
GRLIB Linux device drivers

LINDRV

GRLIB Linux Drivers User's Manual

U
S

E
R

 M
A

N
U

A
L

R
E

L
E

A
S

E
D

 J
U

N
E

 2
02

5

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 2

Table of Contents
1. Introduction .. 4

1.1. Drivers included in the package ... 4
1.2. Requirements .. 4

1.2.1. Hardware support and limitations ... 5
1.3. Installing .. 5
1.4. Device tree bindings .. 5
1.5. Device node numbering .. 5

2. GRSPW SpaceWire Driver .. 6
2.1. Introduction .. 6

2.1.1. Sources ... 6
2.1.2. Using the driver .. 6
2.1.3. Examples ... 7

2.2. Control Interface ... 7
2.2.1. Overview ... 7

2.3. Packet Transfer Interface .. 9
2.3.1. Packet Reception ... 10
2.3.2. Packet Transmission .. 12

2.4. User-space access routines ... 13
3. GRSPW Kernel Library driver ... 14

3.1. Introduction .. 14
3.1.1. Hardware Support ... 14
3.1.2. Driver sources .. 14
3.1.3. Examples ... 14
3.1.4. Known driver limitations .. 14

3.2. Software design overview ... 14
3.2.1. Overview ... 14
3.2.2. Initialization ... 15
3.2.3. Link control ... 15
3.2.4. Time Code support .. 16
3.2.5. RMAP support .. 16
3.2.6. Port support .. 16
3.2.7. SpaceWire node address configuration .. 16
3.2.8. SpaceWire Interrupt Code support .. 17
3.2.9. User DMA buffer handling ... 17
3.2.10. Driver DMA buffer handling ... 17
3.2.11. Polling and blocking mode .. 19
3.2.12. Interrupt and work queue .. 19
3.2.13. Starting and stopping DMA ... 20
3.2.14. Thread concurrency .. 20
3.2.15. SMP Support .. 21
3.2.16. User space support ... 21

3.3. Device Interface .. 21
3.3.1. Opening and closing device .. 22
3.3.2. Hardware capabilities ... 23
3.3.3. Link Control ... 24
3.3.4. Node address configuration ... 26
3.3.5. Time Code support .. 27
3.3.6. Port Control ... 28
3.3.7. RMAP Control ... 29
3.3.8. Statistics .. 30

3.4. DMA interface .. 31
3.4.1. Opening and closing DMA channels ... 31
3.4.2. Starting and stopping DMA operation ... 33
3.4.3. Packet buffer description .. 35
3.4.4. Blocking/Waiting on DMA activity .. 36
3.4.5. Sending packets .. 37
3.4.6. Receiving packets .. 40

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 3

3.4.7. Transmission queue status ... 42
3.4.8. Statistics .. 43
3.4.9. DMA channel configuration .. 45

3.5. API reference .. 46
3.5.1. Data structures .. 46
3.5.2. Device functions ... 46
3.5.3. DMA functions ... 47

4. SpaceWire Router APB Register Driver ... 49
4.1. Introduction .. 49

4.1.1. Sources .. 49
4.1.2. Using the driver .. 49
4.1.3. Examples ... 49

4.2. Control Interface .. 49
4.2.1. Overview ... 49

5. MAPLIB Device Memory Driver .. 51
5.1. Introduction .. 51

5.1.1. Sources .. 51
5.1.2. Using the driver .. 51
5.1.3. Examples ... 51

5.2. Control Interface .. 52
5.3. Mapping Interface .. 52

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 4

1. Introduction

The purpose of the GRLIB Driver package is to provide Linux drivers for GRLIB cores that does not really benefit
from being part of the official kernel tree or for other reasons not part of the official kernel tree. SpaceWire for
example does not have a generic driver model in Linux.

Drivers can be built outside of the kernel source tree as modules or within the kernel by installing the drivers into
the kernel sources tree. Currently the drivers has not been tested as modules, so for the time being please install
the driver sources into the kernel and link them into the kernel.

After installing the package into the kernel source tree a menu named "GRLIB Drivers" will appear in the bottom
of the "Device Drivers" directory in the kernel configuration GUI. The Kernel Configuration GUI is invoked as
usual (for non-LEON system see Table 1.1):

[linux/]$ make ARCH=sparc CROSS_COMPILE=sparc-linux- xconfig

If the drivers are built outside of the kernel tree and installed into the filesystem for loading during runtime, the
building process is as follows (for non-LEON systems select target from Table 1.2):

[grlib_drivers/]$ make KERNELDIR=/path/to/kernel/linux/sources leon

Note that the kernel sources provides a way to install modules using the make target modules_install together with
INSTALL_MOD_PATH=/path/to/rootfs/.

Table 1.1. Linux kernel configuration and build settings

Processor Kernel environment settings

NOEL-V 64-bit ARCH=riscv CROSS_COMPILE=riscv64-linux-

NOEL-V 32-bit ARCH=riscv CROSS_COMPILE=riscv32-linux-

LEON ARCH=sparc CROSS_COMPILE=sparc-linux-

Table 1.2. GRLIB Driver Package Make targets

Processor Make target

NOEL-V 64-bit noel64

NOEL-V 32-bit noel32

LEON leon

1.1. Drivers included in the package

Below is a list of which drivers are currently distributed in the GRLIB Linux driver package.

• GRSPW2 Kernel Library (for custom kernel driver, or GRSPW Driver)
• GRSPW2 Driver (Char device accessible from Linux User space)
• GRSPW-ROUTER APB Register Driver
• MAPLIB, Device memory handling. Enables a user to memory map blocks of linear memory that can be

used by device drivers for DMA access. GRLIB Drivers that implement zero-copy to user-space and between
device nodes though user-space require the MAPLIB char driver.

1.2. Requirements

The GRLIB Drivers package is built against one specific Linux release, it is expected that drivers may fail to build
or does not function properly if used under another Linux version. The kernel that must be used is taken from
www.kernel.org and may require patching using the Frontgrade Gaisler "unofficial patches" distributed until they
are included in the official kernel tree.

Please check which GIT version is required used in the VERSION file.

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 5

1.2.1. Hardware support and limitations

The following processor platforms are supported:

• LEON 3/4/5
• NOEL-V 32-bit
• NOEL-V 64-bit
• Limited to 32-bit address bus

The following GRLIB IPs are supported by this package:

• GRSPW2
• SpaceWire Router AMBA Ports (GRSPW_SPW2_DMA)
• SpaceWire Router APB control registers interface

1.3. Installing

Please see the README file included in the driver package for installation instructions.

1.4. Device tree bindings

The drivers requires device tree bindings. On a LEON based system the bindings are typically provided by MK-
LINUXIMG, but for NOEL based system the bindings needs to be declared in a Device Tree Source (DTS) file.

Documentation about the bindings can be found in the driver package under kernel/Documentation/de-
vicetree/bindings/grlib

1.5. Device node numbering

The GRLIB drivers dynamically assigns major numbers, typically within the range 234-254 (from the “LO-
CAL/EXPERIMENTAL USE” series). More information on device node numbering can be found in lin-
ux/Documentation/admin-guide/devices.txt

Device nodes are created in /dev in the local file system.

ls -l grspw* maplib* spwrouter*
crw------- 1 root root 250, 0 Apr 29 2025 grspw0
crw------- 1 root root 250, 1 Apr 29 2025 grspw1
crw------- 1 root root 250, 2 Apr 29 2025 grspw2
crw------- 1 root root 250, 3 Apr 29 2025 grspw3
crw------- 1 root root 248, 0 Apr 29 2025 maplib0
crw------- 1 root root 249, 0 Apr 29 2025 spwrouter0

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 6

2. GRSPW SpaceWire Driver

2.1. Introduction

This section describes the Linux GRSPW driver. It provides user space applications with a SpaceWire packet nad
link control interface. The driver is implemented using the GRSPW Kernel library (described in Chapter 3) for
GRSPW device control and DMA transfer and it uses the memory map driver (MAPLIB described in Chapter 5) for
allocating physically continuous device memory (DMA memory) for user-space. The driver supports the GRSPW,
GRSPW2 and the DMA interface of the Frontgrade Gaisler SpaceWire Router.

By splitting the GRSPW SpaceWire support into three parts it is possible to reuse specific parts of the driver
source. For example the GRSPW kernel library does not depend on MAPLIB or the GRSPW Kernel driver, this
makes it possible to create a custom GRSPW kernel module without the involvement of user space using the kernel
library only. The MAPLIB does not either depend on the other parts, hence it can be used solely in other drivers
or together with other drivers. This makes it for example possible to receive a SpaceWire packet and transmitting
it using a driver for another interface also supporting the MAPLIB driver.

The driver provides two different types of interfaces through the standard UNIX access routines (open, close,
ioctl, read, write), one GRSPW device control interface and one packet transfer interface. The control
interface is accessed using ioctl, whereas the packet transfer interface is accessed using read and write. The
actual packet data transferred on SpaceWire is not read or written using the read and write routines, instead
pointers to the data and header are interchanged between kernel space (the driver) and user space (the application).
Transferring only addresses to data/header allows the driver to be zero-copy all the way from user-space to actually
sending the packet over SpaceWire, however some care must be taken to what memory is used. For example even
though memory seems to be linear i user space it might not be linear in physical address space due to the memory
management unit (MMU) setup, and when the GRSPW core is doing direct memory access (DMA) only linear
addresses can be used. There are other issues as well that must be solved, they are taken care of in the MAPLIB
driver.

If the SpaceWire router DMA interface is the underlying hardware, some of the parts described here does not
affect the hardware at all. For example the link controlling options are of course not implemented at the DMA
interface. One can control the SpaceWire router's link by using the SpaceWire router driver instead.

2.1.1. Sources

The GRSPW driver sources are provided under the GPL license, they are available in the GRLIB driver package
as described in the table below. Applications should include the "GRSPW Kernel Driver header" file. All files are
relative the base of the driver package.

Table 2.1. GRSPW driver sources

Location Description

spw/grspw.c GRSPW Kernel library

spw/grspw_user.c GRSPW Kernel Driver

misc/maplib.c Device memory library

include/linux/grlib/grspw.h GRSPW Kernel library header

include/linux/grlib/grspw_user.h GRSPW Kernel Driver header

include/linux/grlib/maplib.h Device memory library header

2.1.2. Using the driver

Applications wanting to access GRSPW devices from user-space should include the GRSPW kernel driver header
file, if the include path is set correct it will include the kernel library header as well. As mentioned above the user
is also responsible to setup device memory using the MAPLIB driver, so the application should also include the
MAPLIB header file.

Debug output is available through the /proc/kmsg interface, and additional debug output can be enabled by
defining GRSPWU_DEBUG in the driver sources grspw_user.c.

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 7

Each GRSPW core is accessed using a single major/minor number, regardless of how many DMA channels the
core has. The Major/Minor numbers are determined by the driver package configuration, see Section 1.5.

2.1.3. Examples

Within the GRLIB driver package there is a user space example of how this driver can be used. The example uses
the user-space API used to call the driver's ioctl, read and write interface.

2.2. Control Interface

2.2.1. Overview

The Control interface provides information about the GRSPW hardware, configuration of the driver, reading cur-
rent statistics, link control and status, selecting port if two ports are available, handling time code transmission,
starting/stopping DMA channels and waiting for DMA operations to complete by blocking. The Packet Transfer
Interface can not be used unless the DMA channel has been started, the link state is independent of starting/stop-
ping DMA channels. The link state will of course have an impact on what is transferred over SpaceWire, it will
affect all DMA channels. Since SpaceWire supports "flow-control" packets may buffer up when the link state goes
from run-state to any other state. The user is expected to handle the link and its state.

The control interface is accessed using the standard UNIX ioctl routine.

In the table below all currently supported ioctl commands and their argument type is listed. The data structures
referenced are declared in the grspw_user.h header file. All GRSPW commands starts with GRSPW_IOCTL_
which has to be added to the command name given in the table below. The data direction below indicates in which
direction data is transferred to the kernel:

• Input: Argument is an address. The driver reads data from the given address.
• Output: Argument is an address. The driver writes data to the given address.
• Input/Output: both above cases.
• Argument: 32-bit simple Argument, no memory transferred between kernel/user.
• None: Argument ignored.

Table 2.2. ioctl commands supported by the GRSPW Kernel driver.

Command Data Di-
rection

Argument Type Description

HWSUP Output struct
grspw_hw_sup *

Copy hardware configuration for the GRSPW core, such
as number of DMA Channels, if RMAP/RMAP-CRC is
supported by core, number of SpW ports, etc.

BUFCFG Input struct
grspw_bufcfg *

Set up packet buffers. Even though the user is responsible
for allocating memory for packet data/header, the driver
must allocate structures for packet handling. The pack-
et structures stores the packet state, data/header pointers,
packet number etc. This command specifies how many
packets maximally can simultaneously be buffer internal-
ly by the driver. The packet structures are shared between
all DMA channels. The packet structures are allocated
when the START command is issued, ENOMEM is re-
turned if driver was not able to allocate as many packet
structures as requested.

CONFIG_SET Input struct
grspw_config *

Configure driver according to input. One can configure
promiscuous mode, which DMA channels will be used,
DMA channel configuration, register a custom time code
ISR handler (note that it must be an address to a function
in kernel, typically to a custom user-written module), time
code RX/TX enable and RMAP options (destination key,
RMAP enable, RMAP buffer).

CONFIG_READ Output struct
grspw_config *

Copies the current configuration to the address given by
the argument. DMA Channel configuration will only be

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 8

Command Data Di-
rection

Argument Type Description

copied for previously enabled channels, for other channels
the data is undefined.

STATS_READ Output struct grspw_stats * The driver gather statistics both globally and for respec-
tive DMA channel. All gathered statistics are copied to
the user provided buffer.

STATS_CLR None N/A Clears the current gathered statistics. Resets all counters.

LINKCTRL Input struct
grspw_link_ctrl *

Set SpaceWire transfer speed (clock division factor) and
control the link start, link disable, link auto start, IRQ on
link error and disable link on error functions of the GR-
SPW core. See LINKOPTS_* options.

PORTCTRL Argument int Select SpaceWire port configuration. The GRSPW core
may have have support for two SpaceWire ports, the port
select behavior of the core can be controlled by using this
command.

• 0: Port0 always selected.
• 1: Port1 always selected.
• Others: Both Port0 and Port1, core selects between

them.

LINKSTATE Output struct
grspw_link_state *

Copies the current link state of the GRSPW core to the
provided buffer. The current link configuration, Clock di-
vision factors (start and run), the link state, port configu-
ration and which port is currently active is copied.

TC_SEND Argument int This command sets the TCTRL and TIMECNT bits of
the GRSPW core if bit 8 is set to one. The TCTRL and
TIMECNT values are taken from the low 8-bits of the ar-
gument. After (optionally) setting the TCTRL:TIMECNT
a Tick-In is generated if bit 9 is set to one.

TC_READ Output int * This command stores the current value of the GRSPW
core TCTRL:TIMECNT bits to the address given by the
argument.

QPKTCNT Output struct
grspw_qpktcnt *

Reads the current number of packets in all TX/RX queues
of all enabled DMA channels. This can be used for de-
bugging of the RX/TX process in an application, it can
also be used to determine the number of packets currently
buffered by the driver.

STATUS_READ Output unsigned int * Reads the current value of the GRSPW STATUS register
and copies it back to the user provided buffer. From this
value the link error flags can be read.

STATUS_CLR Input unsigned int * Clears one or more bits in the GRSPW STATUS register.
The user controls which bits are cleared by setting respec-
tive bit to a one. Bits that are zero does not affect the GR-
SPW STATUS register bits. This functionality is typcially
used in combination with STATUS_READ and configur-
ing the LINKSTS_* options to allow the user to custom-
ly control the link. The standard behaviour is to let the
driver's interrupt handler clear the status bits and count
statistics on errors instead.

START None N/A Start all DMA activity on all DMA channels. The receiver
is enabled however packet buffers must be prepared in or-
der to actually receive anything. After starting the read/
write interface of the driver is open. See the Packet
Transfer Interface on how packets are sent/received. After

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 9

Command Data Di-
rection

Argument Type Description

start the BUFCFG and CONFIG_SET ioctl commands
are not available until stopped again. If this command fails
with the errno ENOMEM packet structures was not able
to be allocated due to either not enough memory or too
many requested. If errno is set to EPERM the driver indi-
cates that the MAPLIB was not satisfied (for example not
mapped to user space).

STOP None N/A Stops DMA operation, this till disable the receiver and
transmitter of the GRSPW core. After the driver has
been stopped TX(SEND) and RX(PREPARE) operation
will result in error EBUSY, but the RX(RECEIVE) and
TX(RECLAIM) operation will still be working so that the
user can read out all packet buffers. By setting the appro-
priate flags in the packet information it is possible to de-
termine if a packet has been received/transmitted or not.

RX_WAIT Input struct
grspw_rx_wait_chan
*

Blocks the caller until the RX queue packet coun-
ters conditions are fullfilled. The conditions and time-
out are described by the input data structure, see struct
grspw_rx_wait_chan for usage. If timeout expires before
the conditions are fullfilled -ETIME will be returned. If -
EIO is returned if the DMA channels is not started or is
stopped during the waiting. There is only one RX wait ob-
ject per DMA channels which means that only one thread
can simultaneously wait on RX. If two threads tries to
wait on the same DMA channel -EBUSY error code is re-
turned.

TX_WAIT Input struct
grspw_tx_wait_chan

Blocks the caller until the TX queue packet counters
conditions are fullfilled. The conditions and timeout
are described by the input data structure, see struct
grspw_tx_wait_chan for usage. If timeout expires before
the conditions are fullfilled -ETIME will be returned. If -
EIO is returned if the DMA channels is not started or is
stopped during the waiting. There is only one TX wait ob-
ject per DMA channels which means that only one thread
can simultaneously wait on TX. If two threads tries to
wait on the same DMA channel -EBUSY error code is re-
turned.

2.3. Packet Transfer Interface

The packet transfer interface is used to send and receive SpaceWire packets on the DMA channels. The GRSPW
core is configurable how many DMA channels it has, a core may have from one up to four DMA channels. From
the control interface one can read how many DMA channels are present on the GRSPW device. This interface is
open to the user when DMA operation has been started from the control interface (START). Trying to access the
interface when it is not started will result in an error and errno will be set to EBUSY.

Similar to the control interface this driver provides an interface to the GRSPW Kernel Library. The GRSPW
Kernel Library documentation in Chapter 3 describes the buffering, packet queues, DMA operations, interrupts
etc. in more detail.

Since the GRSPW driver does not manage packet buffers itself, but relies on MAPLIB and the user for that, the
user must prepare the driver with ready RX buffers to be able to receive packets in the future. The user is also
responsible to reuse sent packet buffers, in order for the user to know when a packet buffer has been sent and is
ready to be reused the driver let the user read back/reclaim TX buffers.

The interface supports four basic operations that can be performed independently per DMA channel, see list below.
All packet operations are completed in the order they are given to the driver, for example if multiple packet buffers

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 10

are requested to be sent the order in which the buffers are sent and also reclaimed is the same as the order they
where given to the driver using the write function.

• RX(PREPARE), prepare the driver with free RX packet buffers.
• RX(RECEIVE), read out received SpaceWire packets, the packet data are placed in previously prepared

packet buffers.
• TX(SEND), queue one or multiple packets for transmission by handing over initialized packet buffers.
• TX(RECLAIM), read out snet packet buffers from the driver (previously sent)

The above operations are implemented using the standard UNIX read/write file operation calls. Since both
read and write takes different input depending on which of the two operation is requested, the MSB 16-bit of the
length is used to determine operation and which DMA channels are involved in the request. See GRSPW_READ_*
and GRSPW_WRITE_* definitions in header file.

The way the driver uses the read/write lenght is not standard and the LIBC compile-time or run-time checks
may complain or fail. If so the LIBC provides alternative functions that can be used where the checks are
not performed.

2.3.1. Packet Reception

When the SpaceWire link is in run state and DMA operation has been started from the control interface, packets
buffers can be scheduled for future reception. There are two different states of a DMA channel, when descriptors
has been prepared and enabled for transmission and when there are no enabled descriptors (out of buffers). In
the latter case the core can be programmed to discard incoming packets or to wait for new enabled descriptors
(packet buffers), that is controlled through the control interface (see NO-SPILL option in GRSPW hardware doc-
umentation).

Packet reception basically comes down to enabling descriptors with new empty buffers. The driver must process
the core's descriptor table to handle received SpaceWire packets and enable unused descriptors with new packet
buffers. That process might be triggered in two different ways:

• DMA receive interrupt, the driver will schedule work to process the descriptor table later on in non-interrupt
context.

• The user calls RX(PREPARE) or RX(RECEIVE).

The user can configure the behavior of the first case by controlling how interrupts are generated. The driver can
generate interrupt after every N number of packets have been received. The user can also control it completely
custom by setting N=0 and enabling interrupts on a packet basis, see RX(PREPARE). If the driver is not able to
process the RX descriptor table in time the transfer rate will drop (or packets will be discarded). Since the user
might not be able to call RX(PREPARE) and RX(RECEIVE) often enough on high bit rates (or small packets) the
DMA receiver interrupts can be used to start processing of descriptors. On DMA receive interrupt the driver will
schedule a work queue that will process the descriptor table, in order to enable new packet buffers the user must
have prepared buffers on beforehand. Prepared packets will be buffered temporarily in the READY queue until
unused descriptors are available. Received packets will be buffered in the same order as the SpaceWire packets
was received in the RECV queue. See Figure 2.1. Note that if N is set to a higher number than the number of
RX descriptors (128) or when it is disabled, the descriptor table may not contain any enabled descriptors until
RX(PREPARE) or RX(RECEIVE) is called by the user.

RX
Scheduled

RX
Ready

RX
Received

write()
RX(PREPARE)

Use empty
descriptors

Handle used
descriptors

read()
RX(RECEIVE)

Queue of unused
ready packet
buffers, waiting for
a descriptor

Queue of packet
buffers which has
been assigned an
enabled descriptor

Queue of received
SpaceWire
packets, waiting
for user to read

Figure 2.1. GRSPW Driver internal RX queues

The driver internal RX queues are all link lists of FIFO type. The RX-schedule queue can hold a maximum of
128 (number of descriptors supported by GRSPW at time of writing) packets, the other queues does not have any

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 11

limitation except from the number of packet structures that the driver use internally to describe the packets. The
number of packet structures can be configured through the control interface.

2.3.1.1. RX(PREPARE)

The process of preparing the GRSPW driver with new packet buffers is called RX(PREPARE) in this document.
It is done by calling the standard UNIX write function with one or an array of struct grspw_wrxpkt entries. Each
entry describes one packet buffer, see below programlisting and table. The length of the write buffer must be a
multiple of the size of one entry, the MSB bits of the length determines which channel the packet buffers are for
and selects between the RX(PREPARE) and the TX(SEND) operation. If the driver is out of packet structures
(used internally in driver) all packet buffers will not be prepared, instead the length returned determines how many
packets was added to the ready queue.

/* GRSPW Write RX-Packet Entry (PREPARE RX BUFFER) */
struct grspw_wrxpkt {
 int pkt_id; /* Custom Packet ID */
 unsigned short flags; /* See RXPKT_FLAG* above */
 unsigned short resv1; /* Reserved, must be zero */
 void *data; /* Data Pointer (Address from MMAP Lib). The
 * buffer must have room for max-packet */
} __attribute__((packed));

Table 2.3. GRSPW prepare RX buffers write format (struct grspw_wrxpkt)

Field Description

pkt_id A user defined packet ID which can be used to identify the packet buffer upon RX(RECEIVE).
This is field is optional, and does not affect the operation of the driver.

flags Set to RXPKT_FLAG_IE if this packet should generate a interrupt when a SpaceWire packet was
received to this packet buffer. Interrupts can be controlled using the control interface.

data Pointer to the packet buffer that the driver will store one received SpaceWire Packet to. The address
must be within the range that was memory mapped with MAPLIB, a user space address is expected.

2.3.1.2. RX(RECEIVE)

After packet buffers have been prepared, assigned a descriptor, a SpaceWire packet received, the packet taken
from the descriptor and put into the receive queue of the driver, the packet can be read using the standard UNIX
read function. This process is called RX(RECEIVE) in this document. The driver will fill the user provided buffer
with packet buffer information according to the struct grspw_rrxpkt memory layout. See below programlisting
and table. Each entry describes one packet which may have a valid SpaceWire packet in the packet buffer pointed
to be data. The length of the read buffer must be a multiple of the size of one entry, the MSB bit of the length
determines which channels (bit mask of channels) to receive packets from and selects between the RX(RECEIVE)
and TX(RECLAIM) operation.

/* GRSPW Read RX-Packet Entry (RECEIVE) */
struct grspw_rrxpkt {
 int pkt_id; /* Custom Packet ID */
 unsigned short flags; /* See RXPKT_FLAG* above */
 unsigned char dma_chan; /* DMA Channel 0..3 */
 unsigned char resv1; /* Reserved, must be zero */
 int dlen; /* Data Length */
 void *data; /* Data Pointer (Address from MMAP Lib) */
} __attribute__((packed));

Table 2.4. GRSPW receive RX packet buffers read format (struct grspw_rrxpkt)

Field Description

pkt_id A user defined packet ID that was given to the driver together with the packet buffer in
RX(PREPARE).

flags This field indicates if the data buffer contains a SpaceWire packet (RXPKT_FLAG_RX), and
if transfer errors where encountered during the reception (Truncated, EEOP, Header CRC
error, Data CRC error).

dma_chan Indicates which DMA channel (0..3) received this packet.

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 12

Field Description

dlen The length of SpaceWire packet that was received into the packet buffer pointed to by data.

data Pointer to the packet buffer that contains one SpaceWire packet. The flags field bit
RXPKT_FLAG_RX is set if a the buffer contains a SpaceWire packet, other flags may also
have been set to indicate some sort of SpaceWire transmission error.

2.3.2. Packet Transmission

The packet transmission interface works basically the same as the packet reception interface. The MSB bits of
the length determine that TX(SEND) and TX(RECLAIM) should be used instead of the RX operations. See the
previous RX section introduction.

The packet queues are named differently as indicated in Figure 2.2, the TX scheduled queue also fits as many
packets as there are descriptors, however the TX descriptors are 64 in number instead of 128 for RX.

TX
Scheduled

TX
Send

TX
Sent

write()
TX(SEND)

Use empty
descriptors

Handle used
descriptors

read()
TX(RECLAIM)

Queue of ready
SpaceWire packet
buffers, waiting for
a descriptor

Queue of packet
buffers which has
been assigned an
enabled descriptor

Queue of transmit-
ted SpaceWire
packets, waiting
for user to reuse

Figure 2.2. GRSPW Driver internal TX queues

2.3.2.1. TX(SEND)

The process of sending a SpaceWire packet (data and header) is called TX(SEND) in this document. A packet is
sent by calling the standard UNIX write function with one or an array of struct grspw_wtxpkt entries. Each entry
describes one packet buffer, see below programlisting and table. The length of the write buffer must be a multiple
of the size of one entry, the MSB bits of the length determines which channel the packets will be sent upon and
selects between the RX(PREPARE) and the TX(SEND) operation. If the driver is out of packet structures (used
internally in driver) all packets will not be sent, instead the length returned determines how many packets was
added to the send queue.

/* GRSPW Write TX-Packet Entry (SEND PACKET) */
struct grspw_wtxpkt {
 int pkt_id; /* Custom Packet ID */
 unsigned short flags; /* See TXPKT_FLAG* above */
 unsigned char resv; /* Reserved */
 unsigned char hlen; /* Header Length. Set to zero if none. */
 unsigned int dlen; /* Data Length. Set to zero if none. */
 void *hdr; /* Header Pointer (Address from MMAP Lib) */
 void *data; /* Data Pointer (Address from MMAP Lib) */
} __attribute__((packed));

Table 2.5. GRSPW send TX packet buffers write format (struct grspw_wtxpkt)

Field Description

pkt_id A user defined packet ID which can be used to identify the packet buffer upon TX(RECLAIM).
This is field is optional, and does not affect the operation of the driver.

flags This field hold the transmission options for one SpaceWire packet. See TXPKT_FLAG_* for
options. One can enable IRQ on DMA transmit operation, header and data CRC calculation.

hlen Determines the length of the header, set to zero if no header should be transmitted. A length
larger than 255 bytes is not allowed.

dlen Determines the length of the data that will be transmitted. The maximum length is limited to
128KBytes due to the memory allocation.

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 13

Field Description

hdr Pointer to the packet header buffer. This is only used if hlen is larger than zero. The first
hlen bytes are transmitted.

data Pointer to the packet buffer that contains the data of one SpaceWire packet. The first dlen
bytes are transmitted.

2.3.2.2. TX(RECLAIM)

After packet buffers have been request to be sent, assigned a descriptor, a SpaceWire packet generated and trans-
mitted, the packet buffer taken from the descriptor and put into the sent queue of the driver, the packet buffer can
be read using the standard UNIX read function. This process is called TX(RECLAIM) in this document. The
driver will fill the user provided read buffer with packet buffer information according to the struct grspw_rtxpkt
memory layout. See below programlisting and table. Each entry describes one packet which may have been suc-
cessfully sent.

The length of the read buffer must be a multiple of the size of one entry, the MSB bits of the length determines
which channels (bit mask of channels) to reclaim packets from and selects between the RX(RECEIVE) and
TX(RECLAIM) operation.

/* GRSPW Read TX-Packet Entry (RECLAIM TX BUFFER) */
struct grspw_rtxpkt {
 int pkt_id; /* Custom Packet ID */
 unsigned short flags; /* See TXPKT_FLAG* above */
 unsigned char dma_chan; /* DMA Channel 0..3 */
 unsigned char resv1; /* Reserved, must be zero */
} __attribute__((packed));

Table 2.6. GRSPW reclaim TX packet buffers read format (struct grspw_rtxpkt)

Field Description

pkt_id A user defined packet ID which can be used to identify the packet buffer upon TX(RECLAIM).
This is field is optional, and does not affect the operation of the driver.

flags This field hold the transmission parameters for one SpaceWire packet. See TXPKT_FLAG_*.
If the the packet was sent (a descriptor with the data/header was enabled) the
TXPKT_FLAG_TX bit is set, if a link error occurred TXPKT_FLAG_LINKERR bit is set.

dma_chan Indicates which DMA channel (0..3) this packet was sent on.

2.4. User-space access routines

In order to access the GRSPW SpaceWire driver the user application must call it using the standard UNIX system
calls (open, ioctl, read, etc.). To simplify that task an API is provided part of the examples in the GRLIB driver
package. The API provides means to access the driver by an easy to use API rather than letting the user application
making the UNIX calls directly. The API also tries to simplify SpaceWire packet buffer handling and buffer
management by use of buffer pools. At the same time the API provides an example how the driver can be called.

The API is declared in grspwlib.h and spwlib.h.

The API is undocumented since it is by itself considered as documentation/example.

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 14

3. GRSPW Kernel Library driver

3.1. Introduction

This section describes the GRSPW Kernel Library driver for Linux. Its interface is only accessible from kernel
space. Most of the functionality is exported to user space as described in Chapter 2.

It is an advantage to understand the SpaceWire bus/protocols, GRSPW hardware and software driver design when
developing using the user interface in Section 3.3 and Section 3.4. The Section 3.2.1 describes the overall software
design of the driver.

3.1.1. Hardware Support

The GRSPW cores user interface are documented in the GRIP Core User's manual. Below is a list of the major
hardware features it supports:

• GRSPW, GRSPW2 and GRSPW2_DMA (router AMBA port)
• Multiple DMA channels
• Time Code
• Link Control
• Port Control
• RMAP Control
• SpaceWire Interrupt codes
• Interrupt handling
• Multi-processor SMP support

3.1.2. Driver sources

The driver sources and header files are listed in Section 2.1.1.

3.1.3. Examples

The GRSPW SpaceWire driver and its samples are examples of how the GRSPW Kernel Library driver can be
used. See Section 2.1.3.

3.1.4. Known driver limitations

The known limitations in the GRSPW Packet driver exists listed below:

• The statistics counters are not atomic, clearing at the same the interrupt handler is called could cause invalid
statistics, one must disable interrupt when reading/clearing (a SMP problem).

• The SpaceWire Interrupt code support is not available yet.

3.2. Software design overview

3.2.1. Overview

The driver has been implemented using the platform device driver model. The driver provides a kernel function
interface, an API, rather than implementing a IO system device. The API is intended for kernel tasks but has been
designed so that a custom interface for processes can be implemented on top of the kernel space API, see Chapter 2.
The driver can be compiled as a kernel module and loaded into the kernel at run-time or linked with the kernel at
compile-time. The installation steps required for linking with kernel are described in the kernel/drivers/
grlib/README.

The driver API has been split up in two major parts listed below:

• Device interface, see Section 3.3.
• DMA channel interface, see Section 3.4.

GRSPW device parameters that affects the GRSPW core and all DMA channels are accessed over the device API
whereas DMA specific settings and buffer handling are accessed over the per DMA channel API. A GRSPW2
device may implement up to four DMA channels.

In order to access the driver the first thing is to open a GRSPW device using the device interface.

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 15

For controlling the device one must open a GRSPW device using 'id = grspw_open(dev_index)' and
call appropriate device control functions. Device operations naturally affects all DMA channels, for example when
the link is disabled all DMA activity pause. However there is no connection software wise between the device
functions and DMA function, except from that the grspw_close requires that all of its DMA channels have
been closed. Closing a device fails if DMA channels are still open.

Packets are transferred using DMA channels. To open a DMA channel one calls 'dma_id =
grspw_dma_open(id, dmachan_index)' and use the appropriate transmission function with the
dma_id to identify which DMA channel used.

3.2.2. Initialization

During early initialization when the operating system boots the driver performs some basic GRSPW device and
software initialization. The following steps are performed or not performed:

• GRSPW device and DMA channels I/O registers are initialized to a state where most are zero.
• DMA is stopped on all channels
• Link state and settings are not changed (RMAP may be active).
• RMAP settings untouched (RMAP may be active).
• Port select untouched (RMAP may be active).
• Time Codes are disabled and TC register cleared.
• IRQ generation disabled.
• Status Register cleared.
• Node address / DMA channels node address is untouched (RMAP may be active).
• Hardware capabilities are read.
• Device index determined.

3.2.3. Link control

The GRSPW link interface handles the communication on the SpaceWire network. It consists of a transmitter,
receiver, a FSM and FIFO interfaces. The current link state, status indicating past failures, parameters that affect
the link interface such as transmitter frequency for example is controlled using the GRSPW register interface.

The SpaceWire link is controlled using the software device interface. The driver initialization sequence during
boot does not affect the link parameters or state. The link is controlled separately from the DMA channels, even
though the link goes out from run-mode this does not affect the DMA interface. The DMA activity of all channels
are of course paused. It is possible to configure the driver to disable the link on certain error interrupts.

The link can be disabled when a link error is detected by the GRSPW interrupt handler. There are two options
which can be combined, either the DMA transmitter is disabled on error (disabled by hardware) or the software
interrupt handler disables the link on link error events selected by the user. When software disables the link the
work queue is informed and stops all DMA channels, thus grspw_dma_stop() is called for each DMA channel
by the work queue. The GRSPW interrupt handler will disable the link by writing "Link Disable" bit and clear-
ing "Link Start" bit on link errors. The user is responsible to restart the link interface again. The status register
(grspw_link_status()) and statistics interface can be used to determine which error(s) happened. The two
options are configured by the link control interface of the device API using function grspw_link_ctrl().

To make hardware disable the DMA transmitter automatically on error the option (LINKOPTS_DIS_ONERR)
is used.

To activate the GRSWP interrupt routine when any link error occurs, the bitmask option Enable Error
Link IRQ (LINKOPTS_EIRQ) shall be set. The bitmask options described as Disable Link on XX Error
(LINKOPTS_DIS_ON_*) are used to select which events shall actually cause link disable in the interrupt routine
and inform the work queue of a shutdown stop.

The options LINKOPTS_DIS_ON* are in effect even when the option LINKOPTS_EIRQ is disabled. Thus,
an interrupt routine invocation caused by a DMA channel interrupt event may disable the link in case any of
the conditions in LINKOPTS_DIS_ON_* are satisfied.

Statistics about the link errors can be read from the driver, see Section 3.3.8.

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 16

It is possible to circumvent the drivers action of clearing link status events in the GRSPW status register from
the interrupt routine. This can be used for example when the user wants to detect and handle all occurrences of
a specific link event. The function grspw_link_ctrl() is used to configure this via the stscfg parameter
with values LINKSTS_*. If a bit is set in this configuration parameter, the corresponding bit in the GRSPW status
register is cleared by the interrupt routine. If the bit is not set, the interrupt routine will never clear the status
flag and the user has full control of it. The status event can then be manually read and cleared with functions
grspw_link_status() and grspw_link_status_clr().

Statistics counters for events which are configured to be circumvented by the driver, as described above, shall
not be relied upon.

Function names prefix: grspw_link_*().

3.2.4. Time Code support

The GRSPW supports sending and receiving SpaceWire Time Codes. An interrupt can optionally be generated on
Time Code reception and the last Time Code can be read out from a GRSPW register.

The GRSPW core's Time Code interface can be controlled from the device API. One can generate Time Codes and
read out the last received or generated Time Code. An user assignable interrupt handler can be used to detect and
handle Time Code reception, the callback is called from the GRSPW interrupt routine thus from interrupt context.

Function names prefix: grspw_tc_*()

3.2.5. RMAP support

The GRSPW device has optional support for an RMAP target implemented in hardware. The target interface is
able to interpret RMAP protocol (protid=1) requests, take the necessary actions on the AMBA bus and generate
a RMAP response without the software's knowledge or interaction. The RMAP target can be disabled in order
to implement the RMAP protocol in software instead using the DMA operations. The RMAP CRC algorithm
optionally present in hardware can also be used for checksumming the data payload.

The device interface is used to get the RMAP features supported by the hardware and configuring the below
RMAP parameters:

• Probe if RMAP and RMAP CRC is supported by hardware
• RMAP enable/disable
• SpaceWire DESTKEY of RMAP packets

The SpaceWire node address, which also affects the RMAP target, is controlled from the address configuration
routines, see Section 3.2.7.

Function names prefix: grspw_rmap_*()

3.2.6. Port support

The GRSPW device has optional support for two ports (two connectors), where only one port can be active at a
time. The active SpaceWire port is either forced by the user or auto selected by the hardware depending on the
link state of the SpaceWire ports at a certain condition.

The device interface is used to get information about the GRSPW hardware port support, current set up and to
control how the active port is selected.

Function names prefix: grspw_port_*()

3.2.7. SpaceWire node address configuration

The GRSPW core supports assigning a SpaceWire node address or a range of addresses. The address affects the
received SpaceWire Packets, both to the RMAP target and to the DMA receiver. If a received packet does not
match the node address it is dropped and the GRSPW status indicates that one or more packets with invalid address
was received.

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 17

The GRSPW2 and GRSPW2_DMA cores that implements multiple DMA channels use the node address as a
way to determine which DMA channel a received packet shall appear at. A unique node address or range of node
addresses per DMA channel must be configured in this case.

It is also possible to enable promiscuous mode to enable all node addresses to be accepted into the first DMA
channel, this option does not affect the RMAP target node address decoding.

The GRSPW SpaceWire node address configuration is controlled using the device interface. A specific DMA
channel's node address is thus affected by the "global" device API and not controllable using the DMA channel
interface.

If supported by hardware the node address can be removed before DMA writes the packet to memory. This is a
configuration option per DMA channel using the DMA channel API.

Function names prefix: grspw_addr_*()

3.2.8. SpaceWire Interrupt Code support

The GRSPW2 has optionally support for receiving and generating SpaceWire Interrupt codes. The Interrupt Codes
implementation is based on the Time Code service but with a different Time Code Control content.

The SpaceWire Interrupt Code interface are controlled from the device interface.

Function names prefix: grspw_ic_*()

3.2.9. User DMA buffer handling

The driver is designed with zero-copy in mind. The user is responsible for setting up data buffers on its own . The
driver uses linked lists of packet buffers as input and output from/to the user. It makes it possible to handle multiple
packets on a single driver entry, which typically has a positive impact when transmitting small sized packets.

The API supports header and data buffers for every packet, and other packet specific transmission parameters such
as generate RMAP CRC and reception indicators such as if packet was truncated.

Since the driver never reads or writes to the header or data buffers the driver does not affect the CPU cache of the
DMA buffers, it is the user's responsibility to handle potential cache effects.

Note that the UT699 does not have D-cache snooping, this means that when reading received buffers D-cache
should either be invalidated or the load instructions should force cache miss when accessing DMA buffers
(LEON LDA instruction) or map the packet buffer DMA pages non-cacheable using the MMU .

Function names prefix: grspw_dma_*()

3.2.9.1. Buffer List help routines

The GRSPW packet driver internally uses linked lists routines. The linked list operations are found in the header
file and can be used by the user as well. The user application typically defines its own packet structures having the
same layout as struct grspw_pkt in the top and adding custom fields for the application buffer handling as needed.
For small implementations however the pkt_id field may be enough to implement application buffer handling.
The pkt_id field is never accessed by the driver, instead is an optional application 32-bit data storage intended
for identifying a specific packet, which packet pool the packet buffer belongs to, or a higher level protocol id
information for example.

Function names prefix: grspw_list_*()

3.2.10. Driver DMA buffer handling

The driver allocates memory for DMA descriptor tables using Linux cohoerent memory allocation services
dma_alloc_coherent() to map physical address space non-cachable for the DMA tables.

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 18

The driver represents packets with the struct grspw_pkt packet structure, see Table 3.30. They are arranged in
linked lists that are called queues by the driver. The order of the linked lists are always maintained to ensure that
the packet transmission order is represented correctly.

h ead = &p0

ta il = &p2

n ext = &p1

flags

h len

dlen

data

h dr

n ext = NULL

flags

h len

dlen

data

h dr

coun t = 3

n ext = &p2

flags

h len

dlen

data

h dr

Figure 3.1. Queue example - linked list of three grspw_pkt packets

3.2.10.1. DMA Queues

The driver uses three queues per DMA channel transfer direction, thus six queues per DMA channel. The number
of packets within a queue is maintained to optimize moving packets internally between queues and to the user
which also needs this information. The different queues are listed below.

• RX READY queue - free packet buffers provided by the user.
• RX SCHED queue - packets that have been assigned a DMA descriptor.
• RX RECV queue - packets containing a received packet.
• TX SEND queue - user provided packets ready to be sent.
• TX SCHED queue - packets that have been assigned a DMA descriptor.
• TX SENT queue - packets sent

Packet in the SCHED queues always are assigned to a DMA descriptor waiting for hardware to perform RX or
TX DMA operations. There is a limited number of DMA descriptor table, 64 TX or 128 RX descriptors. Naturally
this also limits the number of packets that the SCHED queues contain simultaneously. The other queues does not
have any maximum number of packets, instead it is up to the user to handle the sizing of the RX READY, RX
RECV, TX SEND and TX SENT packet queues by controlling the input and output to them. Thereby it is possible
to queue packets within the driver. Since the driver can move queued packets itself it can makes sense to queue
up free buffers in the RX READY queue and TX SEND queue for future transmission.

The current number of packets in respective queue can be read by doing function calls using the DMA API, see
Section 3.4.7. The user can for example use this to determine to wait or continue with packet processing.

3.2.10.2. DMA Queue operations

The user can control how the RX READY and TX SEND queue is populated, by providing packet buffers. The
user can control how and when packets are moved from RX READY and TX SEND queues into the RX SCHED
or TX SCHED by enabling the work queue and interrupt driven DMA or by manually trigger the moving calling
reception and transmission routines as described in Section 3.4.6 and Section 3.4.5.

The packets always flow in one direction from RX READY -> RX SCHED -> RX RECV. Likewise the TX packets
flow TX SEND -> TX SCHED -> TX SENT. The procedures triggering queue packet moves are listed below and
in Figure 3.2 and Figure 3.3. The interface of theses procedures are described in the DMA channel API.

• USER -> RX READY queue - rx_prepare, Section 3.4.6.

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 19

• RX RECV -> USER - rx_recv, Section 3.4.6.
• USER -> TX SEND - tx_send, Section 3.4.5.
• TX SEND -> USER - tx_reclaim, Section 3.4.5.

"RX PREPARE"
User in put em pty

packet buffers

RX READY
Queue

&p10

&p11

&p12

&p13

&p14

...

"RX RECV"
User receive

packet buffers

RX SCHED
Queue

&p7

&p8

&p9

s tep 3 (option al)

RX RECV
Queue

&p6

&p5

&p4

&p3

s tep 1 (option al)

Figure 3.2. RX queue packet flow and operations

"TX SEND"
User in put

packet buffers

TX SEND
Queue

&p10

&p11

&p12

&p13

&p14

...

"TX RECLAIM"
User retake

packet buffers

TX SCHED
Queue

&p7

&p8

&p9

s tep 3 (option al)

TX SENT
Queue

&p6

&p5

&p4

&p3

s tep 1 (option al)

Figure 3.3. TX queue packet flow and operations

3.2.11. Polling and blocking mode

Both polling and blocking transfer modes are supported. Blocking mode is implemented using DMA interrupt
and a work queue for processing the descriptor tables to avoid loading the CPU in interrupt context. The DMA
interrupt queues DMA jobs by using work queues. In polling mode the user is responsible for processing the
DMA descriptor tables at a user defined interval by calling reception and transmit routines of the driver.

DMA interrupt is generated every N received/transmitted packets or controlled individually per packet. The latter
is configured in the packet data structures and the former using the DMA channel configuration. See Section 3.4.3
and Section 3.4.9 for more information.

Blocking mode is implemented by letting the user setting up a condition on the RX or TX DMA queues packet
counters. The condition can optionally be timed out protected in a number of ticks, implemented by the semaphore
service provided by the operating system. Each time after the work queue has completed processing the DMA
descriptor table the condition is evaluated. If considered true then the blocked task is woken up by signaling on
the semaphore the task is waiting for. There is only one RX and one TX condition per channel, thus only two
tasks can block at a time per channel.

Blocking function names: grspw_dma_{tx,rx}_wait()

3.2.12. Interrupt and work queue

The driver can optionally spawn jobs on a work queue that is used service the GRSPW devices. The work queue
execution is triggered from the GRSPW ISR at certain user configurable events, at link errors or DMA transmis-
sions completed. When the a job has been scheduled on the work queue for a specific device or DMA channel the
ISR has turned off the specific interrupt source that the job will handle, once the job has been completed the job
re-enables interrupt source again. This is to lower the number of interrupts.

The work queue can also be used to automatically stop DMA operation on certain link errors. This feature is
enabled by activating the different Disable Link on XX Error (LINKOPTS_DIS_ON_*) options from the device

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 20

API link control interface. See Section 3.2.3. For the configured link errors the GRSPW interrupt handler will
trigger the shutdown work to start which will stop all DMA channels by calling grspw_dma_stop().

3.2.13. Starting and stopping DMA

The driver has been designed to make it clear which functionality belongs to the device and DMA channel APIs.
The DMA API is affected by started and stopped mode, where in stopped mode means that DMA is not possible
and used to configure the DMA part of the driver. During started mode a DMA channel can accept incoming and
send packets. Each DMA channel controls its own state. Parts of the DMA API is not available in during stopped
mode and some during stopped mode to simplify the design. The device API is not affected by this.

Typically the DMA configuration is set and user buffers are initialized before DMA is started. The user can control
the link interface separately from the DMA channel before and during DMA starts.

When the DMA channel is stopped by calling grspw_dma_stop() the driver will:

• Stop DMA transfers and DMA interrupts.
• Stop accepting new packets for transmission and reception. However the DMA functions will still be open for

the user to retrieve sent and unsent TX packet buffers and to retrieve received and unused RX packet buffers.
• Wake up blocked DMA threads and return to the caller. Tasks can be blocked waiting for TX/RX event by

using the TX/RX DMA wait functions.

The DMA close routines requires that the DMA channel is stopped. Similarly, the device close routine makes sure
that all DMA channels are closed to be successful. This is to make sure that all user tasks has return and hardware
is in a good state. It is the user's responsibility to stop the DMA channel before closing.

DMA operational function names: grspw_dma_{start,stop}()

3.2.14. Thread concurrency

The driver has been designed to allow multi-threading. There are five parts that can be operated simulaneously
by different or the same thread(s):

• Device (link control) interface.
• DMA RX channel.
• DMA TX channel.
• work queue is a separate thread of execution.
• Interrupt Service Routine.

There may be multiple DMA channels in a GRSPW device. DMA channels are operated independently of each
other. Each DMA channel has two semaphores to allow operations on different DMA channels simultaneously
as well as simultaneous RX and TX operations on the same DMA channel. However multiple RX and TX tasks
of the same RX or TX interface of the same DMA channel is possible but will temporarily lock each other out
during register and DMA descriptor table processing. The same semaphores are taken by the work queue during
DMA processing if the user has enabled it. There is a global device semaphore that manages device open/close
operations that introduce dependencies between different GRSPW device and between DMA channels on those
operations. The DMA channels and device interface share the same GRSPW I/O registers which needs in some
cases to be protected, they are protected from each other by using interrupt disabling (or spin-locks on SMP).

Each DMA channel also has two semahpores to implement blocking on RX/TX operations. The DMA RX/TX
interrupt wakes a worker which processes the DMA RX/TX descriptor tables and signals via the RX-WAIT and
TX-WAIT that incomming/outgoing packets processing has finished.

The table below summarises the semaphore operations of a DMA channel that the driver makes.

Table 3.1. DMA channel semaphore operations.

Function Operation Semaphore Description

dma_open Init semaphores RX TX RX and TX semaphores are initialized to 1.

dma_close Free semaphores RX TX Both RX and TX semaphores are taken and left in
locked state or deleted on a successful close. From

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 21

Function Operation Semaphore Description

this point the user can not enter other DMA func-
tions than dma_open.

dma_start Init semaphores RX-WAIT
TX-WAIT

The wait semaphores are initialized to 0 (locked)
state. From this point onwards the RX/TX wait in-
terface is available.

dma_stop Shutdown DMA RX TX RX-
WAIT TX-
WAIT

The RX and TX semaphores are taken and re-
turned in sequence during stopping a DMA chan-
nel. The RX-WAIT and TX-WAIT semahpores are
signalled in order for potential locked tasks to be
worken up and return to caller with an error code
or indicating DMA stopped (1) error code.

dma_rx_recv
dma_rx_prepare
dma_rx_count

RX DMA operations RX Holds the RX semahpore while performing RX op-
erations.

dma_tx_send
dma_tx_reclaim
dma_tx_count

RX DMA operations RX Holds the RX semaphore while performing TX op-
erations.

dma_tx_wait Wait for TX DMA. TX TX-
WAIT

Takes the TX semaphore to initialize the wait
structures. TX-WAIT is taken to block the calling
thread until the worker, DMA shutdown or timeout
awakens the thread again.

dma_rx_wait Wait for RX DMA. RX RX-
WAIT

Takes the RX semaphore to initialize the wait
structures. RX-WAIT is taken to block the calling
thread until the worker, DMA shutdown or timeout
awakens the thread again.

DMA work Normal DMA de-
scriptor list process-
ing.

RX TX RX-
WAIT TX-
WAIT

RX and TX locks taken in sequence. RX-WAIT
and TX-WAIT given on matching conditions.

DMA work error DMA AHB error
handling.

RX TX DMA RX/TX AHB errors leads to calling
grspw_dma_stop() for one DMA channel.
The work queue does not hold any locks itself.

Link work error Link error handling. RX TX SpaceWire link errors configured to gener-
ate interrupt may be handled by worker to call
grspw_dma_stop() for all DMA channels.

3.2.15. SMP Support

The driver has been designed with SMP in mind. Data structures, interrupt handling routine and GRSPW control
register accesses are spin-lock protected when SMP is enabled.

The design using a worker task off-loads the interrupt handler and makes it possible to control which CPU (with
CPU affinity in the scheduler) that should handle the descriptor table processing.

As described in Section 3.1.4 the SMP support requires testing.

3.2.16. User space support

The driver has been designed for kernel space where pointers and memory addresses are being exchanged with the
API user and trusted. In Chapter 2 it is described how this driver can be used indirectly from user space. Packet
buffer DMA memory is mapped into both kernel and user space using mmap() to allow an efficent zero-copy
implementation.

3.3. Device Interface

This section covers how the driver can be interfaced to an application to control the GRSPW hardware.

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 22

3.3.1. Opening and closing device

A GRSPW device must first be opened before any operations can be performed using the driver. The number of
devices registered to the driver can be retrieved using grspw_dev_count. A particular device can be opened
using grspw_open and closed grspw_close. The functions are described below.

An opened device can not be reopened unless the device is closed first. When opening a device the device is
marked opened by the driver. This procedure is thread-safe by protecting from other threads by using the GRSPW
driver's semaphore lock. The semaphore is used by all GRSPW devices on device opening, closing and DMA
channel opening and closing.

During opening of a GRSPW device the following steps are taken:

• GRSPW device I/O registers are initialized to a state where most are zero.
• Descriptor tables memory for all DMA channels are allocated from the coherent DMA allocation service

of Linux which provides non-cacheable linear memory address space. The descriptor table length is always
the maximum 0x400 Bytes for RX and TX.

• Internal resources like spin-locks and data structures are initialized.
• The GRSPW device Interrupt Service Routine (ISR) is installed and enabled. However hardware does not

generate interrupt until the user configures the device or DMA channel to generate interrupts.
• The driver is configured to clear all link status events from the ISR.
• The device is marked opened to protect the caller from other users of the same device.

The example below prints the number of GRSPW devices to screen then opens, prints the current link settings and
closes the first GRSPW device present in the system.

int print_spw_link_properties()
{
 void *device;
 int count, options, clkdiv;

 count = grspw_dev_count();
 printf("%d GRSPW device present\n", count);

 device = grspw_open(0);
 if (!device)
 return -1; /* Failure */

 options = clkdiv = -1;
 grspw_link_ctrl(device, &options, &clkdiv);
 if (options & LINKOPTS_AUTOSTART) {
 printf("GRSPW0: Link is in auto-start after start-up\n");
 }
 printf("GRSPW0: Clock divisor reset value is %d\n", clkdiv);

 grspw_close(device);
 return 0; /* success */
}

Table 3.2. grspw_dev_count function declaration

Proto int grspw_dev_count(void)

About Retrieve number of GRSPW devices registered to the driver.

Return int. Number of GRSPW devices registered in system, zero if none.

Table 3.3. grspw_open function declaration

Proto void *grspw_open(int dev_no)

About Opens a GRSPW device. The GRSPW device is identified by index. The returned value is used as in-
put argument to all functions operating on the device.

dev_no [IN] IntegerParam

Device identification number. Devices are indexed by the registration order to the driver, normally
dictated by the Plug & Play order. Must be equal or greater than zero, and smaller than that returned
by grspw_dev_count.

Return Pointer. Status and driver's internal device identification.

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 23

NULL Indicates failure to open device. Fails if device semaphore fails or device already is
open.

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies which GRSPW device.

Notes May blocking until other GRSPW device operations complete.

Table 3.4. grspw_close function declaration

Proto int grspw_close(void *d)

About Closes a previously opened device. All DMA channels must have been stopped and closed
by the user prior to calling this function. See the documentation for grspw_dma_stop and
grspw_dma_close.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

Value. Description

0 Device was successfully closed, or already previously closed.

1 Failure due to a DMA channel is open for this device.

Return

-1 Failure due to invalid input arguments or unknown semaphore error.

3.3.2. Hardware capabilities

The features and capabilities present in hardware might not be symmetric in a system with several GRSPW devices.
For example the two first GRSPW devices on the GR712RC implements RMAP whereas the others does not. The
driver can read out the hardware capabilities and present it to the user. The set of functionality are determined
at design time. In some system where two or more systems are connected together it is likely to have different
capabilities.

The capabilities are read out from the GRSPW I/O registers and written to the user in an easier accessible way.
See below function declarations for details.

Depending on the capabilities parts of the API may be inactivated due to missing hardware support. See respective
section for details.

The function grspw_rmap_support and grspw_port_count retrieves a subset of the hardware ca-
pabilities. They are described in respective section.

Table 3.5. grspw_hw_support function declaration

Proto void grspw_hw_support(void *d, struct grspw_hw_sup *hw)

About Read hardware capabilities of GRSPW device and write them in an easy to use format described by
the grspw_hw_sup data structure. The data structure is described by Table 3.6.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

hw [OUT] pointerParam

Address to where the driver will write the hardware capabilities. Pointer must point to memory and be
valid.

Return None. Always success, input is not range checked.

The grspw_hw_sup data structure is described by the declaration and table below. It is used to describe the GRSPW
hardware capabilities.

/* Hardware Support in GRSPW Core */
struct grspw_hw_sup {
 char rmap; /* If RMAP in HW is available */
 char rmap_crc; /* If RMAP CRC is available */
 char rx_unalign; /* RX unaligned (byte boundary) access allowed*/
 char nports; /* Number of Ports (1 or 2) */

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 24

 char ndma_chans; /* Number of DMA Channels (1..4) */
 char strip_adr; /* Hardware can strip ADR from packet data */
 char strip_pid; /* Hardware can strip PID from packet data */
 int hw_version; /* GRSPW Hardware Version */
 char reserved[2];
};

Table 3.6. grspw_hw_sup data structure declaration

Member Description

0 RMAP target functionality is not implemented in hardware.rmap

1 RMAP target functionality is implemented by hardware.

rmap_crc Non-zero if RMAP CRC is available in hardware.

rx_unalign Non-zero if hardware can perform RX unaligned (byte boundary) DMA accesses.

nports Number of SpaceWire ports in hardware. Values: 1 or 2.

ndma_chans Number of DMA Channels in hardware. Values: 1,2,3 or 4.

strip_adr non-zero if GRSPW can strip ADR from packet data.

strip_pid non-zero if device can strip PID from packet data.

27..16 The 12-bits indicates GRLIB AMBA Plug & Play device ID of APB device.
Indicates if GRSPW, GRSPW2 or GRSPW2_DMA.

hw_version

4..0 The 5 LSB bits indicates GRLIB AMBA Plug & Play device version of APB
device. Indicates subversion of GRSPW or GRSPW2.

reserved Not used. Reserved for future use.

3.3.3. Link Control

The SpaceWire link is controlled and configured using the device API functions described below. The link control
functionality is described in Section 3.2.3.

Table 3.7. grspw_link_ctrl function declaration

Proto void grspw_link_ctrl(void *d, int *options, int *stscfg, int *clk-
div)

About Read and configure link interface settings, such as clock divisor, link start and error options.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

options [IO] pointer to bitmask

If options points to -1, the link options are only read from the I/O registers, otherwise they are up-
dated according to the value in memory pointed to by options. Use LINKOPTS_* defines for op-
tion bit declarations.

The masks for LINKOPTS_DIS_ON* are in effect even when the option LINKOPTS_EIRQ is not
enabled.

Bitmask Description (prefixed LINKOPTS_)

DISABLE Read/Set enable/disable link option.

START Read/Set start link option.

AUTOSTART Read/Set enable/disable link auto-start option.

DIS_ONERR Read/Set disable DMA transmitters when a link error occurs option.

EIRQ Read/Set interrupt generation on link error option.

DIS_ON_CE Read/Set disable link on credit error option.

DIS_ON_ER Read/Set disable link on escape error option.

DIS_ON_DE Read/Set disable link on disconnect error option.

Param

DIS_ON_PE Read/Set disable link on parity error option.

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 25

DIS_ON_WE Read/Set disable link on write synchronization error option (GRSPW1 only).

DIS_ON_EE Read/Set disable link on early EOP/EEP error option.

stscfg [IO] pointer to bitmask

If stscfg points to -1, the link status configuration is only read, otherwise it is updated according to
the value in memory pointer to by stscfg. Use LINKSTS_* defines for stscfg bit declarations.

The status configuration selects which link status bits to clear by the driver ISR. Bits in the link status
register are cleared by the driver interrupt service routine if and only if the corresponding bit is set in
the stscfg parameter.

Bitmask Description (prefixed LINKSTS_)

CE Read/Set clear status from ISR for credit error

ER Read/Set clear status from ISR for escape error

DE Read/Set clear status from ISR for disconnect error

PE Read/Set clear status from ISR for parity error

WE Read/Set clear status from ISR for write synchronization error (GRSPW1 only)

IA Read/Set clear status from ISR for invalid address

Param

EE Read/Set clear status from ISR for early EOP/EEP

clkdiv [IO] pointer to integerParam

If clkdiv points to -1, the clock divisor fields are only read from the I/O registers, otherwise it is up-
dated according to the value in memory pointed to by clkdiv.

Return None.

Table 3.8. grspw_link_state function declaration

Proto spw_link_state_t grspw_link_state(void *d)

About Read and return current SpaceWire link status.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

enum spw_link_state_t. SpaceWire link status according to SpaceWire standard FSM state machine
numbering. The possible return values are listed below, all numbers must be prefixed with SPW_LS_
declared by enum spw_link_state_t.

Value Description.

ERRRST Error reset.

ERRWAIT Error Wait state.

READY Error Wait state.

CONNECTING Connecting state.

STARTED Stated state.

Return

RUN Run state - link and DMA is fully operational.

Table 3.9. grspw_link_status function declaration

Proto unsigned int grspw_link_status(void *d)

About Reads and returns the current value of the GRSPW status register.

The status register bits can be cleared by calling grspw_link_status_clr with return value as
parameter.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

Return unsigned int. Current value of the GRSPW Status Register.

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 26

Table 3.10. grspw_link_status_clr function declaration

Proto void grspw_link_status_clr(void *d, unsigned int mask)

About Clear bits in the GRSPW status register.

The mask can be the return value of function grspw_link_status

d [IN] pointerParam

Device identifier. Returned from grspw_open.

mask [IN] IntegerParam

Status bits to clear

Return None.

3.3.4. Node address configuration

This part for the device API controls the node address configuration of the RMAP target and DMA channels. The
node address configuration functionality is described in Section 3.2.7. The data structures and functions involved
in controlling the node address configuration are listed below.

struct grspw_addr_config {
 /* Ignore address field and put all received packets to first
 * DMA channel.
 */
 int promiscuous;

 /* Default Node Address and Mask */
 unsigned char def_addr;
 unsigned char def_mask;
 /* DMA Channel custom Node Address and Mask */
 struct {
 char node_en; /* Enable Separate Addr */
 unsigned char node_addr; /* Node address */
 unsigned char node_mask; /* Node address mask */
 } dma_nacfg[4];
};

Table 3.11. grspw_addr_config data structure declaration

promiscu-
ous

Enable (1) or disable (0) promiscous mode. The GRSPW will ignore the address field and put all
received packets to first DMA channel. See hardware manual for. This field is also used to by the
driver indicate if the settings should be written and read, or only read. See function description.

def_addr GRSPW default node address.

def_mask GRSPW default node address mask.

DMA channel node address array configuration, see below field description. DMA channel N is
described by dma_nacfg[N].

Field Description

node_en Enable (1) or disable (1) separate node address for DMA channel N (determined by
array index).

dma_nacfg

node_addr If separate node address is enabled this option sets the node address for DMA chan-
nel N (determined by array index).

node_mask If separate node address is enabled this option sets the node address mask for DMA channel N
(determined by array index).

Table 3.12. grspw_addr_ctrl function declaration

Proto void grspw_addr_ctrl(void *d, struct grspw_addr_config *cfg)

About Always read and optionally set the node addresses configuration. The GRSPW device is either con-
figured to have one single node address or a range of addresses by masking. The cfg input memory
layout is described by the grspw_addr_config data structure in Table 3.11. When using multiple DMA
channels one must assign each DMA channel a unique node address or a unique range by masking.
Each DMA channel is represented by the input dma_nacfg[N].

Param d [IN] pointer

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 27

Device identifier. Returned from grspw_open.

cfg [IO] pointerParam

Address to where the driver will read or write the address configuration from. If the promiscous
field is set to -1 the hardware is not written, instead the current configuration is only read and memory
content updated accordingly.

Return None.

3.3.5. Time Code support

SpaceWire Time Code handling is controlled and configured using the device API functions described below. The
Time Code functionality is described in Section 3.2.4.

Table 3.13. grspw_tc_ctrl function declaration

Proto void grspw_tc_ctrl(void *d, int *options)

About Always read and optionally set TimeCode settings of GRSPW device.

It is possible to enable/disable reception/transmission and interrupt generation of TimeCodes.

See TCOPTS_* defines for available options.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

options [IO] pointer to bit-mask

If options points to -1, the TimeCode options is only read from the I/O registers, otherwise it is updat-
ed according to the value in memory pointed to by options. Use TCOPTS_* defines for option bit dec-
larations.

Value Description

EN_RXIRQ When 1 enable, when zero disable TimeCode receive interrupt generation (affects TQ
and IE bit in control register).

EN_TX Enable/disable TimeCode transmission (affects TT bit in control register).

Param

EN_RX Enable/disable TimeCode reception (affects TR bit in control register).

Return None.

Table 3.14. grspw_tc_tx function declaration

Proto void grspw_tc_tx(void *d)

About Generates a TimeCode Tick-In.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

Return None.

Table 3.15. grspw_tc_isr function declaration

Proto void grspw_tc_isr(void *d, void (*tcisr)(void *data, int tc), void
*data)

About Assigns a Interrupt Service Routine (ISR) to handle TimeCode interrupt events. The ISR is called
from the GRSPW device's interrupt handler, thus the isr is called in interrupt context and care needs to
be taken.

The ISR is called when a Tick-Out event has happened and an interrupt has been generated. The ISR
is called with a custom argument data and the current value of the GRSPW TC register. The TC reg-
ister contains TimeCode control flags and counter.

The GRSPW interrupt handler always clears the GRSPW status field. It is performed after the ISR has
been called.

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 28

Note that even if the Tick-Out interrupt generation has not been enabled the ISR may still be called if
other GRSPW interrupts are generated and the GRSPW status indicates that a Tick-Out has been re-
ceived.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

tcisr [IN] pointer to functionParam

If argument is NULL the Tick-Out ISR call is disabled. Otherwise the pointer will be used in a func-
tion call from interrupt context when a Tick-Out event is detected.

data [IN] pointer to custom dataParam

This value is given as the first argument to the ISR.

Return None.

Table 3.16. grspw_tc_time function declaration

Proto void grspw_tc_time(void *d, int *time)

About Optionally writes and always reads the current TimeCode control flags and counter from hardware
registers. The values are written into the address pointed to by time.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

time [IO] pointer to bit-mask

If time points to -1, the TimeCode options are only read from the I/O registers. Otherwise hardware
is updated according to the value in memory pointed to by time before reading the hardware registers.
Use TCOPTS_* defines for time bit declarations.

bits Description

5..0 The 6 LSB bits reads/writes the time control flags.

Param

7..6 The 2 bits reads/writes the time counter value.

Return None.

3.3.6. Port Control

The SpaceWire port selection configuration, hardware support and current hardware status can be accessed using
the device API functions described below. The SpaceWire port support functionality is described in Section 3.2.3.

In cases where only one SpaceWire port is implemented this part of the API can safely be ignored. The functions
still deliver consistent information and error code failures when forcing Port1, however provides no real function-
ality.

Table 3.17. grspw_port_ctrl function declaration

Proto int grspw_port_ctrl(void *d, int *port)

About Always read and optionally set port control settings of GRSPW device. The configuration determines
how the hardware selects which SpaceWire port that is used. This is an optional feature in hardware to
support one or two SpaceWire ports. An error is returned if operation not supported by hardware.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

port [IO] pointer to bit-mask

The port configuration is first written if port does not point to -1. The port configuration is always
read from the I/O registers and stored in the port address.

Value Description

-1 The current port configuration is read and stored into the port address.

0 Force to use Port0.

Param

1 Force to use Port1.

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 29

> 1 Hardware auto select between Port0 or Port1.

Value. Description

0 Request successful.

Return

-1 Request failed. Port1 is not implemented in hardware.

Table 3.18. grspw_port_count function declaration

Proto int grspw_port_count(void *d)

About Reads and returns number of ports that hardware supports.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

int. Number of ports implemented in hardware.

Value Description

1 One SpaceWire port is implemented in hardware. In this case grspw_port_ctrl function
has no effect and grspw_port_active always returns 0.

Return

2 Two SpaceWire ports are implemented in hardware.

Table 3.19. grspw_port_active function declaration

Proto int grspw_port_active(void *d)

About Reads and returns the currently actively used SpaceWire port.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

int. Currently active SpaceWire port

Value Description

0 SpaceWire port0 is active.

Return

1 SpaceWire port1 is active.

3.3.7. RMAP Control

The device API described below is used to configure the hardware supported RMAP target. The RMAP support
is described in Section 3.2.5.

When RMAP CRC is implemented in hardware it can be used to generate and append a CRC on a per packet
basis. It is controlled by the DMA packet flags. Header and data CRC can be generated individually. See
Table 3.30 for more information.

Table 3.20. grspw_rmap_support function declaration

Proto int grspw_rmap_support(void *d, char *rmap, char *rmap_crc)

About Reads the RMAP hardware support of a GRSPW device. It is equivalent to use the
grspw_hw_support function to get the RMAP functionality present in hardware.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

rmap [OUT] pointer

If not NULL the RMAP configuration is stored into the address of rmap.

Value Description

0 RMAP target is not implemented in hardware.

Param

1 RMAP target is implemented in hardware.

Param rmap_crc [OUT] pointer

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 30

If not NULL the RMAP configuration is stored into the address of rmap.

Value Description

0 RMAP CRC algorithm is not implemented in hardware

1 RMAP CRC algorithm is implemented in hardware

Return None.

Table 3.21. grspw_rmap_ctrl function declaration

Proto int grspw_rmap_ctrl(void *d, int *options, int *dstkey)

About Read and optionally write RMAP configuration and SpaceWire destination key value. This function
controls the GRSPW hardware implemented RMAP functionality.

Set option to NULL not to read or write RMAP configuration. Set dstkey to NULL to not read or
write RMAP destination key. Setting both to NULL results in no operation.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

options [IO] pointer to bit-mask

The RMAP configuration is first written if options does not point to -1. The RMAP configuration
is always read from the I/O registers and stored in the options address. See RMAPOPTS_* defini-
tions for bit declarations.

Bit Description

EN_RMAP Enable (1) or Disable (0) RMAP target handling in hardware.

Param

EN_BUF Enable (0) or Disable (1) RMAP buffer. Disabling ensures that all RMAP requests
are processed in the order they arrive.

dstkey [IO] pointerParam

The SpaceWire 8-bit destination key is first written if dstkey does not point to -1. The destination
key configuration is always read from the I/O registers and stored in the dstkey address.

int. Status

0 Request successful.

Return

-1 Failed to enable RMAP handling in hardware. Not present in hardware.

3.3.8. Statistics

The driver counts statistics at certain events. The GRSPW device driver counters can be read out using the device
API. The number of interrupts serviced and different kinds of link error can be obtained.

Statistics related to a specific DMA channel activity can be accessed using the DMA channel API.

The read function is not protected by locks. A GRSPW interrupt could cause the statistics to be out of sync.
For example the number of link parity errors may not match the number of interrupts, by one.

struct grspw_core_stats {
 int irq_cnt;
 int err_credit;
 int err_eeop;
 int err_addr;
 int err_parity;
 int err_disconnect;
 int err_escape;
 int err_wsync; /* only in GRSPW1 */
};

Table 3.22. grspw_core_stats data structure declaration

irq_cnt Number of interrupts serviced for this GRSPW device.

err_credit Number of credit errors experienced for this GRSPW device.

err_eeop Number of Early EOP/EEP errors experienced for this GRSPW device.

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 31

err_addr Number of invalid address errors experienced for this GRSPW device.

err_parity Number of parity errors experienced for this GRSPW device.

err_disconnect Number of disconnect errors experienced for this GRSPW device.

err_escape Number of escape errors experienced for this GRSPW device.

err_wsync Number of write synchronization errors experienced for this GRSPW device. This is only ap-
plicable for GRSPW cores.

Table 3.23. grspw_stats_read function declaration

Proto void grspw_stats_read(void *d, struct grspw_core_stats *sts)

About Reads the current driver statistics collected from earlier events by GRSPW device and driver usage.
The statistics are stored to the address given by the second argument. The layout and content of the
statistics are defined by the grspw_core_stats data structure described in Table 3.22.

Note that the snapshot is taken without lock protection, as a consequence the statistics may not be syn-
chronized with each other. This could be caused if the function is interrupted by a the GRSPW inter-
rupt.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

sts [OUT] pointerParam

If NULL no operating is performed. Otherwise a snapshot of the current driver statistics are copied to
this user provided buffer.

The layout and content of the statistics are defined by the grspw_core_stats data structure described in
Table 3.22.

Return None.

Table 3.24. grspw_stats_clr function declaration

Proto void grspw_stats_clr(void *d)

About Resets the driver GRSPW device statistical counters to zero.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

Return None.

3.4. DMA interface

This section covers how the driver can be interfaced to an application to send and transmit SpaceWire packets
using the GRSPW hardware.

GRSPW2 and GRSPW2_DMA devices supports more than one DMA channel. The device channel zero is always
present.

3.4.1. Opening and closing DMA channels

The first step before any SpaceWire packets can be transferred is to open a DMA channel to be used for trans-
mission. As described in the device API Section 3.3.1 the GRSPW device the DMA channel belongs to must be
opened and passed onto the DMA channel open routines.

The number of DMA channels of a GRSPW device can obtained by calling grspw_hw_support.

An opened DMA channel can not be reopened unless the channel is closed first. When opening a channel the
channel is marked opened by the driver. This procedure is thread-safe by protecting from other threads by using
the GRSPW driver's semaphore lock. The semaphore is used by all GRSPW devices on device opening, closing
and DMA channel opening and closing.

During opening of a GRSPW DMA channel the following steps are taken:

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 32

• DMA channel I/O registers are initialized to a state where most are zero.
• Resources like semaphores used for the DMA channel implementation itself are allocated and initialized.
• The channel is marked opened to protect the caller from other users of the DMA channel.

Below is a partial example of how the first GRSPW device's first DMA channel is opened, link is started and a
packet can be received.

int spw_receive_one_packet()
{
 void *device;
 void *dma0;
 int count, options, clkdiv;
 spw_link_state_t state;
 struct grspw_list lst;

 device = grspw_open(0);
 if (!device)
 return -1; /* Failure */

 /* Start Link */
 options = LINKOPTS_ENABLE | LINKOPTS_START; /* Start Link */
 clkdiv = (9 << 8) | 9; /* Clock Divisor factor of 10 (100MHz input) */
 grspw_link_ctrl(device, &options, &clkdiv);

 /* wait until link is in run-state */
 do {
 state = grspw_link_state(device);
 } while (state != SPW_LS_RUN);

 /* Open DMA channel */
 dma0 = grspw_dma_open(device, 0);
 if (!dma0) {
 grspw_close(device);
 return -2;
 }

 /* Initialize and activate DMA */
 if (grspw_dma_start(dma0)) {
 grspw_dma_close(dma0);
 grspw_close(device);
 return -3;
 }

 /* ... */

 /* Prepare driver with RX buffers */
 grspw_dma_rx_prepare(dma0, 1, &preinited_rx_unused_buf_list0);

 /* Start sending a number of SpaceWire packets */
 grspw_dma_tx_send(dma0, 1, &preinited_tx_send_buf_list);

 /* Receive at least one packet */
 do {
 /* Try to receive as many packets as possible */
 count = -1;
 grspw_dma_rx_recv(dma0, 0, &lst, &count);
 } while (count <= 0);

 printf("GRSPW0.DMA0: Received %d packets\n", count);

 /* ... */

 grspw_dma_close(dma0);
 grspw_close(device);
 return 0; /* success */
}

Table 3.25. grspw_dma_open function declaration

Proto void *grspw_dma_open(void *d, int chan_no)

About Opens a DMA channel of a previously opened GRSPW device. The GRSPW device is identified by
its device handle d and the DMA channel is identified by index chan_no.

The returned value is used as input argument to all functions operating on the DMA channel.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

Param chan_no [IN] Integer

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 33

DMA channel identification number. DMA channels are indexed by 0, 1, 2 or 3. Other input values
cause NULL to be returned. The index must be equal or greater than zero, and smaller than the num-
ber of DMA channels reported by grspw_hw_support.

Pointer. Status and driver's internal device identification.

Value Description

NULL Indicates failure to DMA channel. Fails if device semaphore operation fails, DMA channel
does not exists, DMA channel already has been opened or that DMA channel resource al-
location or initialization fails.

Return

Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all DMA
channel API functions, identifies which DMA channel.

Notes May blocking until other GRSPW device operations complete.

Table 3.26. grspw_dma_close function declaration

Proto int grspw_dma_close(void *c)

About Closes a previously opened DMA channel. The specified DMA channel must be in stopped state be-
fore calling this function.

Prior to closing the user is responsible for calling grspw_dma_stop to stop on-going DMA trans-
fers and interrupts, free DMA channels resources and to unblock tasks waiting for RX/TX events on
this DMA channel. Blocked tasks must have exited the device driver otherwise an error code is re-
turned.

If threads have been blocked within DMA operations they will be woken up and
grspw_dma_close waits N ticks until they have returned to the caller with an error return value.

c [IN] pointerParam

DMA channel identifier. Returned from grspw_dma_open.

int. Return code as indicated below.

Value Description

0 Success.

1 Failure due to DMA channel is active (started) or tasks may be blocked within the driver
by the RX/TX wait interface of this specific device.

Return

-1 Failure due to invalid input arguments or unknown semaphore error.

3.4.2. Starting and stopping DMA operation

The start and stop operational modes are described in Section 3.2.13. The functions described below are used to
change the operational mode of a DMA channels. A summary of which DMA API functions are affected are listed
in Table 3.27, see function description for details on limitations.

Table 3.27. functions available in the two operational modes

Function Stopped Started

grspw_dma_open N/A N/A

grspw_dma_close Yes Yes

grspw_dma_start Yes No

grspw_dma_stop No Yes

grspw_dma_rx_recv Yes, with limitations, see
Section 3.4.6

Yes

grspw_dma_rx_prepare Yes, with limitations, see
Section 3.4.6

Yes

grspw_dma_rx_count Yes, with limitations, see
Section 3.4.7

Yes

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 34

Function Stopped Started

grspw_dma_rx_wait No Yes

grspw_dma_tx_send Yes, with limitations, see
Section 3.4.5

Yes

grspw_dma_tx_reclaim Yes, with limitations, see
Section 3.4.5

Yes

grspw_dma_tx_count Yes with limitations, see
Section 3.4.7

Yes

grspw_dma_tx_wait No Yes

grspw_dma_config Yes No

grspw_dma_config_read Yes Yes

grspw_dma_stats_read Yes Yes

grspw_dma_stats_clr Yes Yes

Table 3.28. grspw_dma_start function declaration

Proto int grspw_dma_start(void *c)

About Starts DMA operational mode for the DMA channel indicated by the argument. After this step it is
possible to send and receive SpaceWire packets. If the DMA channel already is in started mode, no
action will be taken.

The start routine clears and initializes the following:

• DMA descriptor rings.
• DMA queues.
• Statistic counters.
• Interrupt counters
• I/O registers to match DMA configuration
• Interrupt
• DMA Status
• Enables the receiver

Even though the receiver is enabled the user is required to prepare empty receive buffers after this
point, see grspw_dma_rx_prepare. The transmitter is enabled when the user provides send
buffers that ends up in the TX SCHED queue, see grspw_dma_tx_send.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

Return int. Always returns zero.

Table 3.29. grspw_dma_stop function declaration

Proto void grspw_dma_stop(void *c)

About Stops DMA operational mode for the DMA channel indicated by the argument. The transmitter will
abort ongoing transfers and the receiver disabled.

Blocked tasks within the DMA channel will be woken up and return to caller with an error indica-
tion. This will cause the stop function to wait in N ticks until the blovked tasks have exited the driver.
When no tasks have previously been blocked this function is not blocking either.

Packets in the RX READY, RX SCHED queues will be moved to the RX RECV queue. The
RXPKT_FLAG_RX packet flag is used to signal if the packet was received or just moved. Similar-
ly, the packets in the TX SEND and TX SCHED queues are moved to the TX SENT queue and the
TXPKT_FLAG_TX marks if the packet actually was transferred or not.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 35

Return None.

3.4.3. Packet buffer description

The GRSPW packet driver describes packets for both RX and TX using a common memory layout defined by the
data structure grspw_pkt. It is described in detail below.

There are differences in which fields and bits are used between RX and TX operations. The bits used in the flags
field are defined different. When sending packets the user can optionally provide two different buffers, the header
and data. The header can maximally be 256Bytes due to hardware limitations and the data supports 24-bit length
fields. For RX operations hdr and hlen are not used. Instead all data received is put into the data area.

struct grspw_pkt {
 struct grspw_pkt *next; /* Next packet in list. NULL if last packet */
 unsigned int pkt_id; /* User assigned ID (not touched by driver) */
 unsigned short flags; /* RX/TX Options and status */
 unsigned char reserved; /* Reserved, must be zero */
 unsigned char hlen; /* Length of Header Buffer (only TX) */
 unsigned int dlen; /* Length of Data Buffer */
 u32 data; /* 4-byte or byte aligned address depends on HW */
 u32 hdr; /* 4-byte or byte aligned address depends on HW (only TX) */
};

Table 3.30. grspw_pkt data structure declaration

next The packet structure can be part of a linked list. This field is used to point out the next packet in the
list. Set to NULL if this packet is the last in the list or a single packet.

pkt_id User assigned ID. This field is never touched by the driver. It can be used to store a pointer or other
data to help implement the user buffer handling.

RX/TX transmission options and flags indicating resulting status. The bits described below is to be
prefixed with TXPKT_FLAG_ or RXPKT_FLAG_ in order to match the TX or RX options defini-
tions declared by the driver's header file.

Bits TX Description (prefixed TXPKT_FLAG_)

NOCRC_MASK Indicates to driver how many bytes should not be part of the header CRC calcula-
tion. 0 to 15 bytes can be omitted. Use NOCRC_LENN to select a specific length.

IE Enable (1) or Disable (0) IRQ generation on packet transmission completed.

HCRC Enable (1) or disable (0) Header CRC generation (if CRC is available in hard-
ware). Header CRC will be appended (one byte at end of header).

DCRC Enable (1) or disable (0) Data CRC generation (if CRC is available in hardware).
Data CRC will be appended (one byte at end of packet).

TX Is set by the driver to indicate that the packet was transmitted. This does no signal
a successful transmission, but that transmission was attempted, the LINKERR bit
needs to be checked for error indication.

LINKERR Set if a link error was exhibited during transmission of this packet.

Bits RX Description (prefixed RXPKT_FLAG_)

IE Enable (1) or Disable (0) IRQ generation on packet reception completed.

TRUNK Set if packet was truncated.

DCRC Set if data CRC error detected (only valid if RMAP CRC is enabled).

HCRC Set if header CRC error detected (only valid if RMAP CRC is enabled).

EEOP Set if an End-of-Packet error occurred during reception of this packet.

flags

RX Marks if packet was received or not.

hlen Header length. The number of bytes hardware will transfer using DMA from the address indicated by
the hdr pointer. This field is not used by RX operation.

dlen Data payload length. The number of bytes hardware DMA read or written from/to the address indicat-
ed by the data pointer. On RX this is the complete packet data received.

data Header Buffer Address. DMA will read from this. The address can be 4-byte or byte aligned depend-
ing on hardware.

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 36

hdr Header Buffer Address. DMA will read hlen bytes from this. The address can be 4-byte or byte
aligned depending on hardware. This field is not used by RX operation.

3.4.4. Blocking/Waiting on DMA activity

Blocking and polling mode are described in the Section 3.2.11. The functions described below are used to set up
RX or TX wait conditions and blocks the calling thread until condition evaluates true.

Table 3.31. grspw_dma_tx_wait function declaration

Proto int grspw_dma_tx_wait(void *c, int send_cnt, int op, int sent_cnt,
int timeout)

About Block until send_cnt or fewer packets are queued in TX "Send and Scheduled" queue, op (AND or
OR), sent_cnt or more packet "have been sent" (Sent Q) condition is met.

If a link error occurs and the "Disable on Link error" is defined, this function will also return to caller.
The timeout argument is used to return after timeout ticks, regardless of the other conditions. If
timeout is zero, the function will wait forever until the condition is satisfied.

If IRQ of TX descriptors are not enabled conditions are never checked, this may hang infinitely
unless a timeout has been specified.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

send_cnt [IN] intParam

Sets the condition's number of packets in TX SEND queue.

op [IN] booleanParam

Condition operation. Set to zero for AND or one for OR.

sent_cnt [IN] intParam

Sets the condition's number of packets in TX SENT queue.

timeout [IN] intParam

Sets the timeout in number of system clock ticks. The operating system's semaphore service is used to
implement the timeout functionality. Set to zero to disable timeout, negative value is invalid.

Int. See return code below.

Value Description

-1 Error.

0 Returning to caller because specified conditions are now fullfilled.

1 DMA stopped.

2 Timeout, conditions are not met.

Return

3 Another task is already waiting. Service is Busy.

Table 3.32. grspw_dma_rx_wait function declaration

Proto int grspw_dma_rx_wait(void *c, int recv_cnt, int op, int ready_cnt,
int timeout)

About Block until recv_cnt or more packets are queued in RX RECV queue, op (AND or OR),
ready_cnt or fewer packet buffers are available in the RX "READY and Scheduled" queues, con-
dition is met.

If a link error occurs and the "Disable on Link error" is defined, this function will also return to caller,
however with an error. The timeout argument is used to return after timeout number of ticks, re-
gardless of the other conditions. If timeout is zero, the function will wait forever until the condition is
satisfied.

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 37

If IRQ of RX descriptors are not enabled conditions are never checked, this may hang infinitely
unless a timeout has been specified.

d [IN] pointerParam

Device identifier. Returned from grspw_open.

recv_cnt [IN] intParam

Sets the condition's number of packets in RX RECV queue.

op [IN] booleanParam

Condition operation. Set to zero for AND or one for OR.

ready_cnt [IN] intParam

Sets the condition's number of packets in RX READY queue.

timeout [IN] intParam

Sets the timeout in number of system clock ticks. The operating system's semaphore service is used to
implement the timeout functionality. Set to zero to disable timeout, negative value is invalid.

Int. See return code below.

Value Description

-1 Error.

0 Returning to caller because specified conditions are now fullfilled.

1 DMA stopped.

2 Timeout, conditions are not met.

Return

3 Another task is already waiting. Service is Busy.

3.4.5. Sending packets

Packets are sent by adding packets to the SEND queue. Depending on the driver configuration and usage the
packets eventually are put into SCHED queue where they will be assigned a DMA descriptor and scheduled for
transmission. After transmission has completed the packet buffers can be retrieved to view the transmission status
and to be able to reuse the packet buffers for new transfers. During the time the packet is in the driver it must
not be accessed by the user.

Transmission of SpaceWire packets are described in Section 3.2.1.

In the below example Figure 3.4 three SpaceWire packets are scheduled for transmission. The count should be set
to three. The second packet is programmed to generate an interrupt when transmission finished, GRSPW hardware
will also generate a header CRC using the RMAP CRC algorithm resulting in a 16 bytes long SpaceWire packet.

pkts (in put)

h ead = &p0

ta il = &p2 n ext = &p1

flags = 0

h len = 0

dlen = 5

data = &d0

h dr = NULL

n ext = NULL

flags = 0

h len = 0

dlen = 4

data = &d2

h dr = NULL

n ext = &p2

flags =
FLAG_IE |

FLAG_HCRC

h len = 7

dlen = 8

data = &d1

h dr = &h 1

DATA0 PAYLOAD

a b c d e

HEADER1 (with out CRC)

a b c d e f g

DATA1 PAYLOAD

a b c d e f g h

DATA2 PAYLOAD

a b c d

Figure 3.4. TX packet description pkts input to grspw_tx_dma_send

The below tables describe the functions involved in initiating and completing transmissions.

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 38

Table 3.33. grspw_dma_tx_send function declaration

Proto int grspw_dma_tx_send(void *c, int opts, struct grspw_list *pkts,
int count)

About Schedules a list of packets for transmission at some point in future. The packets are put to the SEND
queue of the driver. Depending on the input arguments a selection of the below steps are performed:

1. Move transmitted packets to SENT List (SCHED->SENT).
2. Add the requested packets to the SEND List (USER->SEND)
3. Schedule as many packets as possible for transmission (SEND->SCHED)

Skipping both step 1 and 3 may be useful when IRQ is enabled, then the worker thread will be respon-
sible for handling descriptors.

The GRSPW transmitter is enabled when packets are added to the TX SCHED queue.

The fastest solution in retrieving sent TX packets and sending new frames is to call:

1. grspw_dma_tx_reclaim(opts=0)
2. grspw_dma_tx_send(opts=1)

NOTE: the TXPKT_FLAG_TX flag must not be set in the packet structure.

c [IN] pointerParam

DMA channel identifier. Returned from grspw_dma_open.

opts [IN] Integer bit-mask

The above steps 1 and/or 3 may be skipped by setting opts argument according the description be-
low.

Bit Description

0 Set to 1 to skip Step 1.

Param

1 Set to 1 to skip Step 3.

pkts [IN] pointerParam

A linked list of initialized SpaceWire packets. The grspw_list structure must be initialized so that
head points to the first packet and tail points to the last.

Call this function with pkts set to NULL to avoid step 2. Just doing step 1 and 3 as determined by
opts is normally performed in polling-mode.

The layout and content of the packet is defined by the grspw_pkt data structure is described in Ta-
ble 3.30. Note that TXPKT_FLAG_TX of the flags field must not be set.

count [IN] integerParam

Number of packets in the packet list.

Status. See return codes below

Value Description

-1 Error occurred, DMA channel may not be valid.

0 Successfully added pkts to TX SEND/SCHED list.

Return

1 DMA stopped. No operation.

Notes This function performs no operation when the DMA channel is stopped.

Table 3.34. grspw_dma_tx_reclaim function declaration

Proto int grspw_dma_tx_reclaim(void *c, int opts, struct grspw_list *pkts,
int *count)

About Reclaim TX packet buffers that has previously been scheduled for transmission with
grspw_dma_tx_send. The packets in the SENT queue are moved to the pkts packet list. When
the move has been completed the packet can safely be reused again by the user. The packet structures
have been updated with transmission status to indicate transfer failures of individual packets. Depend-
ing on the input arguments a selection of the below steps are performed:

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 39

1. Move transmitted packets to SENT List (SCHED->SENT).
2. Move all SENT List to pkts list (SENT->USER).
3. Schedule as many packets as possible for transmission (SEND->SCHED)

Skipping both step 1 and 3 may be useful when IRQ is enabled, then the worker thread will be respon-
sible for descriptor processing. Skipping only step 2 can be useful in polling mode.

The fastest solution in retrieving sent TX packets and sending new frames is to call:

1. grspw_dma_tx_reclaim(opts=0)
2. grspw_dma_tx_send(opts=1)

NOTE: the TXPKT_FLAG_TX flag indicates if the packet was transmitted.

c [IN] pointerParam

DMA channel identifier. Returned from grspw_dma_open.

opts [IN] Integer bit-mask

The above steps 1 and/or 3 may be skipped by setting opts argument according the description be-
low.

Bit Description

0 Set to 1 to skip Step 1.

Param

1 Set to 1 to skip Step 3.

pkts [OUT] pointerParam

The list will be initialized to contain the SpaceWire packets moved from the SENT queue to the pack-
et list. The grspw_list structure will be initialized so that head points to the first packet, tail points
to the last and the last packet (tail) next pointer is NULL.

Call this function with pkts set to NULL to avoid step 2. Just doing step 1 and 3 as determined by
opts is normally performed in polling-mode.

The layout and content of the packet is defined by the grspw_pkt data structure is described in Ta-
ble 3.30. Note that TXPKT_FLAG_TX of the flags field indicates if the packet was sent of not.
In case of DMA being stopped one can use this flag to see if the packet was transmitted or not. The
TXPKT_FLAG_LINKERR indicates if a link error occurred during transmission of the packet, re-
gardless the TXPKT_FLAG_TX is set to indicate packet transmission attempt.

count [IO] pointer

Number of packets in the packet list.

Value Input Description

NULL Move all packets from the SENT queue to the packet list.

-1 Move all packets from the SENT queue to the packet list.

0 No packets are moved. Same as if pkts is NULL.

>0 Move a maximum of '*count' packets to the packet list.

Value Output Description

NULL Nothing performed.

Param

others '*count' is updated to reflect number of packets in packet list.

Status. See return codes below

Value Description

-1 Error occurred, DMA channel may not be valid.

0 Successful. pkts list filled with all packets from sent list.

Return

1 Indicates that DMA is stopped. Same as 0 but step 1 and 3 were never done.

Notes This function can only do step 1 and 2 to allow read out sent packets when in stopped mode. This is
useful when a link goes down and the DMA activity is stopped by user of by driver automatically.

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 40

3.4.6. Receiving packets

Packets are received by adding empty/free packets to the RX READY queue. Depending on the driver configura-
tion and usage the packets eventually are put into RX SCHED queue where they will be assigned a DMA descriptor
and scheduled for reception. After a packet is received into the buffer(s) the packet buffer(s) can be retrieved to
view the reception status and to be able to reuse the packet buffers for new transfers. During the time the packet
is in the driver it must not be accessed by the user.

Reception of SpaceWire packets are described in Section 3.2.1.

In the Figure 3.5 example three SpaceWire packets are received. The count parameters is set to three by the
driver to reflect the number of packets. The first packet exhibited an early end-of-packet during reception which
also resulted in header and data CRC error. All header points and header lengths have been set to zero by the user
since they are no used, however the values in those fields does not affect the RX operations. The RX flag is set
to indicate that DMA transfer was performed.

pkts (in put)

h ead = &p0

ta il = &p2 n ext = &p1

flags =
FLAG_RX |

FLAG_EEOP |
FLAG_DCRC |
FLAG_HCRC

h len = 0

dlen = 5

data = &d0

h dr = NULL

n ext = NULL

flags =
FLAG_RX

h len = 0

dlen = 4

data = &d2

h dr = NULL

n ext = &p2

flags =
FLAG_RX

h len = 0

dlen = 8

data = &d1

h dr = NULL

DATA0 PAYLOAD

a b c d e

DATA1 PAYLOAD

a b c d e f g h

DATA2 PAYLOAD

a b c d

Figure 3.5. RX packet output from grspw_rx_dma_recv

The below tables describe the functions involved in initiating and completing transmissions.

Table 3.35. grspw_dma_rx_prepare function declaration

Proto int grspw_dma_rx_prepare(void *c, int opts, struct grspw_list *pkts,
int count)

About Add more RX packet buffers for future for reception. The received packets can later be read out with
grspw_dma_rx_recv. The packets are put to the READY queue of the driver. Depending on the
input arguments a selection of the below steps are performed:

1. Move Received packets to RECV List (SCHED->RECV).
2. Add the pkt packet buffers to the READY List (USER->READY).
3. Schedule as many packets as possible (READY->SCHED).

Skipping both step 1 and 3 may be useful when IRQ is enabled, then the worker thread will be respon-
sible for handling descriptors. Skipping only step 2 can be useful in polling mode.

The fastest solution in retrieving received RX packets and preparing new packet buffers for future re-
ceive, is to call:

1. grspw_dma_rx_recv(opts=2, &recvlist) (Skip step 3)
2. grspw_dma_rx_prepare(opts=1, &freelist) (Skip step 1)

NOTE: the RXPKT_FLAG_RX flag must not be set in the packet structure.

c [IN] pointerParam

DMA channel identifier. Returned from grspw_dma_open.

Param opts [IN] Integer bit-mask

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 41

The above steps 1 and/or 3 may be skipped by setting opts argument according the description be-
low.

Bit Description

0 Set to 1 to skip Step 1.

1 Set to 1 to skip Step 3.

pkts [IN] pointerParam

A linked list of initialized SpaceWire packets. The grspw_list structure must be initialized so that
head points to the first packet and tail points to the last.

Call this function with pkts set to NULL to avoid step 2. Just doing step 1 and 3 as determined by
opts is normally performed in polling-mode.

The layout and content of the packet is defined by the grspw_pkt data structure is described in Ta-
ble 3.30. Note that RXPKT_FLAG_RX of the flags field must not be set.

count [IN] integerParam

Number of packets in the packet list.

Status. See return codes below

Value Description

-1 Error occurred, DMA channel may not be valid.

0 Successfully added pkts to RX READY/SCHED list.

Return

1 DMA stopped. No operation.

Notes This function performs no operation when the DMA channel is stopped.

Table 3.36. grspw_dma_rx_recv function declaration

Proto int grspw_dma_rx_recv(void *c, int opts, struct grspw_list *pkts,
int *count)

About Get received RX packet buffers that has previously been scheduled for reception with
grspw_dma_rx_prepare. The packets in the RX RECV queue are moved to the pkts pack-
et list. When the move has been completed the packet(s) can safely be reused again by the user. The
packet structures have been updated with reception status to indicate transfer failures of individual
packets, received packet length. The header pointer and length fields are not touched by the driver, all
data ends up in the data area. Depending on the input arguments a selection of the below steps are per-
formed:

1. Move scheduled packets to RECV List (SCHED->RECV).
2. Move all RECV packet to the callers list (RECV->USER).
3. Schedule as many free packet buffers as possible (READY->SCHED).

Skipping both step 1 and 3 may be useful when IRQ is enabled, then the worker thread will be respon-
sible for descriptor processing. Skipping only step 2 can be useful in polling mode.

The fastest solution in retrieving received RX packets and preparing new packet buffers for future re-
ceive, is to call:

1. grspw_dma_rx_recv(opts=2, &recvlist) (Skip step 3)
2. grspw_dma_rx_prepare(opts=1, &freelist) (Skip step 1)

NOTE: the RXPKT_FLAG_RX flag indicates if a packet was received, thus if the data field contains
new valid data or not.

c [IN] pointerParam

DMA channel identifier. Returned from grspw_dma_open.

opts [IN] Integer bit-mask

The above steps 1 and/or 3 may be skipped by setting opts argument according the description be-
low.

Param

Bit Description

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 42

0 Set to 1 to skip Step 1.

1 Set to 1 to skip Step 3.

pkts [OUT] pointerParam

The list will be initialized to contain the SpaceWire packets moved from the RECV queue to the pack-
et list. The grspw_list structure will be initialized so that head points to the first packet, tail points
to the last and the last packet (tail) next pointer is NULL.

Call this function with pkts set to NULL to avoid step 2. Just doing step 1 and 3 as determined by
opts is normally performed in polling-mode.

The layout and content of the packet is defined by the grspw_pkt data structure is described in Ta-
ble 3.30. Note that RXPKT_FLAG_RX of the flags field indicates if the packet was received or
not. In case of DMA being stopped one can use this flag to see if the packet was received or not. The
TRUNK, DCRC, HCRC and EEOP flags indicates if an error occurred during reception of the packet,
regardless the RXPKT_FLAG_RX is set to indicate packet reception attempt.

count [IO] pointer

Number of packets in the packet list.

Value Input Description

NULL Move all packets from the RECV queue to the packet list.

-1 Move all packets from the RECV queue to the packet list.

0 No packets are moved. Same as if pkts is NULL.

>0 Move a maximum of '*count' packets to the packet list.

Value Output Description

NULL Nothing performed.

Param

others '*count' is updated to reflect number of packets in packet list.

Status. See return codes below

Value Description

-1 Error occurred, DMA channel may not be valid.

0 Successful. pkts list filled with all packets from recv list.

Return

1 Indicates that DMA is stopped. Same as 0 but step 1 and 3 were never done.

Notes This function can only do step 1 and 2 to allow read out received packets when in stopped mode. This
is useful when a link goes down and the DMA activity is stopped by user or by driver automatically.

3.4.7. Transmission queue status

The current status of send and receive transmissions can be obtained by looking at the DMA channel's packet
queues. Note that the queues content does not change unless the user calls the driver to perform work or if the work
thread triggered via DMA interrupts is enabled. The current number of packets actually processed by hardware
can also be read using the functions described below.

Table 3.37. grspw_dma_tx_count function declaration

Proto void grspw_dma_tx_count(void *c, int *send, int *sched, int *sent,
int *hw)

About Get current number of packets in respective TX queue and current number of unhandled packets that
hardware processed (from descriptor table).

c [IN] pointerParam

DMA channel identifier. Returned from grspw_dma_open.

send [OUT] pointerParam

If not NULL the TX SEND Queue count is stored into the address of send.

Param sched [OUT] pointer

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 43

If not NULL the TX SCHED Queue count is stored into the address of sched.

sent [OUT] pointerParam

If not NULL the TX SENT Queue count is stored into the address of sent.

hw [OUT] pointerParam

If not NULL the number of packets completed transmitted by hardware. This is determined by look-
ing at the TX descriptor pointer register. The number represents how many of the SCHED queue that
actually have been transmitted by hardware but not handled by the driver yet. The number is stored in-
to the address of hw.

Return None.

Table 3.38. grspw_dma_rx_count function declaration

Proto void grspw_dma_rx_count(void *c, int *ready, int *sched, int *recv,
int *hw)

About Get current number of packets in respective RX queue and current number of unhandled packets that
hardware processed (from descriptor table).

c [IN] pointerParam

DMA channel identifier. Returned from grspw_dma_open.

ready [OUT] pointerParam

If not NULL the RX READY Queue count is stored into the address of ready.

sched [OUT] pointerParam

If not NULL the RX SCHED Queue count is stored into the address of sched.

recv [OUT] pointerParam

If not NULL the RX RECV Queue count is stored into the address of recv.

hw [OUT] pointerParam

If not NULL the number of packets completed received by hardware. This is determined by looking at
the RX descriptor pointer register. The number represents how many of the SCHED queue that actual-
ly have been received by hardware but not handled by the driver yet. The number is stored into the ad-
dress of hw.

Return None.

3.4.8. Statistics

The driver counts statistics at certain events. The driver's DMA channel counters can be read out using the DMA
API. The number of interrupts serviced by the worker task, packet transmission statistics, packet transmission
errors and packet queue statistics can be obtained.

The read function is not protected by locks. A GRSPW interrupt or other tasks performing driver operations
on the same device could cause the statistics to be out of sync. Similar to the statistic functionality of the
device API.

struct grspw_dma_stats {
 /* IRQ Statistics */
 int irq_cnt; /* Number of DMA IRQs generated by channel */

 /* Descriptor Statistics */
 int tx_pkts; /* Number of Transmitted packets */
 int tx_err_link; /* Number of Transmitted packets with Link Error*/
 int rx_pkts; /* Number of Received packets */
 int rx_err_trunk; /* Number of Received Truncated packets */
 int rx_err_endpkt; /* Number of Received packets with bad ending */

 /* Diagnostics to help developers sizing their number buffers to avoid
 * out-of-buffers or other phenomenons.
 */
 int send_cnt_min; /* Minimum number of packets in TX SEND queue */
 int send_cnt_max; /* Maximum number of packets in TX SEND queue */
 int tx_sched_cnt_min; /* Minimum number of packets in TX SCHED queue */

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 44

 int tx_sched_cnt_max; /* Maximum number of packets in TX SCHED queue */
 int sent_cnt_max; /* Maximum number of packets in TX SENT queue */
 int tx_work_cnt; /* Times the work thread processed TX BDs */
 int tx_work_enabled; /* No. TX BDs enabled by work thread */

 int ready_cnt_min; /* Minimum number of packets in RX READY queue */
 int ready_cnt_max; /* Maximum number of packets in RX READY queue */
 int rx_sched_cnt_min; /* Minimum number of packets in RX SCHED queue */
 int rx_sched_cnt_max; /* Maximum number of packets in RX SCHED queue */
 int recv_cnt_max; /* Maximum number of packets in RX RECV queue */
 int rx_work_cnt; /* Times the work thread processed RX BDs */
 int rx_work_enabled; /* No. RX BDs enabled by work thread */
};

Table 3.39. grspw_dma_stats data structure declaration

irq_cnt Number of interrupts serviced for this DMA channel.

tx_pkts Number of transmitted packets with link errors.

tx_err_link Number of transmitted packets with link errors.

rx_pkts Number of received packets.

rx_err_trunk Number of received Truncated packets.

rx_err_endpkt Number of received packets with bad ending.

send_cnt_min Minimum number of packets in TX SEND queue.

send_cnt_max Maximum number of packets in TX SEND queue.

tx_sched_cnt_min Minimum number of packets in TX SCHED queue.

tx_sched_cnt_max Maximum number of packets in TX SCHED queue.

sent_cnt_max Maximum number of packets in TX SENT queue.

tx_work_cnt Times the work thread processed TX BDs.

tx_work_enabled Number of TX BDs enabled by work thread.

ready_cnt_min Minimum number of packets in RX READY queue.

ready_cnt_max Maximum number of packets in RX READY queue.

rx_sched_cnt_min Minimum number of packets in RX SCHED queue.

rx_sched_cnt_max Maximum number of packets in RX SCHED queue.

recv_cnt_max Maximum number of packets in RX RECV queue.

rx_work_cnt Times the work thread processed RX BDs.

rx_work_enabled Number of RX BDs enabled by work thread.

Table 3.40. grspw_dma_stats_read function declaration

Proto void grspw_dma_stats_read(void *d, struct grspw_dma_stats *sts)

About Reads the current driver statistics collected from earlier events by a DMA channel and DMA channel
usage. The statistics are stored to the address given by the second argument. The layout and content of
the statistics are defined by the grspw_dma_stats data structure is described in Table 3.39.

Note that the snapshot is taken without lock protection, as a consequence the statistics may not be syn-
chronized with each other. This could be caused if the function is interrupted by a the GRSPW inter-
rupt or other tasks performing driver operations on the same DMA channel.

c [IN] pointerParam

DMA channel identifier. Returned from grspw_dma_open.

sts [OUT] pointerParam

A snapshot of the current driver statistics are copied to this user provided buffer.

The layout and content of the statistics are defined by the grspw_dma_stats data structure is described
in Table 3.39.

Return None.

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 45

Table 3.41. grspw_dma_stats_clr function declaration

Proto void grspw_dma_stats_clr(void *c)

About Resets one DMA channel's statistical counters. Most of the driver's counters are set to zero, however
some have other initial values, for example the send_cnt_min.

c [IN] pointerParam

DMA channel identifier. Returned from grspw_dma_open.

Return None.

3.4.9. DMA channel configuration

Various aspects of DMA transfers can be configured using the functions described in this section. The configu-
ration affects:

• DMA transfer options, no-spill, strip address/PID.
• Receive max packet length.
• RX/TX Interrupt generation options.

struct grspw_dma_config {
 int flags; /* DMA config flags, see DMAFLAG_* options */
 int rxmaxlen; /* RX Max Packet Length */
 int rx_irq_en_cnt; /* Enable RX IRQ every cnt descriptors */
 int tx_irq_en_cnt; /* Enable TX IRQ every cnt descriptors */
};

Table 3.42. grspw_dma_config data structure declaration

RX/TX DMA transmission options See below.

Bits Description (prefixed DMAFLAG_ or DMAFLAG2_)

NO_SPILL Enable (1) or Disable (0) packet spilling, flow control.

STRIP_ADR Enable (1) or Disable (0) stripping node address byte from DMA write
transfers (packet reception). See hardware support to determine if present in
hardware. See hardware documentation about DMA CTRL SA bit.

STRIP_PID Enable (1) or disable (0) stripping PID byte from DMA write transfers
(packet reception).(if CRC is available in hardware). See hardware sup-
port to determine if present in hardware. See hardware documentation about
DMA CTRL SP bit.

TXIE Enable (1) or disable (0) DMA TX interrupts on DMA transmission. This
affects the DMA-CTRL TI register bit. This can be used in combination
with packet flags to allow the user to control precisely which TX SpW
buffers will generate interrupt(s) on send completed.

flags

RXIE Enable (1) or disable (0) DMA RX interrupts on DMA reception. This af-
fects the DMA-CTRL RI register bit. This can be used in combination with
packet flags to allow the user to control precisely which RX SpW buffers
will generate interrupt(s) on receive completed.

rxmaxlen Max packet reception length. Longer packets with will be truncated see
RXPKT_FLAG_TRUNK flag in packet structure.

rx_irq_en_cnt Controls RX interrupt generation. This integer number enable RX DMA IRQ every 'cnt' de-
scriptors.

tx_irq_en_cnt Controls TX interrupt generation. This integer number enable TX DMA IRQ every 'cnt' de-
scriptors.

Table 3.43. grspw_dma_config function declaration

Proto int grspw_dma_config(void *c, struct grspw_dma_config *cfg)

About Set the DMA channel configuration options as described by the input arguments. It is only possible
the change the configuration on stopped DMA channels, otherwise an error code is returned.

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 46

The hardware registers are not written directly. The settings take effect when the DMA channel is
started calling grspw_dma_start.

c [IN] pointerParam

DMA channel identifier. Returned from grspw_dma_open.

cfg [IN] pointerParam

Address to where the driver will read or write the DMA channel configuration from. The configura-
tion options are described in Table 3.42.

int. Return code as indicated below.

Value Description

0 Success.

Return

-1 Failure due to invalid input arguments or DMA has already been started.

Table 3.44. grspw_dma_config_read function declaration

Proto void grspw_dma_config_read(void *c, struct grspw_dma_config *cfg)

About Copies the DMA channel configuration to user defined memory area.

c [IN] pointerParam

DMA channel identifier. Returned from grspw_dma_open.

sts [OUT] pointerParam

The driver DMA channel configuration options are copied to this user provided buffer.

The layout and content of the statistics are defined by the grpsw_dma_config data structure is de-
scribed in Table 3.42.

Return None.

3.5. API reference

This section lists all functions and data structures part of the GRSPW driver API, and in which section(s) they are
described. The API is also documented in the source header file of the driver, see Section 3.1.2.

3.5.1. Data structures

The data structures used together with the Device and/or DMA API are summarized in the table below.

Table 3.45. Data structures reference

Data structure name Section

struct grspw_pkt 3.4.3

struct grspw_list 3.2.10

struct grspw_addr_config 3.3.4

struct grspw_hw_sup 3.3.2

struct grspw_core_stats 3.3.8

struct grspw_dma_config 3.4.9

struct grspw_dma_stats 3.4.8

3.5.2. Device functions

The GRSPW device API. The functions listed in the table below operates on the GRSPW common registers and
driver set up. Changes here typically affects all DMA channels and link properties.

Table 3.46. Device function reference

Prototype Section

int grspw_dev_count(void) 3.3.1

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 47

Prototype Section

void *grspw_open(int dev_no) 3.3.1

void grspw_close(void *d) 3.3.1

void grspw_hw_support(void *d, struct grspw_hw_sup *hw) 3.3.2

void grspw_stats_read(void *d, struct grspw_core_stats *sts) 3.3.8

void grspw_stats_clr(void *d) 3.3.8

void grspw_addr_ctrl(void *d, struct grspw_addr_config *cfg) 3.3.4,
3.2.7

spw_link_state_t grspw_link_state(void *d) 3.3.3,
3.2.3

void grspw_link_ctrl(void *d, int *options, int *clkdiv) 3.3.3,
3.2.3

unsigned int grspw_link_status(void *d) 3.3.3,
3.2.3

void grspw_link_status_clr(void *d, unsigned int mask) 3.3.3,
3.2.3

void grspw_tc_ctrl(void *d, int *options) 3.3.5,
3.2.4

void grspw_tc_tx(void *d) 3.3.5,
3.2.4

void grspw_tc_isr(void *d, void (*tcisr)(void *data, int tc), void
*data)

3.3.5,
3.2.4

void grspw_tc_time(void *d, int *time) 3.3.5,
3.2.4

int grspw_rmap_ctrl(void *d, int *options, int *dstkey) 3.3.7,
3.2.5

void grspw_rmap_support(void *d, char *rmap, char *rmap_crc) 3.3.7,
3.2.5,
3.3.2

int grspw_port_ctrl(void *d, int *port) 3.3.6,
3.2.6

int grspw_port_count(void *d) 3.3.6,
3.2.6,
3.3.2

int grspw_port_active(void *d) 3.3.6,
3.2.6

3.5.3. DMA functions

The GRSPW DMA channel API. The functions listed in the table below operates on one GRSPW DMA channel
and its driver set up. This interface is used to send and receive SpaceWire packets.

GRSPW2 and GRSPW2_DMA devices supports more than one DMA channel.

Table 3.47. DMA channel function reference

Prototype Section

void *grspw_dma_open(void *d, int chan_no) 3.2.1,
3.4.1,
3.3.1

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 48

Prototype Section

void grspw_dma_close(void *c) 3.2.1,
3.4.1,
3.3.1

int grspw_dma_start(void *c) 3.4.2,
3.2.13

void grspw_dma_stop(void *c) 3.4.2,
3.2.13

int grspw_dma_rx_recv(void *c, int opts, struct grspw_list *pkts,
int *count)

3.4.6,
3.2.1

int grspw_dma_rx_prepare(void *c, int opts, struct grspw_list *pk-
ts, int count)

3.4.6,
3.2.1

void grspw_dma_rx_count(void *c, int *ready, int *sched, int *recv) 3.4.7,
3.2.10.1

int grspw_dma_rx_wait(void *c, int recv_cnt, int op, int ready_cnt,
int timeout)

3.4.4,
3.2.11

int grspw_dma_tx_send(void *c, int opts, struct grspw_list *pkts,
int count)

3.4.5,
3.2.1

int grspw_dma_tx_reclaim(void *c, int opts, struct grspw_list *pk-
ts, int *count)

3.4.5,
3.2.1

void grspw_dma_tx_count(void *c, int *send, int *sched, int *sent) 3.4.7,
3.2.10.1

int grspw_dma_tx_wait(void *c, int send_cnt, int op, int sent_cnt,
int timeout)

3.4.4,
3.2.11

int grspw_dma_config(void *c, struct grspw_dma_config *cfg) 3.4.9

void grspw_dma_config_read(void *c, struct grspw_dma_config *cfg) 3.4.9

void grspw_dma_stats_read(void *c, struct grspw_dma_stats *sts) 3.4.8

void grspw_dma_stats_clr(void *c) 3.4.8

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 49

4. SpaceWire Router APB Register Driver

4.1. Introduction

This section describes the Linux Frontgrade Gaisler SpaceWire Router APB registers kernel driver. It provides
user space applications with a SpaceWire Router configuration interface. The driver allows the user to configure
the router and control the SpaceWire links.

The SpaceWire router is accessed using the standard UNIX ioctl routine.

4.1.1. Sources

The GRSPW driver sources are provided under the GPL license, they are available in the GRLIB driver package
as described in the table below. Applications should include the "GRSPW Kernel Driver header" file. All files are
relative the base of the driver package.

Table 4.1. SpaceWire Router driver sources

Location Description

spw/grspw_router.c SpaceWire Router APB Registers Driver

include/linux/grlib/grspw_router.h SpaceWire Router APB Registers header

4.1.2. Using the driver

Applications wanting to access SpW Router registers from user-space should include the Router driver header file.

Each SpW Router core is accessed using a single major/minor number. The Major/Minor numbers are determined
by the driver package configuration, see Section 1.5.

4.1.3. Examples

Within the GRLIB driver package there is a user space example of how this driver can be used, the example file
is named spwrouter_custom_config.c.

4.2. Control Interface

4.2.1. Overview

The SpaceWire router can be configured using the control interface described in this section. The interface is
router hardware specific and a good knowledge of the hardware is necessary. See hardware documentation. The
data structures are described in the header file available in the GRLIB driver package.

The control interface is accessed using the standard UNIX ioctl routine.

In the table below all currently supported ioctl commands and their argument is listed. All router commands
starts with GRSPWR_IOCTL_ which has to be added to the command name given in the table below. The data
direction below indicates in which direction data is transferred to the kernel:

• Input: Argument is an address. The driver reads data from the given address.
• Output: Argument is an address. The driver writes data to the given address.
• Input/Output: both above cases.
• Argument: 32-bit simple Argument, no data transferred between kernel/user.
• None: Argument ignored.

Table 4.2. ioctl commands supported by the GRSPW Kernel driver.

Command Data Di-
rection

Argument Type Description

HWINFO Output struct
grspw_hw_info *

Copy hardware configuration of the router core, such as
number of SpaceWire ports, number DMA port, number
of FIFO port, etc.

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 50

Command Data Di-
rection

Argument Type Description

CFG_SET Input struct
router_config *

Configure the router by writing the configuration bit of
the Control/Status register, setting the Instance ID, Start
up Clock Divisor, Timer prescaler and the timer reload
registers.

CFG_GET Output struct
router_config *

Reads the current router configuration into the user spec-
ified memory area.

ROUTES_SET Input struct router_routes
*

Configure the 224 words long router table.

ROUTES_GET Output struct router_routes
*

Copy the current 224 words long router table to user pro-
vided buffer.

PS_SET Input struct router_ps * Configure the port setup registers according to user buffer.

PS_GET Output struct router_ps * Copy the current port setup registers to user buffer.

WE_SET Argument int If the argument's bit zero is one then the WE bit in the
configuration write enable register is set, otherwise it is
cleared. This enabled the user to write protect the current
configuration.

PORT Input/Out-
put

struct router_port * Write and/or Read (in that order) the port control and port
status registers of one port of the SpaceWire router. The
flag field determines which operations should be per-
formed. See ROUTER_PORTFLG_*. The port field se-
lects which port is to be written/read.

CFGSTS_SET Argument unsigned int Writes the Config/Status register.

CFGSTS_GET Output unsigned int * Copies the current value of the Config/Status register to
the user provided buffer.

TC_GET Output unsigned int * Copies the current value of the Time-code register to the
user provided buffer.

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 51

5. MAPLIB Device Memory Driver

5.1. Introduction

This section describes the Linux MAPLIB kernel driver. It provides user space applications with a possibility to
memory map a configurable number 128 KBytes blocks of memory to user space. The memory is direct memory
access (DMA) capable and can therefore be used in other GRLIB drivers which implements user provided device
memory buffers. In order for memory to be DMA capable a number of things must be satisfied, for example that
memory is linear with one DMA operation and that the cache is handled correctly. Currently the MAPLIB driver
memory maps with the memory management unit (MMU) cacheable bit set, this means that the driver will not
work for systems with lacks data cache snooping (unless flush is performed by the using driver).

Memory is mapped and unmapped to user space using the mmap, mmap2 and unmap functions. The functions
are described in the man-page of respective function.

The driver provides a secure way of mapping, calling the using drivers when the memory is unmapped or changed
in any other way. The using driver should then stop all DMA operation to that memory area and report an error
to the user.

The driver's main intention is to let other drivers more easily implement zero-copy between user space and kernel
space, both between the the same device instance and between different device instance and even between device
instances of different drivers. For example a SpaceWire packet received on GRSPW[0] may be sent on GRSPW[2]
without copying the actual data, or for example parts of a SpaceWire packet received on GRSPW[1] may be sent
to ground using the driver for GRTM[0] device.

Blocks of 128KBytes are allocated within the Linux Kernel in low memory. The amount of memory allocated is
configurable through the standard UNIX ioctl interface of the MAPLIB driver.

5.1.1. Sources

The MAPLIB driver sources are provided under the GPL license, they are available in the GRLIB driver package
as described in the table below. Applications should include the "MAPLIB Driver header" file. All files are relative
the base of the driver package.

Table 5.1. MAPLIB driver sources

Location Description

misc/maplib.c Device memory library

include/linux/grlib/maplib.h Device memory library header

5.1.2. Using the driver

Applications wanting to access DMA capable memory from user space using the MAPLIB device driver should
include the MAPLIB driver header file. The amount of memory requested

Debug output is available through the /proc/kmsg interface, and additional debug output can be enabled by
defining MAPLIB_DEBUG in the driver sources maplib.c.

Each MAPLIB driver is accessed using a major/minor number. The driver has a build-time configurable number of
"memory pools" (device nodes). The Major/Minor numbers are determined by the driver package configuration,
see Section 1.5.

One can list the current address space mappings of a process by concatenating the /proc/PROCESS_NUMBER/
maps. Reading the file after the mapping processes is completed will reveal the mapping range and access per-
missions and so on.

5.1.3. Examples

Within the GRLIB driver package there are (at the time of writing) two examples, one example using the MAPLIB
driver only teset_maplib.c, and one SpaceWire example which demonstrates how the MAPLIB can be used
in a real application using the GRSPW driver.

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 52

5.2. Control Interface

The control interface is accessed using the standard UNIX ioctl routine.

In the table below all currently supported ioctl commands and their argument is listed. All MAPLIB commands
starts with MAPLIB_IOCTL_ which has to be added to the command name given in the table below. The data
direction below indicates in which direction data is transferred to the kernel:

• Input: Argument is an address. The driver reads data from the given address.
• Output: Argument is an address. The driver writes data to the given address.
• Input/Output: both above cases.
• Argument: 32-bit simple Argument, no data transferred between kernel/user.
• None: Argument ignored.

Table 5.2. ioctl commands supported by the MAPLIB Kernel driver.

Command Data Di-
rection

Argument Type Description

SETUP Input struct maplib_setup * Configure Memory MAP Library, and allocate all need
memory, all previous (if any) memory mapped pages must
be unmapped otherwise and error will occur and errno set
to EINVAL.

MMAPINFO Output struct
maplib_mmap_info *

Get Current MMAP Info from Driver, this tells the user how
to memory map the memory into user space. It tells the user
how many blocks, their size and the offset into the MAPLIB
device memory mmap() should try to map from.

5.3. Mapping Interface

Once the driver has been configured using the control interface the memory must be mapped to the user space
process address space before any other driver or the application itself can start using the DMA capable memory.
Once the memory is used by a device driver the driver will be signaled if munmap() or close() is called upon the
MAPLIB memory/device, it will also be signaled if a process is terminated.

The memory must be mapped in one mmap() call, creating one linear memory mapping in user space. However
in physical address space the memory is linear in blocks of 128KBytes.

The MMAPINFO command reveals how large and at what offset the device memory is located within the MAPLIB
device, after it has been configured using SETUP. Below is an example how to memory map.

 struct maplib_mmap_info mapi;
 unsigned int start, end;
 int fd;

 fd = open("/dev/maplib0", O_RDWR);
 if (fd < 0) {
 printf("Failed to open MMAPLib\n");
 return -1;
 }

 /* CONFIGURE MAPLIB HERE USING MAPLIB_IOCTL_SETUP */

 /* Get MMAP information calculated by driver */
 if (ioctl(fd, MAPLIB_IOCTL_MMAPINFO, &mapi)) {
 printf("Failed to get MMAPINFO, errno: %d\n", errno);
 return -1;
 }

 /* Map all SpaceWire Packet Buffers */
 start = mapi->buf_offset;
 end = mapi->buf_offset + mapi->buf_length;

 /* Memory MAP driver's Buffers READ-and-WRITE */
 adr = mmap(NULL, mapi.buf_length, PROT_READ|PROT_WRITE, MAP_SHARED,
 fd, start);
 if ((unsigned int)adr == 0xffffffff) {
 printf("MMAP Bufs Failed: %p, errno %d, %x\n", adr, errno, mapi->buf_length);
 return -1;

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 53

 }

frontgrade.com/gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Göteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 54

Frontgrade Gaisler AB
Kungsgatan 12
411 19 Göteborg
Sweden
frontgrade.com/gaisler
sales@gaisler.com
T: +46 31 7758650
F: +46 31 421407

Frontgrade Gaisler AB, reserves the right to make changes to any products and services described herein at any time without
notice. Consult the company or an authorized sales representative to verify that the information in this document is current before
using this product. The company does not assume any responsibility or liability arising out of the application or use of any product
or service described herein, except as expressly agreed to in writing by the company; nor does the purchase, lease, or use of
a product or service from the company convey a license under any patent rights, copyrights, trademark rights, or any other of
the intellectual rights of the company or of third parties. All information is provided as is. There is no warranty that it is correct or
suitable for any purpose, neither implicit nor explicit.

Copyright © 2025 Frontgrade Gaisler AB

frontgrade.com/gaisler
frontgrade.com/gaisler

	
	Table of Contents
	1. Introduction
	1.1. Drivers included in the package
	1.2. Requirements
	1.2.1. Hardware support and limitations

	1.3. Installing
	1.4. Device tree bindings
	1.5. Device node numbering

	2. GRSPW SpaceWire Driver
	2.1. Introduction
	2.1.1. Sources
	2.1.2. Using the driver
	2.1.3. Examples

	2.2. Control Interface
	2.2.1. Overview

	2.3. Packet Transfer Interface
	2.3.1. Packet Reception
	2.3.1.1. RX(PREPARE)
	2.3.1.2. RX(RECEIVE)

	2.3.2. Packet Transmission
	2.3.2.1. TX(SEND)
	2.3.2.2. TX(RECLAIM)

	2.4. User-space access routines

	3. GRSPW Kernel Library driver
	3.1. Introduction
	3.1.1. Hardware Support
	3.1.2. Driver sources
	3.1.3. Examples
	3.1.4. Known driver limitations

	3.2. Software design overview
	3.2.1. Overview
	3.2.2. Initialization
	3.2.3. Link control
	3.2.4. Time Code support
	3.2.5. RMAP support
	3.2.6. Port support
	3.2.7. SpaceWire node address configuration
	3.2.8. SpaceWire Interrupt Code support
	3.2.9. User DMA buffer handling
	3.2.9.1. Buffer List help routines

	3.2.10. Driver DMA buffer handling
	3.2.10.1. DMA Queues
	3.2.10.2. DMA Queue operations

	3.2.11. Polling and blocking mode
	3.2.12. Interrupt and work queue
	3.2.13. Starting and stopping DMA
	3.2.14. Thread concurrency
	3.2.15. SMP Support
	3.2.16. User space support

	3.3. Device Interface
	3.3.1. Opening and closing device
	3.3.2. Hardware capabilities
	3.3.3. Link Control
	3.3.4. Node address configuration
	3.3.5. Time Code support
	3.3.6. Port Control
	3.3.7. RMAP Control
	3.3.8. Statistics

	3.4. DMA interface
	3.4.1. Opening and closing DMA channels
	3.4.2. Starting and stopping DMA operation
	3.4.3. Packet buffer description
	3.4.4. Blocking/Waiting on DMA activity
	3.4.5. Sending packets
	3.4.6. Receiving packets
	3.4.7. Transmission queue status
	3.4.8. Statistics
	3.4.9. DMA channel configuration

	3.5. API reference
	3.5.1. Data structures
	3.5.2. Device functions
	3.5.3. DMA functions

	4. SpaceWire Router APB Register Driver
	4.1. Introduction
	4.1.1. Sources
	4.1.2. Using the driver
	4.1.3. Examples

	4.2. Control Interface
	4.2.1. Overview

	5. MAPLIB Device Memory Driver
	5.1. Introduction
	5.1.1. Sources
	5.1.2. Using the driver
	5.1.3. Examples

	5.2. Control Interface
	5.3. Mapping Interface

