
 unsigned int tx_block_on_full;
 unsigned int rx_blocking;
 unsigned int disable_err;
 unsigned int link_err_irq;
 rtems_id event_id;

 unsigned int is_rmap;
 unsigned int is_rxunaligned;
 unsigned int is_rmapcrc;
} spw_config;

RTEMS-RASTA 42

Member Description

nodeaddr Node address.

destkey Destination key.

clkdiv Clock division factor.

rxmaxlen Receiver maximum packet length

timer Link-interface 6.4 us timer value.

disconnect Link-interface disconnection timeout value.

promiscuous Promiscuous mode.

rmapen RMAP command handler enable.

rmapbufdis RMAP multiple buffer enable.

linkdisabled Linkdisabled.

linkstart Linkstart.

check_rmap_error Check for RMAP CRC errors in received packets.

rm_prot_id Remove protocol ID from received packets.

tx_blocking Select between blocking and non-blocking transmissions.

tx_block_on_full Block when all transmit descriptors are occupied.

rx_blocking Select between blocking and non-blocking receptions.

disable_err Disable Link automatically when link-error interrupt occurs.

link_err_irq Enable link-error interrupts.

event_id Task ID to which event is sent when link-error interrupt occurs.

is_rmap RMAP command handler available.

is_rxunaligned RX unaligned support available.

is_rmapcrc RMAP CRC support available.

Table 37: spw_config member descriptions.

5.2.4.2 Configuration

The GRSPW core and driver are configured using ioctl calls. Table 34 below lists all supported
ioctl calls common to most operating systems. SPACEWIRE_IOCTRL_ should be concatenated
with the call number from the table to get the actual constant used in the code. Return values for
all calls are 0 for success and -1 for failure. Errno is set after a failure as indicated in table 33.

An example is shown below where the node address of a device previously opened with open is
set to 254 by using an ioctl call:

result = ioctl(fd, SPACEWIRE_IOCTRL_SET_NODEADDR, 0xFE);

Operating system specific calls are described last in this section.

RTEMS-RASTA 43

ERRNO Description

EINVAL Null pointer or an out of range value was given as the argument.

EBUSY Only used for SEND. Returned when no descriptors are available in non-blocking
mode.

ENOSYS Returned for SET_DESTKEY if RMAP command handler is not available or if a
non-implemented call is used.

ETIMEDOUT Returned for SET_PACKETSIZE and START if the link could not be brought up.

ENOMEM Returned for SET_PACKETSIZE if it was unable to allocate the new buffers.

EIO Error when writing to grspw hardware registers.

Table 38: ERRNO values for ioctl calls.

RTEMS-RASTA 44

Call Number Description

START Bring up link after open or STOP

STOP Stops the SpaceWire receiver and transmitter, this makes the following
read and write calls fail until START is called.

SET_NODEADDR Change node address.

SET_RXBLOCK Change blocking mode of receptions.

SET_DESTKEY Change destination key.

SET_CLKDIV Change clock division factor.

SET_TIMER Change timer setting.

SET_DISCONNECT Change disconnection timeout.

SET_COREFREQ Calculates TIMER and DISCONNECT from a user provided SpaceWire
core frequency. Frequency is given in KHz.

SET_PROMISCUOUS Enable/Disable promiscuous mode.

SET_RMAPEN Enable/Disable RMAP command handler.

SET_RMAPBUFDIS Enable/Disable multiple RMAP buffer utilization.

SET_CHECK_RMAP Enable/Disable RMAP CRC error check for reception.

SET_RM_PROT_ID Enable/Disable protocol ID removal for reception.

SET_TXBLOCK Change blocking mode of transmissions.

SET_TXBLOCK_ON_FULL Change the blocking mode when all descriptors are in use.

SET_DISABLE_ERR Enable/Disable automatic link disabling when link error occurs.

SET_LINK_ERR_IRQ Enable/Disable link error interrupts.

SET_PACKETSIZE Change buffer sizes.

GET_LINK_STATUS Read the current link status.

SET_CONFIG Set all configuration parameters with one call.

GET_CONFIG Read the current configuration parameters.

GET_STATISTICS Read the current configuration parameters.

CLR_STATISTICS Clear all statistics.

SEND Send a packet with both header and data buffers.

LINKDISABLE Disable the link.

LINKSTART Start the link.

SET_EVENT_ID Change the task ID to which link error events are sent.

Table 39: ioctl calls supported by the GRSPW driver.

5.2.4.2.1 START

This call try to bring the link up. The call returns successfully when the link enters the link state
run. START is typically called after open and the ioctl commands SET_DISCONNECT,
SET_TIMER or SET_COREFREQ. Calls to write or read will fail unless START is successfully
called first.

RTEMS-RASTA 45

Argument Timeout function

-1 Default hard coded driver timeout. Can be set with a define.

less than -1 Wait for link forever, the link is checked every 10 ticks

0 No timeout is used, if link is not up when entering START the call will fail with
errno set to EINVAL.

positive The argument specifies the number of clock ticks the driver will wait before START
returns with error status. The link is checked every 10 ticks.

Table 40: START argument description

5.2.4.2.2 STOP

STOP disables the GRSPW receiver and transmitter it does not effect link state. After calling
STOP subsequent calls to read and write will fail until START has successfully returned. The call
takes no arguments. STOP never fail.

5.2.4.2.3 SET_NODEADDR

This call sets the node address of the device. It is only used to check the destination of incoming
packets. It is also possible to receive packets from all addresses, see SET_PROMISCUOUS.

The argument must be an integer in the range 0 to 255. The call will fail if the argument contains
an illegal value or if the register can not be written.

5.2.4.2.4 SET_RXBLOCK

This call sets the blocking mode for receptions. Setting this flag makes calls to read blocking
when there is no available packets. If the flag is not set read will return EBUSY when there are
no incoming packets available.

The argument must be an integer in the range 0 to 1. 0 selects non blocking mode while 1 selects
blocking mode. The call will fail if the argument contains an illegal value.

5.2.4.2.5 SET_DESTKEY

This call sets the destination key. It can only be used if the RMAP command handler is available.
The argument must be an integer in the range 0 to 255. The call will fail if the argument contains
an illegal value, if the RMAP command handler is not available or if the register cannot be
written.

5.2.4.2.6 SET_CLKDIV

This call sets the clock division factor used in the run-state. The argument must be an integer in
the range 0 to 255. The call will fail if the argument contains an illegal value or if the register
cannot be written.

5.2.4.2.7 SET_TIMER

This call sets the counter used to generate the 6.4 and 12.8 us time-outs in the link-interface
FSM. The argument must be an integer in the range 0 to 4095. The call will fail if the argument

RTEMS-RASTA 46

contains an illegal value or if the register cannot be written. This value can be calculated by the
driver, see SET_COREFREQ.

5.2.4.2.8 SET_DISCONNECT

This call sets the counter used to generate the 850 ns disconnect interval in the link-interface
FSM. The argument must be an integer in the range 0 to 1023. The call will fail if the argument
contains an illegal value or if the register cannot be written. This value can be calculated by the
driver, see SET_COREFREQ.

5.2.4.2.9 SET_COREFREQ

This call calculates timer and disconnect from the GRSPW core frequency. The call take one
unsigned 32-bit argument, see table below. This call can be used instead of the calls SET_TIMER
and SET_DISCONNECT.

Argument Value Function

0 The GRSPW core frequency is assumed to be equal to the system
frequency. The system frequency is detected by reading the system tick
timer or a hard coded frequency.

all other values The argument is taken as the GRSPW core frequency in KHz.

Table 41: SET_COREFREQ argument description

5.2.4.2.10 SET_PROMISCUOUS

This call sets the promiscuous mode bit. The argument must be an integer in the range 0 to 1.
The call will fail if the argument contains an illegal value or if the register cannot be written.

5.2.4.2.11 SET_RMAPEN

This call sets the RMAP enable bit. It can only be used if the RMAP command handler is
available. The argument must be an integer in the range 0 to 1. The call will fail if the argument
contains an illegal value, if the RMAP command handler is not available or if the register cannot
be written.

5.2.4.2.12 SET_RMAPBUFDIS

This call sets the RMAP buffer disable bit. It can only be used if the RMAP command handler is
available. The argument must be an integer in the range 0 to 1. The call will fail if the argument
contains an illegal value, if the RMAP command handler is not available or if the register cannot
be written.

5.2.4.2.13 SET_CHECK_RMAP

This call selects whether or not RMAP CRC should be checked for received packets. If enabled
the header CRC error and data CRC error bits are checked and if one or both are set the packet
will be discarded. The argument must be an integer in the range 0 to 1. 0 disables and 1 enables
the RMAP CRC check. The call will fail if the argument contains an illegal value.

RTEMS-RASTA 47

5.2.4.2.14 SET_RM_PROT_ID

This call selects whether or not the protocol ID should be removed from received packets. It is
assumed that all packets contain a protocol ID so when enabled the second byte (the one after
the node address) in the packet will be removed. The argument must be an integer in the range 0
to 1. 0 disables and 1 enables the RMAP CRC check. The call will fail if the argument contains an
illegal value.

5.2.4.2.15 SET_TXBLOCK

This call sets the blocking mode for transmissions. The calling process will be blocked after each
write until the whole packet has been copied into the GRSPW send FIFO buffer.

The argument must be an integer in the range 0 to 1. 0 selects non blocking mode while 1 selects
blocking mode. The call will fail if the argument contains an illegal value.

5.2.4.2.16 SET_TXBLOCK_ON_FULL

This call sets the blocking mode for transmissions when all transmit descriptors are in use. The
argument must be an integer in the range 0 to 1. 0 selects non blocking mode while 1 selects
blocking mode. The call will fail if the argument contains an illegal value.

5.2.4.2.17 SET_DISABLE_ERR

This call sets automatic link-disabling due to link-error interrupts. Link-error interrupts must be
enabled for it to have any effect. The argument must be an integer in the range 0 to 1. 0 disables
automatic link-disabling while a 1 enables it. The call will fail if the argument contains an illegal
value.

5.2.4.2.18 SET_LINK_ERR_IRQ

This call sets the link-error interrupt bit in the control register. The interrupt-handler sends an
event to the task specified with the event_id field when this interrupt occurs. The argument must
be an integer in the range 0 to 1. The call will fail if the argument contains an illegal value or if
the register write fails.

5.2.4.2.19 SET_PACKETSIZE

This call changes the size of buffers and consequently the maximum packet sizes. The this cannot
be done while the core accesses the buffers so first the receiver and the transmitter is disabled
and ongoing DMA transactions is waited upon to finish. The time taken to wait for receiving DMA
transactions to finish may vary depending on packet size and SpaceWire core frequency. The old
buffers are reallocated and the receiver and transmitter is enabled again. The configuration
before the call will be preserved (except for the packet sizes). The argument must be a pointer to
a spw_ioctl_packetsize struct. The call will fail if the argument contains an illegal pointer, the
requested buffer sizes cannot be allocated or the link cannot be re-started.

5.2.4.2.20 GET_LINK_STATUS

This call returns the current link status. The argument must be a pointer to an integer. The
return value in the argument can be one of the following: 0 = Error-reset, 1 = Error-wait, 2 =
Ready, 3 = Started, 4 = Connecting, 5 = Run. The call will fail if the argument contains an illegal

RTEMS-RASTA 48

pointer.

5.2.4.2.21 GET_CONFIG

This call returns all configuration parameters in a spw_config struct which is defined in
spacewire.h. The argument must be a pointer to a spw_config struct. The call will fail if the
argument contains an illegal pointer.

5.2.4.2.22 GET_STATISTICS

This call returns all statistics in a spw_stats struct. The argument must be a pointer to a
spw_stats struct. The call will fail if the argument contains an illegal pointer.

5.2.4.2.23 CLR_STATISTICS

This call clears all statistics. No argument is taken and the call always succeeds.

5.2.4.2.24 SEND

This call sends a packet. The difference to the normal write call is that separate data and header
buffers can be used. The argument must be a pointer to a spw_ioctl_send struct. The call will fail
if the argument contains an illegal pointer, or the struct contains illegal values. See the
transmission section for more information.

5.2.4.2.25 LINKDISABLE

This call disables the link (sets the linkdisable bit to 1 and the linkstart bit to 0). No argument is
taken. The call fails if the register write fails.

5.2.4.2.26 LINKSTART

This call starts the link (sets the linkdisable bit to 0 and the linkstart bit to 1). No argument is
taken. The call fails if the register write fails.

5.2.4.2.27 SET_EVENT_ID

This call sets the task ID to which an event is sent when a link-error interrupt occurs. The
argument can be any positive integer. The call will fail if the argument contains an illegal value.

5.2.5 Transmission

Transmitting single packets are done with either the write call or a special ioctl call. There is
currently no support for writing multiple packets in one call. Write calls are used when data only
needs to be taken from a single contiguous buffer. An example of a write call is shown below:

result = write(fd, tx_pkt, 10))

On success the number of transmitted bytes is returned and -1 on failure. Errno is also set in the
latter case. Tx_pkt points to the beginning of the packet which includes the destination node
address. The last parameter sets the number of bytes that the user wants to transmit.

The call will fail if the user tries to send more bytes than is allocated for a single packet (this can

RTEMS-RASTA 49

be changed with the SET_PACKETSIZE ioctl call) or if a NULL pointer is passed. Write also fails
if the link has not been started with the ioctl command START.

The write call can be configured to block in different ways. If normal blocking is enabled the call
will only return when the packet has been transmitted. In non-blocking mode, the transmission is
only set up in the hardware and then the function returns immediately (that is before the packet
is actually sent). If there are no resources available in the non-blocking mode the call will return
with an error.

There is also a feature called Tx_block_on_full which means that the write call blocks when all
descriptors are in use.

The ioctl call used for transmissions is SPACEWIRE_IOCTRL_SEND. A spw_ioctl_send struct is
used as argument and contains length, and pointer fields. The structure is shown in the data
structures section. This ioctl call should be used when a header is taken from one buffer and data
from another. The header part is always transmitted first. The hlen field sets the number of
header bytes to be transmitted from the hdr pointer. The dlen field sets the number of data bytes
to be transmitted from the data pointer. Afterwards the sent field contains the total number
(header + data) of bytes transmitted.

The blocking behavior is the same as for write calls. The call fails if hlen+dlen is 0, one of the
buffer pointer is zero and its corresponding length variable is nonzero.

ERRNO Description

EINVAL An invalid argument was passed or link is not started. The buffers must not be
null pointers and the length parameters must be larger that zero and less than
the maximum allowed size.

EBUSY The packet could not be transmitted because all descriptors are in use (only in
non-blocking mode).

Table 42: ERRNO values for write and ioctl send.

5.2.6 Reception

Reception is done using the read call. An example is shown below:

len = read(fd, rx_pkt, tmp);

The requested number of bytes to be read is given in tmp. The packet will be stored in rx_pkt.
The actual number of received bytes is returned by the function on success and -1 on failure. In
the latter case errno is also set.

The call will fail if a null pointer is passed.

The blocking behaviour can be set using ioctl calls. In blocking mode the call will block until a
packet has been received. In non-blocking mode, the call will return immediately and if no packet
was available -1 is returned and errno set appropriately. The table below shows the different
errno values that can be returned.

RTEMS-RASTA 50

ERRNO Description

EINVAL A NULL pointer was passed as the data pointer, the length was illegal or the
link hasn't been started with the ioctl command START.

EBUSY No data could be received (no packets available) in non-blocking mode.

Table 43: ERRNO values for read calls.

5.3 RECEIVER EXAMPLE

#include <grspw.h>

/* Open device */
fd = open("/dev/grspw0",O_RDWR);
if (fd < 0) {
 printf("Error Opening /dev/grspw0, errno: %d\n",errno);
 return -1;
}

/* Set basic parameters */
if (ioctl(fd, SPACEWIRE_IOCTRL_SET_COREFREQ,0) == -1)
 printf("SPACEWIRE_IOCTRL_SET_COREFREQ, errno: %d\n",errno);

/* Make sure link is up */
while(ioctl(fd, SPACEWIRE_IOCTRL_START,0) == -1) {
 sched_yield();
}
/* link is up => continue */

/* Set parameters */
...

/* Set blocking receiving mode */
if (ioctl(fd, SPACEWIRE_IOCTRL_SET_RXBLOCK,1) == -1)
 printf("SPACEWIRE_IOCTRL_SET_RXBLOCK, errno: %d\n",errno);

/* Read/Write */
while(1) {
 unsigned char buf[256];
 if (read(fd,buf,256) < 0) {
 printf("Error during read, errno: %d\n",errno);
 continue;
 }
 /* Handle incoming packet */
 ...
}

RTEMS-RASTA 51

6 GPIO

Access to GPIO is provided through two global structures, gpio0 and gpio1. The are mapped to
the respective GPIO port on the RASTA itnerface board. Their member variables are used for
direct access to the registers.

struct gpio_reg {
 volatile unsigned int in_data; /* 0x00 */
 volatile unsigned int out_data; /* 0x04 */
 volatile unsigned int dir; /* 0x08 */
 volatile unsigned int imask; /* 0x0C */
 volatile unsigned int ipol; /* 0x10 */
 volatile unsigned int iedge; /* 0x14 */
};

See the RASTA users manual for more information about these registers.

RTEMS-RASTA 52

7 Changes

There have been changes in all the RASTA drivers for 1.0.16 and 1.0.15. The most significant
changes are outlined here.

7.1 SHARED DRIVERS BETWEEN LEON2 AND LEON3 BSPS

The RASTA drivers are now shared between LEON2 and LEON3 BSPs. The drivers have been
moved from sparc/leon2/rasta to sparc/shared/{can,spw,1553}.

The names of the device nodes changed (ex: /dev/uart_a to /dev/apbuartrasta0) in order to avoid
name duplication with other PCI cards or local cores. It is probable the this will change again to
(/dev/rasta/devname0,1,2).

7.2 GRCAN DRIVER INTERFACE CHANGES

The data structure describing a CAN Message has been changed, it has been named CANMsg.
The data structure is now similar to the OC-CAN CAN driver. The ioctl numbers and names have
been changed.

7.3 GRSPW DRIVER INTERFACE CHANGES

The RASTA SpaceWire driver has been updated with new ioctl calls START, STOP and
SET_COREFREQ. It was necessary in some case to be able to change certain parameters before
bringing the link up. Before a call to open could fail due to the driver could not get the link up. In
the new version open does not try to bring the link up at all, the ioctl START is responsible for
that.

SET_COREFREQ is optional, it calculates disconnect and timer64 values for a given core
frequency, see the IP cores Manual.

7.4 APBUART DRIVER INTERFACE CHANGES

The driver has been updated to use the UART interrupts and a new ASCII option forcing the
driver to add a carriage return character for each transmitted newline character. The ioctl
numbers and names have been changed.

RTEMS-RASTA 53

Information furnished by Gaisler Research is believed to be accurate and reliable. However, no
responsibility is assumed by Gaisler Research for its use, nor for any infringements of patents or
other rights of third parties which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Gaisler Research.

Gaisler Research AB tel +46 31 7758650

Första Långgatan 19 fax +46 31 421407

413 27 Göteborg sales@gaisler.com

Sweden www.gaisler.com

Copyright © 2007 Gaisler Research AB.

Company confidential material and document. This document may not be distributed under any
circumstances. All information is provided as is. There is no warranty that it is correct or suitable
for any purpose, neither implicit nor explicit.

	1INTRODUCTION
	1.1RASTA support in RTEMS
	1.2Source Structure
	1.3PCI
	1.4RASTA Initialization
	1.5Build Options

	2CAN DRIVER INTERFACE (GRCAN)
	2.1User interface
	2.1.1Driver registration
	2.1.2Opening the device
	2.1.3Closing the device
	2.1.4I/O Control interface
	2.1.4.1Data structures
	2.1.4.2Configuration
	2.1.4.2.1START
	2.1.4.2.2STOP
	2.1.4.2.3ISSTARTED
	2.1.4.2.4FLUSH
	2.1.4.2.5SET_SILENT
	2.1.4.2.6SET_ABORT
	2.1.4.2.7SET_SELECTION
	2.1.4.2.8SET_BTRS
	2.1.4.2.9SET_RXBLOCK
	2.1.4.2.10SET_TXBLOCK
	2.1.4.2.11SET_TXCOMPLETE
	2.1.4.2.12SET_RXCOMPLETE
	2.1.4.2.13GET_STATS
	2.1.4.2.14CLR_STATS
	2.1.4.2.15SET_AFILTER
	2.1.4.2.16SET_SFILTER
	2.1.4.2.17GET_STATUS

	2.1.5Transmission
	2.1.6Reception

	3Gaisler B1553BRM DRIVER (BRM)
	3.1INTRODUCTION
	3.1.1BRM Hardware
	3.1.2Software Driver
	3.1.3Supported OS
	3.1.4Examples

	3.2User interface
	3.2.1Driver registration
	3.2.2Opening the device
	3.2.3Closing the device
	3.2.4I/O Control interface
	3.2.4.1Data structures
	3.2.4.1.1Remote Terminal operating mode
	3.2.4.1.2Bus Controller operating mode
	3.2.4.1.3Bus Monitor operating mode

	3.2.5Configuration
	3.2.5.1SET_MODE
	3.2.5.2SET_BUS
	3.2.5.3SET_MSGTO
	3.2.5.4SET_RT_ADDR
	3.2.5.5BRM_SET_STD
	3.2.5.6BRM_SET_BCE
	3.2.5.7BRM_TX_BLOCK
	3.2.5.8BRM_RX_BLOCK
	3.2.5.9BRM_CLR_STATUS
	3.2.5.10BRM_GET_STATUS
	3.2.5.11BRM_SET_EVENTID

	3.2.6Remote Terminal operation
	3.2.7Bus Controller operation
	3.2.8Bus monitor operation

	4RAW UART DRIVER INTERFACE (APBUART)
	4.1User interface
	4.1.1Driver registration
	4.1.2Opening the device
	4.1.3Closing the device
	4.1.4I/O Control interface
	4.1.4.1Configuration
	4.1.4.1.1START
	4.1.4.1.2STOP
	4.1.4.1.3SET_RXFIFO_LEN
	4.1.4.1.4SET_TX_FIFO_LEN
	4.1.4.1.5SET_BAUDRATE
	4.1.4.1.6SET_SCALER
	4.1.4.1.7SET_BLOCKING
	4.1.4.1.8GET_STATS
	4.1.4.1.9CLR_STATS
	4.1.4.1.10SET_ASCII_MODE

	4.1.5Transmission
	4.1.6Reception

	5Gaisler SpaceWire (GRSPW)
	5.1Introduction
	5.1.1Software driver
	5.1.2Examples
	5.1.3Support

	5.2User interface
	5.2.1Driver registration
	5.2.2Opening the device
	5.2.3Closing the device
	5.2.4I/O Control interface
	5.2.4.1Data structures
	5.2.4.2Configuration
	5.2.4.2.1START
	5.2.4.2.2STOP
	5.2.4.2.3SET_NODEADDR
	5.2.4.2.4SET_RXBLOCK
	5.2.4.2.5SET_DESTKEY
	5.2.4.2.6SET_CLKDIV
	5.2.4.2.7SET_TIMER
	5.2.4.2.8SET_DISCONNECT
	5.2.4.2.9SET_COREFREQ
	5.2.4.2.10SET_PROMISCUOUS
	5.2.4.2.11SET_RMAPEN
	5.2.4.2.12SET_RMAPBUFDIS
	5.2.4.2.13SET_CHECK_RMAP
	5.2.4.2.14SET_RM_PROT_ID
	5.2.4.2.15SET_TXBLOCK
	5.2.4.2.16SET_TXBLOCK_ON_FULL
	5.2.4.2.17SET_DISABLE_ERR
	5.2.4.2.18SET_LINK_ERR_IRQ
	5.2.4.2.19SET_PACKETSIZE
	5.2.4.2.20GET_LINK_STATUS
	5.2.4.2.21GET_CONFIG
	5.2.4.2.22GET_STATISTICS
	5.2.4.2.23CLR_STATISTICS
	5.2.4.2.24SEND
	5.2.4.2.25LINKDISABLE
	5.2.4.2.26LINKSTART
	5.2.4.2.27SET_EVENT_ID

	5.2.5Transmission
	5.2.6Reception

	5.3Receiver example

	6GPIO
	7Changes
	7.1Shared drivers Between LEON2 and LEON3 BSPs
	7.2GRCAN driver Interface Changes
	7.3GRSPW driver Interface Changes
	7.4APBUART Driver Interface Changes

