Gaisler

rRONTGRADC

USER MANUAL

RELEASED JUNE 2025

GRLIB Linux device drivers

LINDRV

GRLIB Linux Drivers User's Manual

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Géteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0

frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table of Contents

O [L oo (8 1o o PP POPPPTRRPPPPN 4
1.1. Driversincluded in the PACKBOE uuu i 4
1.2, REQUITEIMENTS ...oiieiiti ettt ettt ettt ettt ettt e et e et et e et et e et et e e e et e e e eba s 4

1.2.1. Hardware support and limitationSoveiiiiiiiiiiii e 5
L3 INSAIIING ettt ettt e e e et e aae 5
1.4, DeViCe tree DINAINGS ... ciiiiineiiiii ettt et ettt e e et e e e eaaans 5
1.5. Device NOUE NUMDEITNG o.euuuiiiiiie ettt ettt et e e et e e et e e e ab e e e enea s 5

2. GRSPW SPACEWITE DIIVEN ...ttt ettt e et e e e et e e e et 6

P2 W [L oo (8o 1o o KT PT PP 6
200 SOUICES eeeiii ettt ettt ettt ettt ettt et et ettt et et e e 6
2.1.2. USING the AriVEr oot 6
203 EXAMPIES e 7

2.2. CONMrOl TNEEITACE .ot ettt e et 7
221, OVEIVIBIW ittt ettt et eaaas 7

2.3. Packet Transfer INEEIfACE coeeii et 9
2.3.1. PaCKet RECEPLION .eeitieeiiii ettt et e et e e 10
2.3.2. Packet TranSMISSION ccouuueiiiitii et e ettt e e et e e et e e e eab e e eenaaeeees 12

2.4, USEr-SPACE GCCESS MOULINES ...ieeitieeeeiti ettt ettt ettt e e ettt ettt et e e e e e et e e e eaa e e eenan s 13

3. GRSPW Kernel Library driVEr ...ttt 14
30 O [L oo (8 1o o PP PPPPTTR 14

3. L1 HardwWare SUPPOIT ...oeeeeeiiii ettt ettt et 14
3. 1.2, DIIVEN SOUMCES ...iiiiiti ettt ettt ettt e ettt e et e e e e et e e e e et e e e e et e e e e eaa s 14
B L3, EXAMPIES ot ee 14
3.1.4. KNown driver IMItaHiONS iiieiiiiiiii et 14

3.2, SOftWare deSIgN OVEIVIEIW ...oeuu ittt ettt ettt e et e e e b 14
2.1, OVEIVIEIW ittt e e et e ettt et ettt e e e e e e e e e 14
322 INILAHZALHON ..t 15
3.2.3. LiNK CONEIOI ettt et e ettt e e et e e eaa e eee 15
3.2.4, TIME COU SUPPOIT ..ttt ettt ettt ettt ettt e ettt e et e e et e e e e et e e e eebe e eeeees 16
3.2.5. RMARPR SUPPOIT ettt ettt e et e 16
3.2.6. POt SUPPOIT ..oeeeeie ettt e et 16
3.2.7. SpaceWire node address CONfigUIation coevieuiieiiiiiiie e 16
3.2.8. SpaceWire Interrupt Code SUPPOIT .oevveneeiiti ettt e e e e e e e e eees 17
3.2.9. User DMA buffer handling ooeiiiiiii e 17
3.2.10. Driver DMA buffer handlingoiiiiiii e 17
3.2.11. Polling and blocking MOTEccoiiiiiieiii e e 19
3.2.12. Interrupt and WOrK QUEUE ... it 19
3.2.13. Starting and stopping DIMA ... 20
3.2.14. THread CONMCUITENCY .eevvtneeeeti e eeeeti e ettt e ettt ettt ettt et et e e e e abe e e e eaae e e ennas 20
3215, SMP SUPPOIT oottt 21
3.2.16. USEr SPACE SUPPOIT .eeietieetie ettt et e e e et e e e e e e e enaas 21

3.3, DEVICE INEITACE it e ettt e e e 21
3.3.1. Opening and ClOSING TEVICE ... iiiiiii e 22
3.3.2. Hardware CapabilitieScoouuiiiiiiiie e 23
3.3.3. LINK CONIOL ..ttt ettt et e 24
3.3.4. Node address Configuration coooeuuieiiiii et 26
3.3.5. TIME COU SUPPOIT ...ttt ettt ettt ettt e et e et e e e e et e e e eebe e eeeees 27
3.3.6. POIT CONMIOI .ottt e e et e ettt e e e et e e e enb e eeees 28
3.3.7. RMARPR CONIOl oottt e e 29
3.3L8. SHAISHICS wevneieetti ettt ettt 30

34 DMA TNEEITACE ottt e et e 31
3.4.1. Opening and closing DMA channelscoooiiiiiiii e 31
3.4.2. Starting and stopping DMA OPEration coouuuiiiiiiiieiiii e 33
3.4.3. Packet buffer desCription viiiiiiiiei e 35
3.4.4. Blocking/Waiting on DMA aCtIVILY iiiiiiiiiiiii e 36
345, SENAING PACKELS ...ttt 37
3.4.6. RECEIVING PACKELS ...ttt ettt ettt e et e e et e e eat e eeaes 40

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Géteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 2

frontgrade.com/gaisler

rRONTGRADE

Gaisler

3.4.7. TranSMISSION QUEUE SEAEUS ..uvveeeeieeeiin e e et e et ie e et ee e et e e e et e et e en e ean e e e e eaeeaeees 42

G T = 1 1 = 43

3.4.9. DMA channel configurationcccoieiiiiiiiiii e e e 45

G T A o I (= 1 =0 46
35,1, Dala SHIUCIUMNES ouiiiiiiie e e e e e e e e e e e e et e e et eae it en 46

3.5.2. DEVICE FUNCLIONS ...uiieiiit i e e e e e e e e eans 46

3.5.3. DMA fUNCHIONS ..oeiiiiii e e e e e e e e e et e eaeenas 47

4. SpaceWire Router APB RegISIEr DIIVEr ...ooniiiiie e e e e ees 49
g O 1T [o 1 o N 49
o N S 11 o == PPN 49

O U = o 1 T o Y 49

AL 8. EXAMPIES oo 49

R) 11 o I 1= o = o S 49
I Y oY= 49

5. MAPLIB DeVviCe MEMOIY DIIVEN ..ot e e e et e e e e e et e aaaaanaas 51
L300 R 1 11 oo T 1 o o Pt 51
D L SOUIMCES .iiiiitiei ittt et 51

B.1.2. USING the OriVEr oo e e e e e e 51

LI G T = 10 10 =N 51

LA o 11 (0] BT 1= 1 = o= P 52
LG T (Vo o T a0 1 1= 1 = o= 52

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 3

frontgrade.com/gaisler

rRONTGRADE

Gaisler

1. Introduction

The purpose of the GRLIB Driver packageisto provide Linux driversfor GRLIB coresthat does not really benefit
from being part of the officia kernel tree or for other reasons not part of the official kernel tree. SpaceWire for
example does not have a generic driver model in Linux.

Drivers can be built outside of the kernel source tree as modules or within the kernel by installing the driversinto
the kernel sources tree. Currently the drivers has not been tested as modules, so for the time being please install
the driver sourcesinto the kernel and link them into the kernel.

After installing the package into the kernel source tree amenu named "GRLIB Drivers" will appear in the bottom

of the "Device Drivers' directory in the kernel configuration GUI. The Kernel Configuration GUI isinvoked as
usual (for non-LEON system see Table 1.1):

[linux/]1$ make ARCH=sparc CROSS_COWPI LE=sparc-linux- xconfig

If the drivers are built outside of the kernel tree and installed into the filesystem for loading during runtime, the
building processis as follows (for non-LEON systems select target from Table 1.2):

[grlib_drivers/]$ make KERNELDI R=/path/to/ kernel/linux/sources |eon

Notethat the kernel sources provides away to install modules using the make target modules_install together with
INSTALL_MOD_PATH=/path/to/rootfs/.

Table 1.1. Linux kernel configuration and build settings

Pr ocessor Kernel environment settings

NOEL-V 64-bit ARCH=riscv CROSS _COM PIL E=riscv64-linux-
NOEL-V 32-bit ARCH=riscv CROSS_COMPI L E=riscv32-linux-
LEON ARCH=sparc CROSS_COMPILE=sparc-linux-

Table 1.2. GRLIB Driver Package Make targets

Pr ocessor M ake tar get
NOEL-V 64-bit noel 64
NOEL-V 32-bit noel 32
LEON leon

1.1. Drivers included in the package

Below isalist of which drivers are currently distributed in the GRLIB Linux driver package.
* GRSPW2 Kernel Library (for custom kernel driver, or GRSPW Driver)
* GRSPW?2 Driver (Char device accessible from Linux User space)
* GRSPW-ROUTER APB Register Driver
« MAPLIB, Device memory handling. Enables a user to memory map blocks of linear memory that can be
used by devicedriversfor DMA access. GRLIB Driversthat implement zero-copy to user-space and between
device nodes though user-space require the MAPLIB char driver.

1.2. Requirements

The GRLIB Drivers packageis built against one specific Linux release, it is expected that drivers may fail to build
or does not function properly if used under another Linux version. The kernel that must be used is taken from
www.kernel.org and may require patching using the Frontgrade Gaisler "unofficial patches' distributed until they
areincluded in the official kernel tree.

Please check which GIT version isrequired used in the VERSION file.

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 4

frontgrade.com/gaisler

rRONTGRADE

Gaisler

1.2.1. Hardware support and limitations

The following processor platforms are supported:
» LEON 3/4/5
* NOEL-V 32-bit
* NOEL-V 64-hit
¢ Limited to 32-bit address bus

The following GRLIB IPs are supported by this package:

* GRSPW2
» SpaceWire Router AMBA Ports (GRSPW_SPW2_DMA)
« SpaceWire Router APB control registers interface

1.3. Installing

Please see the README file included in the driver package for installation instructions.

1.4. Device tree bindings

The drivers requires device tree bindings. On a LEON based system the bindings are typically provided by MK-
LINUXIMG, but for NOEL based system the bindings needs to be declared in a Device Tree Source (DTS) file.

Documentation about the bindings can be found in the driver package under ker nel / Docunent at i on/ de-
vicetree/bindings/grlib

1.5. Device node numbering

The GRLIB drivers dynamically assigns major numbers, typically within the range 234-254 (from the “LO-
CAL/EXPERIMENTAL USE" series). More information on device node numbering can be found in | i n-
ux/ Docunent at i on/ admi n- gui de/ devi ces. t xt

Device nodes are created in/ dev in thelocal file system.

#1s -1 grspw maplib* spwouter*

CrW------ 1 root r oot 250, 0 Apr 29 2025 grspwo

CrW------ 1 root r oot 250, 1 Apr 29 2025 grspwl

CrW------ 1 root r oot 250, 2 Apr 29 2025 grspw2

CrW------ 1 root r oot 250, 3 Apr 29 2025 grspw3

Crw------ 1 root r oot 248, 0 Apr 29 2025 naplib0

CrW------ 1 root r oot 249, 0 Apr 29 2025 spwouter0

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 5

frontgrade.com/gaisler

rRONTGRADE

Gaisler

2. GRSPW SpaceWire Driver

2.1. Introduction

This section describes the Linux GRSPW driver. It provides user space applications with a SpaceWire packet nad
link control interface. The driver is implemented using the GRSPW Kernel library (described in Chapter 3) for
GRSPW device control and DMA transfer and it usesthe memory map driver (MAPLIB described in Chapter 5) for
allocating physically continuous device memory (DMA memory) for user-space. Thedriver supportsthe GRSPW,
GRSPW?2 and the DMA interface of the Frontgrade Gaisler SpaceWire Router.

By splitting the GRSPW SpaceWire support into three parts it is possible to reuse specific parts of the driver
source. For example the GRSPW kernel library does not depend on MAPLIB or the GRSPW Kernel driver, this
makesit possibleto create acustom GRSPW kernel modul e without the involvement of user space using the kernel
library only. The MAPLIB does not either depend on the other parts, hence it can be used solely in other drivers
or together with other drivers. This makesit for example possible to receive a SpaceWire packet and transmitting
it using a driver for another interface also supporting the MAPLIB driver.

Thedriver providestwo different types of interfacesthrough the standard UNI X accessroutines(open, cl ose,
ioctl, read, wite), one GRSPW device control interface and one packet transfer interface. The control
interfaceisaccessed usingi oct | , whereasthe packet transfer interfaceisaccessed usingr ead andwr i t e. The
actual packet data transferred on SpaceWire is not read or written using the r ead and wr i t e routines, instead
pointersto the data and header are interchanged between kernel space (the driver) and user space (the application).
Transferring only addressesto data/header allowsthedriver to be zero-copy all theway from user-spaceto actually
sending the packet over SpaceWire, however some care must be taken to what memory is used. For example even
though memory seemsto be linear i user spaceit might not be linear in physical address space due to the memory
management unit (MMU) setup, and when the GRSPW core is doing direct memory access (DMA) only linear
addresses can be used. There are other issues as well that must be solved, they are taken care of in the MAPLIB
driver.

If the SpaceWire router DMA interface is the underlying hardware, some of the parts described here does not
affect the hardware at al. For example the link controlling options are of course not implemented at the DMA
interface. One can control the SpaceWire router's link by using the SpaceWire router driver instead.

2.1.1. Sources

The GRSPW driver sources are provided under the GPL license, they are available in the GRLIB driver package
as described in the table below. Applications should include the "GRSPW Kernel Driver header” file. All filesare
relative the base of the driver package.

Table 2.1. GRSPW driver sources

L ocation Description

Spw gr spw. ¢ GRSPW Kernd library

Spw gr spw_user. c GRSPW Kernel Driver

m sc/ maplib.c Device memory library

i nclude/linux/grlib/grspw h GRSPW Kerndl library header
i nclude/linux/grlib/grspw_user.h GRSPW Kernel Driver header
i nclude/linux/grlib/maplib.h Device memory library header

2.1.2. Using the driver

Applications wanting to access GRSPW devices from user-space should include the GRSPW kernel driver header
file, if theinclude path is set correct it will include the kernel library header as well. As mentioned above the user
is also responsible to setup device memory using the MAPLIB driver, so the application should also include the
MAPLIB header file.

Debug output is available through the / pr oc/ knsg interface, and additional debug output can be enabled by
defining GRSPWU_DEBUG in the driver sources gr spw_user . c.

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 6

frontgrade.com/gaisler

rRONTGRADE

Gaisler

Each GRSPW core is accessed using a single major/minor number, regardless of how many DMA channels the
core has. The Mgor/Minor numbers are determined by the driver package configuration, see Section 1.5.

2.1.3. Examples

Within the GRLIB driver package thereisauser space example of how this driver can be used. The example uses
the user-space APl used to call the driver'sioctl, read and write interface.

2.2. Control Interface

2.2.1. Overview

The Control interface providesinformation about the GRSPW hardware, configuration of the driver, reading cur-
rent statistics, link control and status, selecting port if two ports are available, handling time code transmission,
starting/stopping DMA channels and waiting for DMA operations to complete by blocking. The Packet Transfer
Interface can not be used unless the DMA channel has been started, the link state is independent of starting/stop-
ping DMA channels. The link state will of course have an impact on what is transferred over SpaceWire, it will
affect all DMA channels. Since SpaceWire supports "flow-control" packets may buffer up when thelink state goes
from run-state to any other state. The user is expected to handle the link and its state.

The control interface is accessed using the standard UNIX i oct | routine.

Inthetable below al currently supportedi oct | commands and their argument typeislisted. The data structures
referenced aredeclaredinthegr spw_user . h header file. All GRSPW commands startswith GRSPW_|OCTL _
which hasto be added to the command name given in the table below. The data direction below indicatesin which
direction datais transferred to the kernel:

* Input: Argument is an address. The driver reads data from the given address.

e Output: Argument is an address. The driver writes data to the given address.

 Input/Output: both above cases.

e Argument: 32-bit ssmple Argument, no memory transferred between kernel/user.

¢ None: Argument ignored.

Table 2.2.i oct| commands supported by the GRSPW Kernel driver.

Command

Data
rection

Di-

Argument Type

Description

HWSUP

Output

struct
grspw_hw_sup *

Copy hardware configuration for the GRSPW core, such
as number of DMA Channels, if RMAP/RMAP-CRC is
supported by core, number of SpW ports, etc.

BUFCFG

Input

struct
grspw_bufcfg *

Set up packet buffers. Even though the user isresponsible
for allocating memory for packet data’header, the driver
must allocate structures for packet handling. The pack-
et structures stores the packet state, data/header pointers,
packet number etc. This command specifies how many
packets maximally can simultaneously be buffer internal -
ly by the driver. The packet structures are shared between
all DMA channels. The packet structures are allocated
when the START command is issued, ENOMEM is re-
turned if driver was not able to allocate as many packet
structures as requested.

CONFIG_SET

Input

struct
grspw_config *

Configure driver according to input. One can configure
promiscuous mode, which DMA channels will be used,
DMA channel configuration, register a custom time code
ISR handler (note that it must be an address to a function
inkernel, typically to acustom user-written module), time
code RX/TX enable and RMAP options (destination key,
RMAP enable, RMAP buffer).

CONFIG_READ

Output

struct
grspw_config *

Copies the current configuration to the address given by
the argument. DMA Channel configuration will only be

LINDRV-UM

Jun 2025, Version 1.3.0

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

7

frontgrade.com/gaisler

rRONTGRADE

Gaisler

Command

Data Di-

rection

Argument Type

Description

copied for previously enabled channels, for other channels
the datais undefined.

STATS READ

Output

struct grspw_stats*

The driver gather statistics both globally and for respec-
tive DMA channel. All gathered statistics are copied to
the user provided buffer.

STATS CLR

None

N/A

Clearsthe current gathered statistics. Resets all counters.

LINKCTRL

Input

struct
grspw_link_ctrl *

Set SpaceWire transfer speed (clock division factor) and
control the link start, link disable, link auto start, IRQ on
link error and disable link on error functions of the GR-
SPW core. See LINKOPTS_* options.

PORTCTRL

Argument

nt

Select SpaceWire port configuration. The GRSPW core
may have have support for two SpaceWire ports, the port
select behavior of the core can be controlled by using this
command.
e 0: PortO always selected.
e 1: Portl always selected.
¢ Others: Both Port0 and Port1, core selects between
them.

LINKSTATE

Output

struct
grspw_link_state *

Copies the current link state of the GRSPW core to the
provided buffer. The current link configuration, Clock di-
vision factors (start and run), the link state, port configu-
ration and which port is currently active is copied.

TC_SEND

Argument

nt

This command sets the TCTRL and TIMECNT hits of
the GRSPW core if bit 8 is set to one. The TCTRL and
TIMECNT values are taken from the low 8-hits of the ar-
gument. After (optionally) settingthe TCTRL: TIMECNT
aTick-Inisgenerated if bit 9 is set to one.

TC_READ

Output

int*

This command stores the current value of the GRSPW
core TCTRL:TIMECNT bits to the address given by the
argument.

QPKTCNT

Output

Struct
grspw_qpktent *

Reads the current number of packetsin all TX/RX queues
of al enabled DMA channels. This can be used for de-
bugging of the RX/TX process in an application, it can
also be used to determine the number of packets currently
buffered by the driver.

STATUS READ

Output

unsigned int *

Reads the current value of the GRSPW STATUS register
and copies it back to the user provided buffer. From this
value the link error flags can be read.

STATUS CLR

Input

unsigned int *

Clears one or more bitsin the GRSPW STATUS register.
The user controlswhich bits are cleared by setting respec-
tive bit to aone. Bitsthat are zero does not affect the GR-
SPW STATUSr egister bits. Thisfunctionality istypcially
used in combination with STATUS_READ and configur-
ing the LINKSTS * optionsto allow the user to custom-
ly control the link. The standard behaviour is to let the
driver's interrupt handler clear the status bits and count
statistics on errors instead.

START

None

N/A

Start all DMA activity on all DMA channels. Thereceiver
isenabled however packet buffers must be prepared in or-
der to actually receive anything. After starting ther ead/

writ e interface of the driver is open. See the Packet
Transfer Interface on how packets are sent/received. After

LINDRV-UM

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0

8

frontgrade.com/gaisler

rRONTGRADE

Gaisler

Command Data Di-|Argument Type |Description
rection

start the BUFCFG and CONFIG_SET i oct | commands
arenot availableuntil stopped again. If thiscommandfails
with the errno ENOMEM packet structures was not able
to be allocated due to either not enough memory or too
many requested. If errno is set to EPERM the driver indi-
catesthat the MAPLIB was not satisfied (for example not
mapped to user space).

STOP None N/A Stops DMA operation, this till disable the receiver and
transmitter of the GRSPW core. After the driver has
been stopped TX(SEND) and RX(PREPARE) operation
will result in error EBUSY, but the RX(RECEIVE) and
TX(RECLAIM) operation will still be working so that the
user can read out all packet buffers. By setting the appro-
priate flags in the packet information it is possible to de-
termine if apacket has been received/transmitted or not.

RX_WAIT Input struct Blocks the caller until the RX queue packet coun-
grspw_rx_wait_charters conditions are fullfilled. The conditions and time-
* out are described by the input data structure, see struct

grspw_rx_wait_chan for usage. If timeout expires before
the conditions are fullfilled -ETIME will be returned. If -
ElO is returned if the DMA channelsis not started or is
stopped during the waiting. Thereisonly one RX wait ob-
ject per DMA channels which means that only one thread
can simultaneously wait on RX. If two threads tries to
wait on the same DMA channel -EBUSY error codeisre-
turned.

TX_WAIT Input struct Blocks the caller until the TX queue packet counters
grspw_tx_wait_chanconditions are fullfilled. The conditions and timeout
are described by the input data structure, see struct
grspw_tx_wait_chan for usage. If timeout expires before
the conditions are fullfilled -ETIME will be returned. If -
ElO is returned if the DMA channelsis not started or is
stopped during thewaiting. Thereisonly one TX wait ob-
ject per DMA channels which means that only one thread
can simultaneously wait on TX. If two threads tries to
wait on the same DMA channel -EBUSY error codeisre-
turned.

2.3. Packet Transfer Interface

The packet transfer interface is used to send and receive SpaceWire packets on the DMA channels. The GRSPW
core is configurable how many DMA channelsit has, acore may have from one up to four DMA channels. From
the control interface one can read how many DMA channels are present on the GRSPW device. Thisinterfaceis
open to the user when DMA operation has been started from the control interface (START). Trying to access the
interface when it is not started will result in an error and errno will be set to EBUSY.

Similar to the control interface this driver provides an interface to the GRSPW Kernel Library. The GRSPW
Kernel Library documentation in Chapter 3 describes the buffering, packet queues, DMA operations, interrupts
etc. in more detail.

Since the GRSPW driver does not manage packet buffers itself, but relies on MAPLIB and the user for that, the
user must prepare the driver with ready RX buffers to be able to receive packets in the future. The user is also
responsible to reuse sent packet buffers, in order for the user to know when a packet buffer has been sent and is
ready to be reused the driver let the user read back/reclaim TX buffers.

Theinterface supportsfour basic operationsthat can be performed independently per DMA channel, seelist below.
All packet operations are completed in the order they are given to the driver, for exampleif multiple packet buffers

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 9

frontgrade.com/gaisler

rRONTGRADE

Gaisler

are reguested to be sent the order in which the buffers are sent and also reclaimed is the same as the order they
where given to the driver using thewr i t e function.

* RX(PREPARE), prepare the driver with free RX packet buffers.

* RX(RECEIVE), read out received SpaceWire packets, the packet data are placed in previously prepared

packet buffers.

« TX(SEND), queue one or multiple packets for transmission by handing over initialized packet buffers.

* TX(RECLAIM), read out snet packet buffers from the driver (previously sent)
The above operations are implemented using the standard UNIX r ead/ wri t e file operation calls. Since both
read andwr i t e takesdifferent input depending on which of thetwo operationisrequested, the M SB 16-bit of the
length isused to determine operation and which DMA channelsareinvolved intherequest. See GRSPW_READ _*
and GRSPW_WRITE_* definitions in header file.

The way the driver uses the read/write lenght is not standard and the LIBC compile-time or run-time checks
may complain or fail. If so the LIBC provides alternative functions that can be used where the checks are
not performed.

2.3.1. Packet Reception

When the SpaceWire link isin run state and DMA operation has been started from the control interface, packets
buffers can be scheduled for future reception. There are two different states of a DMA channel, when descriptors
has been prepared and enabled for transmission and when there are no enabled descriptors (out of buffers). In
the latter case the core can be programmed to discard incoming packets or to wait for new enabled descriptors
(packet buffers), that is controlled through the control interface (see NO-SPILL option in GRSPW hardware doc-
umentation).

Packet reception basically comes down to enabling descriptors with new empty buffers. The driver must process
the core's descriptor table to handle received SpaceWire packets and enable unused descriptors with new packet
buffers. That process might be triggered in two different ways:

« DMA receiveinterrupt, the driver will schedule work to process the descriptor table later on in non-interrupt
context.
¢ The user calls RX(PREPARE) or RX(RECEIVE).

The user can configure the behavior of the first case by controlling how interrupts are generated. The driver can
generate interrupt after every N number of packets have been received. The user can also control it completely
custom by setting N=0 and enabling interrupts on a packet basis, see RX(PREPARE). If the driver is not able to
process the RX descriptor table in time the transfer rate will drop (or packets will be discarded). Since the user
might not be able to call RX(PREPARE) and RX(RECEIVE) often enough on high bit rates (or small packets) the
DMA receiver interrupts can be used to start processing of descriptors. On DMA receive interrupt the driver will
schedule awork queue that will process the descriptor table, in order to enable new packet buffers the user must
have prepared buffers on beforehand. Prepared packets will be buffered temporarily in the READY queue until
unused descriptors are available. Received packets will be buffered in the same order as the SpaceWire packets
was received in the RECV queue. See Figure 2.1. Note that if N is set to a higher number than the number of
RX descriptors (128) or when it is disabled, the descriptor table may not contain any enabled descriptors until
RX(PREPARE) or RX(RECEIVE) is called by the user.

write() read()
RX(PREPARE) RX(RECEIVE)
RX RX RX
Ready Use empty SChed UIed Handle used Recelved
Queue of unused | 9€SCTIPOTS | ueue of packet descriptors " gueue of received
ready packet buffers which has SpaceWire
buffers, waiting for been assigned an packets, waiting
a descriptor enabled descriptor for user to read

Figure 2.1. GRSPW Driver internal RX queues

The driver internal RX queues are all link lists of FIFO type. The RX-schedule queue can hold a maximum of
128 (number of descriptors supported by GRSPW at time of writing) packets, the other queues does not have any

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 10

frontgrade.com/gaisler

rRONTGRADE

Gaisler

limitation except from the number of packet structures that the driver use internally to describe the packets. The
number of packet structures can be configured through the control interface.

2.3.1.1. RX(PREPARE)

The process of preparing the GRSPW driver with new packet buffersis called RX(PREPARE) in this document.
Itisdone by calling the standard UNIX wr i t e function with one or an array of struct grspw_wrxpkt entries. Each
entry describes one packet buffer, see below programlisting and table. The length of the write buffer must be a
multiple of the size of one entry, the MSB hits of the length determines which channel the packet buffers are for
and selects between the RX(PREPARE) and the TX(SEND) operation. If the driver is out of packet structures
(usedinternally in driver) all packet bufferswill not be prepared, instead the length returned determines how many
packets was added to the ready queue.

/* GRSPWW ite RX-Packet Entry (PREPARE RX BUFFER) */
struct grspw_w xpkt {

int pkt_id; /* Custom Packet ID */

unsi gned short fl ags; /* See RXPKT_FLAG* above */

unsi gned short resvl; /* Reserved, must be zero */

voi d *data; /* Data Pointer (Address from MVAP Lib). The

* buffer nust have room for nmax-packet */
} __attribute__((packed));

Table 2.3. GRSPW prepare RX bufferswrite format (struct grspw_wrxpkt)

Field Description

pkt _id A user defined packet 1D which can be used to identify the packet buffer upon RX(RECEIVE).
Thisisfield is optional, and does not affect the operation of the driver.

flags Set to RXPKT_FLAG _IE if this packet should generate ainterrupt when a SpaceWire packet was
received to this packet buffer. Interrupts can be controlled using the control interface.
dat a Pointer to the packet buffer that the driver will store one received SpaceWire Packet to. The address

must be within the range that was memory mapped with MAPLIB, auser space addressis expected.

2.3.1.2. RX(RECEIVE)

After packet buffers have been prepared, assigned a descriptor, a SpaceWire packet received, the packet taken
from the descriptor and put into the receive queue of the driver, the packet can be read using the standard UNIX
r ead function. Thisprocessiscalled RX(RECEIVE) inthisdocument. Thedriver will fill the user provided buffer
with packet buffer information according to the struct grspw_rrxpkt memory layout. See below programlisting
and table. Each entry describes one packet which may have avalid SpaceWire packet in the packet buffer pointed
to be dat a. The length of the read buffer must be a multiple of the size of one entry, the MSB bit of the length
determines which channels (bit mask of channels) to receive packets from and selects between the RX (RECEIVE)
and TX(RECLAIM) operation.

/* GRSPW Read RX-Packet Entry (RECEIVE) */
struct grspw_rrxpkt {

int pkt_id; /* Custom Packet ID */

unsi gned short fl ags; /* See RXPKT_FLAG* above */

unsi gned char dma_chan; /* DMA Channel 0..3 */

unsi gned char resvl; /* Reserved, nust be zero */

int dlen; /* Data Length */

voi d *data; /* Data Pointer (Address from MVAP Lib) */

} __attribute__((packed));

Table 2.4. GRSPW receive RX packet buffers read format (struct grspw_rrxpkt)

Field Description

pkt _id A user defined packet ID that was given to the driver together with the packet buffer in
RX(PREPARE).

flags Thisfield indicatesif the data buffer contains a SpaceWire packet (RXPKT_FLAG_RX), and

if transfer errors where encountered during the reception (Truncated, EEOP, Header CRC
error, Data CRC error).

dma_chan Indicates which DMA channel (0..3) received this packet.

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 11

frontgrade.com/gaisler

rRONTGRADE

Gaisler
Field Description
dl en Thelength of SpaceWire packet that was received into the packet buffer pointed to by dat a.
dat a Pointer to the packet buffer that contains one SpaceWire packet. The f| ags field bit
RXPKT_FLAG_RX isset if athe buffer contains a SpaceWire packet, other flags may also
have been set to indicate some sort of SpaceWire transmission error.

2.3.2. Packet Transmission

The packet transmission interface works basically the same as the packet reception interface. The MSB bits of
the length determine that TX(SEND) and TX(RECLAIM) should be used instead of the RX operations. See the
previous RX section introduction.

The packet queues are named differently as indicated in Figure 2.2, the TX scheduled queue aso fits as many
packets as there are descriptors, however the TX descriptors are 64 in number instead of 128 for RX.

write() read()
TX(SEND) TX(RECLAIM)
X X X

Send Scheduled ;g used | SNt

Use empty
Queue of ready | 9€SCIPLOrs | yeye of packet [4€SCTIPLOTS | yeue of transmit-
SpaceWire packet buffers which has ted SpaceWire
buffers, waiting for been assigned an packets, waiting
a descriptor enabled descriptor for user to reuse

Figure 2.2. GRSPW Driver internal TX queues

2.3.2.1. TX(SEND)

The process of sending a SpaceWire packet (data and header) is called TX(SEND) in this document. A packet is
sent by calling the standard UNIX wr i t e function with one or an array of struct grspw_wtxpkt entries. Each entry
describes one packet buffer, see below programlisting and table. The length of the write buffer must be amultiple
of the size of one entry, the MSB bits of the length determines which channel the packets will be sent upon and
selects between the RX(PREPARE) and the TX(SEND) operation. If the driver is out of packet structures (used
internally in driver) all packets will not be sent, instead the length returned determines how many packets was
added to the send queue.

/* GRSPWW ite TX-Packet Entry (SEND PACKET) */
struct grspw_wt xpkt {

int pkt_id, /* Custom Packet |ID */

unsi gned short flags; /* See TXPKT_FLAG* above */

unsi gned char resv; /* Reserved */

unsi gned char hlen; /* Header Length. Set to zero if none. */
unsi gned int dlen; /* Data Length. Set to zero if none. */

voi d *hdr; /* Header Pointer (Address from MVAP Lib) */
voi d *data; /* Data Pointer (Address from MVAP Lib) */

} __attribute__((packed));

Table 2.5. GRSPW send TX packet buffers write format (struct grspw_witxpkt)

Field Description

pkt_id A user defined packet | D which can beused to identify the packet buffer upon TX(RECLAIM).
Thisisfield is optional, and does not affect the operation of the driver.

flags Thisfield hold the transmission options for one SpaceWire packet. See TXPKT_FLAG_* for
options. One can enable IRQ on DMA transmit operation, header and data CRC calculation.

hl en Determines the length of the header, set to zero if no header should be transmitted. A length
larger than 255 bytesis not allowed.

dl en Determines the length of the data that will be transmitted. The maximum length is limited to
128K Bytes due to the memory allocation.

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 12

frontgrade.com/gaisler

rRONTGRADE

Gaisler
Field Description
hdr Pointer to the packet header buffer. Thisis only used if hl en is larger than zero. The first
hl en bytes are transmitted.
dat a Pointer to the packet buffer that contains the data of one SpaceWire packet. Thefirst dl en
bytes are transmitted.

2.3.2.2. TX(RECLAIM)

After packet buffers have been request to be sent, assigned a descriptor, a SpaceWire packet generated and trans-
mitted, the packet buffer taken from the descriptor and put into the sent queue of the driver, the packet buffer can
be read using the standard UNIX r ead function. This process is called TX(RECLAIM) in this document. The
driver will fill the user provided read buffer with packet buffer information according to the struct grspw_rtxpkt
memory layout. See below programlisting and table. Each entry describes one packet which may have been suc-
cessfully sent.

The length of the read buffer must be a multiple of the size of one entry, the MSB bits of the length determines
which channels (bit mask of channels) to reclaim packets from and selects between the RX(RECEIVE) and

TX(RECLAIM) operation.

/* GRSPW Read TX- Packet Entry (RECLAIM TX BUFFER) */
struct grspw_rtxpkt {
int pkt_id; /* Custom Packet 1D */
unsi gned short flags; /* See TXPKT_FLAG* above */
unsi gned char dma_chan; /* DMA Channel 0..3 */
unsi gned char resvil; /* Reserved, nust be zero */
} __attribute__((packed));

Table 2.6. GRSPW reclaim TX packet buffers read format (struct grspw_rtxpkt)

Field Description

pkt _id A user defined packet 1D which can be used to identify the packet buffer upon TX(RECLAIM).
Thisisfield is optional, and does not affect the operation of the driver.

flags Thisfield hold the transmission parametersfor one SpaceWire packet. See TXPKT_FLAG *.

If the the packet was sent (a descriptor with the datalheader was enabled) the
TXPKT_FLAG_TX hitisset, if alink error occurred TXPKT_FLAG_LINKERR hit is set.

dma_chan Indicates which DMA channel (0..3) this packet was sent on.

2.4. User-space access routines

In order to access the GRSPW SpaceWire driver the user application must call it using the standard UNIX system
calls (open, ioctl, read, etc.). To simplify that task an API is provided part of the examplesin the GRLIB driver
package. The API provides meansto accessthe driver by an easy to use API rather than letting the user application
making the UNIX calls directly. The API aso tries to simplify SpaceWire packet buffer handling and buffer
management by use of buffer pools. At the same time the API provides an example how the driver can be called.

The APl isdeclaredingr spwl i b. h andspw i b. h.

The API is undocumented sinceit is by itself considered as documentation/example.

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 13

frontgrade.com/gaisler

rRONTGRADE

Gaisler

3. GRSPW Kernel Library driver

3.1. Introduction

This section describes the GRSPW Kernel Library driver for Linux. Itsinterface is only accessible from kernel
space. Most of the functionality is exported to user space as described in Chapter 2.

It isan advantage to understand the SpaceWire bug/protocols, GRSPW hardware and software driver design when
developing using the user interfacein Section 3.3 and Section 3.4. The Section 3.2.1 describesthe overall software
design of the driver.

3.1.1. Hardware Support

The GRSPW cores user interface are documented in the GRIP Core User's manual. Below is alist of the major
hardware features it supports:

¢ GRSPW, GRSPW2 and GRSPW2_DMA (router AMBA port)

e Multiple DMA channels

» Time Code

¢ Link Control

 Port Control

« RMAP Control

e SpaceWire Interrupt codes

« Interrupt handling

» Multi-processor SMP support

3.1.2. Driver sources
The driver sources and header files are listed in Section 2.1.1.
3.1.3. Examples

The GRSPW SpaceWire driver and its samples are examples of how the GRSPW Kernel Library driver can be
used. See Section 2.1.3.

3.1.4. Known driver limitations

The known limitations in the GRSPW Packet driver exists listed below:
« The statistics counters are not atomic, clearing at the same the interrupt handler is called could cause invalid
statistics, one must disable interrupt when reading/clearing (a SMP problem).
e The SpaceWire Interrupt code support is not available yet.

3.2. Software design overview

3.2.1. Overview

The driver has been implemented using the platform device driver model. The driver provides a kernel function
interface, an AP, rather than implementing alO system device. The API isintended for kernel tasks but has been
designed so that acustom interfacefor processes can beimplemented on top of the kernel space API, see Chapter 2.
The driver can be compiled as a kernel module and loaded into the kernel at run-time or linked with the kernel at
compile-time. The installation steps required for linking with kernel are described in the ker nel / dri vers/
grli b/ README.

The driver API has been split up in two major parts listed below:
« Deviceinterface, see Section 3.3.
* DMA channel interface, see Section 3.4.

GRSPW device parametersthat affects the GRSPW core and all DM A channels are accessed over the device API
whereas DMA specific settings and buffer handling are accessed over the per DMA channel API. A GRSPW2
device may implement up to four DMA channels.

In order to access the driver thefirst thing is to open a GRSPW device using the device interface.

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 14

frontgrade.com/gaisler

rRONTGRADE

Gaisler

For controlling the device one must open a GRSPW deviceusing' i d = gr spw_open(dev_i ndex)"' and
call appropriate device control functions. Device operations naturally affectsall DMA channels, for examplewhen
the link is disabled al DMA activity pause. However there is no connection software wise between the device
functions and DMA function, except from that the gr spw_cl ose requires that all of its DMA channels have
been closed. Closing adevicefailsif DMA channels are still open.

Packets are transferred using DMA channels. To open a DMA channel one cals 'dnma_id =
grspw _dna_open(id, dnmachan_index)' and use the appropriate transmission function with the
dma_i d to identify which DMA channel used.

3.2.2. Initialization

During early initialization when the operating system boots the driver performs some basic GRSPW device and
software initialization. The following steps are performed or not performed:

¢ GRSPW device and DMA channels 1/O registers are initialized to a state where most are zero.

* DMA isstopped on all channels

» Link state and settings are not changed (RMAP may be active).

¢ RMAP settings untouched (RMAP may be active).

* Port select untouched (RMAP may be active).

e Time Codes are disabled and TC register cleared.

« IRQ generation disabled.

 Status Register cleared.

* Node address/ DMA channels node address is untouched (RMAP may be active).

» Hardware capabilities are read.

* Deviceindex determined.

3.2.3. Link control

The GRSPW link interface handles the communication on the SpaceWire network. It consists of a transmitter,
receiver, a FSM and FIFO interfaces. The current link state, status indicating past failures, parameters that affect
the link interface such as transmitter frequency for exampleis controlled using the GRSPW register interface.

The SpaceWire link is controlled using the software device interface. The driver initialization sequence during
boot does not affect the link parameters or state. The link is controlled separately from the DMA channels, even
though the link goes out from run-mode this does not affect the DMA interface. The DMA activity of all channels
are of course paused. It is possible to configure the driver to disable the link on certain error interrupts.

The link can be disabled when a link error is detected by the GRSPW interrupt handler. There are two options
which can be combined, either the DMA transmitter is disabled on error (disabled by hardware) or the software
interrupt handler disables the link on link error events selected by the user. When software disables the link the
work queueisinformed and stopsall DMA channels, thusgr spw_dna_st op() iscalled for each DMA channel
by the work queue. The GRSPW interrupt handler will disable the link by writing "Link Disable" bit and clear-
ing "Link Start" bit on link errors. The user is responsible to restart the link interface again. The status register
(grspw_I| i nk_st at us()) and statistics interface can be used to determine which error(s) happened. The two
options are configured by the link control interface of the device API using function gr spw_| i nk_ctrl ().

To make hardware disable the DMA transmitter automatically on error the option (LI NKOPTS_DI S_ONERR)
is used.

To activate the GRSWP interrupt routine when any link error occurs, the bitmask option Enable Error
Link IRQ (L1 NKOPTS_EI RQ shall be set. The bitmask options described as Disable Link on XX Error
(L1 NKOPTS_DI S_ON_*) are used to select which events shall actually causelink disablein the interrupt routine
and inform the work queue of a shutdown stop.

TheoptionsLI NKOPTS_DI S_ON* arein effect even when the option LI NKOPTS_EIl RQisdisabled. Thus,
an interrupt routine invocation caused by a DMA channel interrupt event may disable the link in case any of
the conditionsin LI NKOPTS_DI S_ON_* are satisfied.

Statistics about the link errors can be read from the driver, see Section 3.3.8.

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 15

frontgrade.com/gaisler

rRONTGRADE

Gaisler

It is possible to circumvent the drivers action of clearing link status events in the GRSPW status register from
the interrupt routine. This can be used for example when the user wants to detect and handle all occurrences of
aspecific link event. The functiongr spw_| i nk_ctr| () isused to configurethisviathe st scf g parameter
withvaluesLlI NKSTS_*. If ahitissetinthisconfiguration parameter, the corresponding bit in the GRSPW status
register is cleared by the interrupt routine. If the bit is not set, the interrupt routine will never clear the status
flag and the user has full control of it. The status event can then be manually read and cleared with functions
grspw_link_status() andgrspw_|ink_status_clr().

Statistics countersfor events which are configured to be circumvented by the driver, as described above, shall
not be relied upon.

Function names prefix: gr spw_I i nk_*() .
3.2.4. Time Code support

The GRSPW supports sending and receiving SpaceWire Time Codes. An interrupt can optionally be generated on
Time Code reception and the last Time Code can be read out from a GRSPW register.

The GRSPW core's Time Codeinterface can be controlled from the device API. One can generate Time Codesand
read out the last received or generated Time Code. An user assignable interrupt handler can be used to detect and
handle Time Code reception, the callback is called from the GRSPW interrupt routine thus from interrupt context.

Function names prefix: gr spw_tc_* ()
3.2.5. RMAP support

The GRSPW device has optional support for an RMAP target implemented in hardware. The target interface is
abletointerpret RMAP protocol (pr ot i d=1) requests, take the necessary actionson the AMBA bus and generate
a RMAP response without the software's knowledge or interaction. The RMAP target can be disabled in order
to implement the RMAP protocol in software instead using the DMA operations. The RMAP CRC algorithm
optionally present in hardware can aso be used for checksumming the data payload.

The device interface is used to get the RMAP features supported by the hardware and configuring the below
RMAP parameters:

e Probeif RMAP and RMAP CRC is supported by hardware
* RMAP enable/disable
e SpaceWire DESTKEY of RMAP packets

The SpaceWire node address, which also affects the RMAP target, is controlled from the address configuration
routines, see Section 3.2.7.

Function names prefix: gr spw_r map_* ()

3.2.6. Port support

The GRSPW device has optional support for two ports (two connectors), where only one port can be active at a
time. The active SpaceWire port is either forced by the user or auto selected by the hardware depending on the

link state of the SpaceWire ports at a certain condition.

The device interface is used to get information about the GRSPW hardware port support, current set up and to
control how the active port is selected.

Function names prefix: gr spw_port _*()

3.2.7. SpaceWire node address configuration

The GRSPW core supports assigning a SpaceWire node address or a range of addresses. The address affects the
received SpaceWire Packets, both to the RMAP target and to the DMA receiver. If areceived packet does not

match the node addressit isdropped and the GRSPW statusindicatesthat one or more packetswith invalid address
was received.

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 16

frontgrade.com/gaisler

rRONTGRADE

Gaisler

The GRSPW2 and GRSPW2_DMA cores that implements multiple DMA channels use the node address as a
way to determine which DMA channel areceived packet shall appear at. A unique node address or range of node
addresses per DMA channel must be configured in this case.

It is also possible to enable promiscuous mode to enable all node addresses to be accepted into the first DMA
channel, this option does not affect the RMAP target node address decoding.

The GRSPW SpaceWire node address configuration is controlled using the device interface. A specific DMA
channel's node address is thus affected by the "global" device API and not controllable using the DMA channel
interface.

If supported by hardware the node address can be removed before DMA writes the packet to memory. Thisisa
configuration option per DMA channel using the DMA channel API.

Function names prefix: gr spw_addr _* ()
3.2.8. SpaceWire Interrupt Code support

The GRSPW?2 has optionally support for receiving and generating SpaceWire Interrupt codes. The Interrupt Codes
implementation is based on the Time Code service but with a different Time Code Control content.

The SpaceWire Interrupt Code interface are controlled from the device interface.

Function names prefix: gr spw_i c_* ()

3.2.9. User DMA buffer handling

Thedriver is designed with zero-copy in mind. The user isresponsible for setting up data buffersonitsown . The
driver useslinked lists of packet buffersasinput and output from/to the user. It makesit possibleto handle multiple

packets on asingle driver entry, which typically has a positive impact when transmitting small sized packets.

The API supports header and data buffersfor every packet, and other packet specific transmission parameters such
as generate RMAP CRC and reception indicators such asif packet was truncated.

Since the driver never reads or writes to the header or data buffers the driver does not affect the CPU cache of the
DMA buffers, it is the user's responsibility to handle potential cache effects.

Note that the UT699 does not have D-cache snooping, this means that when reading received buffers D-cache
should either be invalidated or the load instructions should force cache miss when accessing DMA buffers
(LEON LDA instruction) or map the packet buffer DMA pages non-cacheable using the MMU .

Function names prefix: gr spw_dnma_* ()
3.2.9.1. Buffer List help routines

The GRSPW packet driver internally uses linked lists routines. The linked list operations are found in the header
fileand can be used by the user aswell. The user application typically definesits own packet structures having the
same layout as struct grspw_pkt in the top and adding custom fields for the application buffer handling as needed.
For small implementations however the pkt _i d field may be enough to implement application buffer handling.
Thepkt _i d field is hever accessed by the driver, instead is an optional application 32-bit data storage intended
for identifying a specific packet, which packet pool the packet buffer belongs to, or a higher level protocol id
information for example.

Function names prefix: gr spw_l i st _*()
3.2.10. Driver DMA buffer handling

The driver alocates memory for DMA descriptor tables using Linux cohoerent memory allocation services
dma_al | oc_coher ent () tomap physical address space non-cachable for the DMA tables.

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 17

frontgrade.com/gaisler

rRONTGRADE

Gaisler

The driver represents packets with the struct grspw_pkt packet structure, see Table 3.30. They are arranged in
linked lists that are called queues by the driver. The order of the linked lists are aways maintained to ensure that
the packet transmission order is represented correctly.

next =&l |—» next=&p2
count =3 flags flags
hlen hlen
heéd =&po dlen dlen next = NULL
tail = &p2 data data flags
hdr hdr hlen
dlen
data
hdr

Figure 3.1. Queue example - linked list of three grspw_pkt packets
3.2.10.1. DMA Queues

The driver uses three queues per DMA channel transfer direction, thus six queues per DMA channel. The number
of packets within a queue is maintained to optimize moving packets internally between queues and to the user
which also needs this information. The different queues are listed below.
* RX READY queue - free packet buffers provided by the user.
RX SCHED queue - packets that have been assigned a DMA descriptor.
RX RECV queue - packets containing areceived packet.
TX SEND queue - user provided packets ready to be sent.
TX SCHED queue - packets that have been assigned a DMA descriptor.
TX SENT queue - packets sent

L]

Packet in the SCHED queues always are assigned to a DMA descriptor waiting for hardware to perform RX or
TX DMA operations. Thereisalimited number of DMA descriptor table, 64 TX or 128 RX descriptors. Naturally
this also limits the number of packets that the SCHED queues contain simultaneously. The other queues does not
have any maximum number of packets, instead it is up to the user to handle the sizing of the RX READY, RX
RECV, TX SEND and TX SENT packet queues by controlling the input and output to them. Thereby it ispossible
to queue packets within the driver. Since the driver can move queued packets itself it can makes sense to queue
up free buffersin the RX READY queue and TX SEND queue for future transmission.

The current number of packets in respective queue can be read by doing function calls using the DMA AP, see
Section 3.4.7. The user can for example use this to determine to wait or continue with packet processing.

3.2.10.2. DMA Queue operations

The user can control how the RX READY and TX SEND queue is populated, by providing packet buffers. The
user can control how and when packets are moved from RX READY and TX SEND queues into the RX SCHED
or TX SCHED by enabling the work queue and interrupt driven DMA or by manually trigger the moving calling
reception and transmission routines as described in Section 3.4.6 and Section 3.4.5.

The packetsalwaysflow in onedirection from RX READY ->RX SCHED ->RX RECV. Likewisethe TX packets
flow TX SEND -> TX SCHED -> TX SENT. The procedures triggering queue packet moves are listed below and
in Figure 3.2 and Figure 3.3. The interface of theses procedures are described in the DMA channel API.

¢ USER ->RX READY queue - rx_prepare, Section 3.4.6.

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 18

frontgrade.com/gaisler

rRONTGRADE

Gaisler
¢ RX RECV ->USER - rx_recv, Section 3.4.6.
¢ USER->TX SEND - tx_send, Section 3.4.5.
e TX SEND -> USER - tx_reclaim, Section 3.4.5.
"RX PREPARE" RX READY _ RX SCHED . RX RECV "RX RECV"
User input empty —»] Queue step 3 (optional) Queue step 1(optional) Queue | o User receive
packet buffers &0 &p7 &p6 packet buffers
&pll &p8 &p5
&p12 &p9 &p4
&p13 &p3
&pl4

Figure 3.2. RX queue packet flow and operations

"TX SEND" TX SEND . TX SCHED . TX SENT "TX RECLAIM"
Userinput —» Queue step 3 (optional) Queue step 1(optional) Queue | » User retake
packet buffers &p10 &p7 &p6 packet buffers
&p11 &p8 &p5
&p12 &p9 &p4
&p13 &p3

&pla

Figure 3.3. TX queue packet flow and operations
3.2.11. Polling and blocking mode

Both polling and blocking transfer modes are supported. Blocking mode is implemented using DMA interrupt
and awork queue for processing the descriptor tables to avoid loading the CPU in interrupt context. The DMA
interrupt queues DMA jobs by using work queues. In polling mode the user is responsible for processing the
DMA descriptor tables at a user defined interval by calling reception and transmit routines of the driver.

DMA interrupt is generated every N received/transmitted packets or controlled individually per packet. The latter
isconfigured in the packet data structures and the former using the DMA channel configuration. See Section 3.4.3
and Section 3.4.9 for more information.

Blocking mode is implemented by letting the user setting up a condition on the RX or TX DMA queues packet
counters. The condition can optionally betimed out protected in anumber of ticks, implemented by the semaphore
service provided by the operating system. Each time after the work queue has completed processing the DMA
descriptor table the condition is evaluated. If considered true then the blocked task is woken up by signaling on
the semaphore the task is waiting for. There is only one RX and one TX condition per channel, thus only two
tasks can block at atime per channel.

Blocking function names: gr spw_dma_{t x, rx} _wai t ()
3.2.12. Interrupt and work queue

The driver can optionally spawn jobs on awork queue that is used service the GRSPW devices. The work queue
execution istriggered from the GRSPW ISR at certain user configurable events, at link errors or DMA transmis-
sions completed. When the ajob has been scheduled on the work queue for a specific device or DMA channel the
ISR has turned off the specific interrupt source that the job will handle, once the job has been completed the job
re-enables interrupt source again. Thisisto lower the number of interrupts.

The work gqueue can also be used to automatically stop DMA operation on certain link errors. This feature is
enabled by activating the different Disable Link on XX Error (LI NKOPTS_DI S_ON_*) options from the device

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 19

frontgrade.com/gaisler

rRONTGRADE

Gaisler

API link control interface. See Section 3.2.3. For the configured link errors the GRSPW interrupt handler will
trigger the shutdown work to start which will stop all DMA channels by calling gr spw_dna_st op() .

3.2.13. Starting and stopping DMA

The driver has been designed to make it clear which functionality belongs to the device and DMA channel APIs.
The DMA API is affected by started and stopped mode, where in stopped mode means that DMA is not possible
and used to configure the DMA part of the driver. During started mode a DMA channel can accept incoming and
send packets. Each DMA channel controlsits own state. Parts of the DMA API isnot available in during stopped
mode and some during stopped mode to simplify the design. The device API is not affected by this.

Typically the DMA configurationis set and user buffersareinitialized before DMA is started. The user can control
thelink interface separately from the DMA channel before and during DMA starts.

When the DMA channel is stopped by calling gr spw_dna_st op() thedriver will:
¢ Stop DMA transfers and DMA interrupts.
 Stop accepting new packetsfor transmission and reception. However the DMA functionswill still be open for
the user to retrieve sent and unsent TX packet buffersand to retrieve received and unused RX packet buffers.
« Wake up blocked DMA threads and return to the caller. Tasks can be blocked waiting for TX/RX event by
using the TX/RX DMA wait functions.

The DMA closeroutines requiresthat the DMA channel is stopped. Similarly, the device close routine makes sure
that all DMA channels are closed to be successful. Thisisto make sure that al user tasks has return and hardware
isinagood state. It isthe user's responsibility to stop the DMA channel before closing.

DMA operational function names: gr spw_dma_{start, stop} ()
3.2.14. Thread concurrency

The driver has been designed to allow multi-threading. There are five parts that can be operated simulaneously
by different or the same thread(s):

» Device (link control) interface.

« DMA RX channel.

e DMA TX channel.

« work queueis a separate thread of execution.
 |Interrupt Service Routine.

There may be multiple DMA channelsin a GRSPW device. DMA channels are operated independently of each
other. Each DMA channel has two semaphores to alow operations on different DMA channels simultaneously
as well as simultaneous RX and TX operations on the same DMA channel. However multiple RX and TX tasks
of the same RX or TX interface of the sasme DMA channel is possible but will temporarily lock each other out
during register and DMA descriptor table processing. The same semaphores are taken by the work queue during
DMA processing if the user has enabled it. There is a global device semaphore that manages device open/close
operations that introduce dependencies between different GRSPW device and between DMA channels on those
operations. The DMA channels and device interface share the same GRSPW 1/O registers which needs in some
cases to be protected, they are protected from each other by using interrupt disabling (or spin-locks on SMP).

Each DMA channel also has two semahpores to implement blocking on RX/TX operations. The DMA RX/TX
interrupt wakes a worker which processes the DMA RX/TX descriptor tables and signals viathe RX-WAIT and
TX-WAIT that incomming/outgoing packets processing has finished.

The table below summarises the semaphore operations of a DMA channel that the driver makes.

Table 3.1. DMA channel semaphore operations.

Function Operation Semaphore | Description

dma_open Init semaphores RX TX RX and TX semaphores areinitialized to 1.

dma_cl ose Free semaphores RX TX Both RX and TX semaphores are taken and left in
locked state or deleted on a successful close. From

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 20

frontgrade.com/gaisler

rRONTGRADE

Gaisler

Function Operation Semaphore |Description
this point the user can not enter other DMA func-
tionsthan dma_open.
drme_start Init semaphores RX-WAIT |Thewait semaphores areinitialized to O (locked)
TX-WAIT |state. From this point onwards the RX/TX wait in-
terface isavailable.
dma_st op Shutdown DMA RX TX RX- | The RX and TX semaphores are taken and re-
WAIT TX- |turned in sequence during stopping a DMA chan-
WAIT nel. The RX-WAIT and TX-WAIT semahpores are
signalled in order for potential locked tasksto be
worken up and return to caller with an error code
or indicating DMA stopped (1) error code.
dnma_rx_recv RX DMA operations | RX Holds the RX semahpore while performing RX op-
dma_r x_prepare erations.
dma_r x_count
dma_t x_send RX DMA operations | RX Holds the RX semaphore while performing TX op-
dma_tx_reclaim erations.
dma_t x_count
drme_t x_wai t Wait for TX DMA. |TX TX- Takesthe TX semaphore to initiaize the wait
WAIT structures. TX-WAIT istaken to block the calling
thread until the worker, DMA shutdown or timeout
awakens the thread again.
dma_rx_wait Wait for RX DMA. |RX RX- Takes the RX semaphore to initialize the wait
WAIT structures. RX-WAIT is taken to block the calling
thread until the worker, DMA shutdown or timeout
awakens the thread again.
DMA work Normal DMA de- RX TX RX- |RX and TX locks taken in sequence. RX-WAIT
scriptor list process- |WAIT TX- |and TX-WAIT given on matching conditions.
ing. WAIT
DMA work error DMA AHB error RX TX DMA RX/TX AHB errorsleadsto calling
handling. gr spw_dna_st op() for one DMA channel.
The work gqueue does not hold any locks itself.
Link work error Link error handling. |RX TX SpaceWire link errors configured to gener-
ate interrupt may be handled by worker to call
grspw _dna_stop() foral DMA channels.

3.2.15. SMP Suppo

rt

The driver has been designed with SMP in mind. Data structures, interrupt handling routine and GRSPW control
register accesses are spin-lock protected when SMP is enabled.

The design using aworker task off-loads the interrupt handler and makes it possible to control which CPU (with
CPU affinity in the scheduler) that should handle the descriptor table processing.

As described in Section 3.1.4 the SMP support requires testing.

3.2.16. User space

support

Thedriver has been designed for kernel space where pointers and memory addresses are being exchanged with the
API user and trusted. In Chapter 2 it is described how this driver can be used indirectly from user space. Packet
buffer DMA memory is mapped into both kernel and user space using mmap() to allow an efficent zero-copy
implementation.

3.3. Device Interface

This section covers how the driver can be interfaced to an application to control the GRSPW hardware.

LINDRV-UM
Jun 2025, Version 1.3.0

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
21

frontgrade.com/gaisler

rRONTGRADE

Gaisler

3.3.1. Opening and closing device

A GRSPW device must first be opened before any operations can be performed using the driver. The number of
devices registered to the driver can be retrieved using gr spw_dev_count . A particular device can be opened
using gr spw_open and closed gr spw_cl ose. The functions are described below.

An opened device can not be reopened unless the device is closed first. When opening a device the device is
marked opened by the driver. This procedure isthread-safe by protecting from other threads by using the GRSPW
driver's semaphore lock. The semaphore is used by al GRSPW devices on device opening, closing and DMA
channel opening and closing.

During opening of a GRSPW device the following steps are taken:

GRSPW device I/O registers are initialized to a state where most are zero.

Descriptor tables memory for al DMA channels are alocated from the coherent DMA allocation service
of Linux which provides non-cacheable linear memory address space. The descriptor table length is aways
the maximum 0x400 Bytes for RX and TX.

Internal resources like spin-locks and data structures are initialized.

The GRSPW device Interrupt Service Routine (ISR) is installed and enabled. However hardware does not
generate interrupt until the user configures the device or DMA channel to generate interrupts.

Thedriver is configured to clear al link status events from the ISR.

The device is marked opened to protect the caller from other users of the same device.

The example bel ow prints the number of GRSPW devicesto screen then opens, prints the current link settings and
closes the first GRSPW device present in the system.

int print_spw_|ink_properties()

{

voi d *devi ce;
int count, options, clkdiv;

count = grspw_dev_count();
printf ("% GRSPWdevice present\n", count);

devi ce = grspw_open(0);
if (!device)
return -1; /* Failure */

options = clkdiv = -1;
grspw_link_ctrl (device, &options, &clkdiv);
if (options & LI NKOPTS_AUTCOSTART) {
printf("GRSPW: Link is in auto-start after start-up\n");

}
printf("GRSPW: C ock divisor reset value is %\n", clkdiv);

grspw_cl ose(devi ce);
return 0; /* success */

}

Table 3.2. gr spw_dev_count function declaration

Proto |int grspw dev_count (voi d)

About |Retrieve number of GRSPW devices registered to the driver.

Return |int. Number of GRSPW devices registered in system, zero if none.

Table 3.3. gr spw_open function declaration

Proto |void *grspw open(int dev_no)

About |Opensa GRSPW device. The GRSPW deviceisidentified by index. The returned valueis used asin-

put argument to all functions operating on the device.

Param [dev_no [IN] Integer

Device identification number. Devices are indexed by the registration order to the driver, normally
dictated by the Plug & Play order. Must be equal or greater than zero, and smaller than that returned
by gr spw_dev_count.

Return |Pointer. Status and driver's internal device identification.

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 22

frontgrade.com/gaisler

rRONTGRADE

Gaisler
NULL Indicates failure to open device. Failsif device semaphore fails or device already is
open.
Pointer Pointer to internal driver structure. Should not be dereferenced by user. Input to all de-
vice API functions, identifies which GRSPW device.

Notes |May blocking until other GRSPW device operations complete.

Table 3.4. gr spw_cl ose function declaration

Proto |int grspw_close(void *d)

About |Closes a previously opened device. All DMA channels must have been stopped and closed
by the user prior to calling this function. See the documentation for gr spw_dnma_st op and
gr spw_dma_cl ose.

Param |d [IN] pointer
Device identifier. Returned from gr spw_open.

Return |Vaue. Description

0 Device was successfully closed, or already previously closed.
1 Failure dueto aDMA channel is open for this device.
-1 Failure due to invalid input arguments or unknown semaphore error.

3.3.2. Hardware capabilities

Thefeaturesand capabilities present in hardware might not be symmetricin asystemwith several GRSPW devices.
For example the two first GRSPW devices on the GR712RC implements RMAP whereas the others does not. The
driver can read out the hardware capabilities and present it to the user. The set of functionality are determined
at design time. In some system where two or more systems are connected together it is likely to have different
capabilities.

The capabilities are read out from the GRSPW /O registers and written to the user in an easier accessible way.
See below function declarations for details.

Depending on the capabilities parts of the APl may beinactivated due to missing hardware support. See respective
section for details.

The function gr spw_r map_support and gr spw_port _count retrieves a subset of the hardware ca-
pabilities. They are described in respective section.

Table 3.5. gr spw_hw_support function declaration

Proto |void grspw _hw support(void *d, struct grspw _hw sup *hw)

About | Read hardware capabilities of GRSPW device and write them in an easy to use format described by
the grspw_hw_sup data structure. The data structure is described by Table 3.6.

Param |d [IN] pointer
Deviceidentifier. Returned from gr spw_open.
Param |hw[OUT] pointer

Address to where the driver will write the hardware capabilities. Pointer must point to memory and be
valid.

Return |None. Always success, input is not range checked.

Thegrspw_hw_sup datastructureisdescribed by the declaration and table below. It isused to describethe GRSPW
hardware capabilities.

/* Hardware Support in GRSPW Core */

struct grspw_hw sup {

char rmap; /* If RVAP in HWis available */

char rmap_crc; /* If RVAP CRC is available */

char rx_unalign; /* RX unaligned (byte boundary) access all owed*/
char nports; /* Nunber of Ports (1 or 2) */

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 23

frontgrade.com/gaisler

rRONTGRADE

char ndna_chans; /* Nunmber of DMA Channels (1..4) */

char strip_adr; /* Hardware can strip ADR from packet data */
char strip_pid; /* Hardware can strip PID from packet data */
int hw.version; /* GRSPW Hardware Version */

char reserved[2];

h

Table 3.6. grspw_hw_sup data structure declaration

Gaisler

Member Description
rmap 0 RMAP target functionality is not implemented in hardware.
1 RMAP target functionality isimplemented by hardware.
rmap_crc Non-zero if RMAP CRC isavailable in hardware.
rx_unalign Non-zero if hardware can perform RX unaligned (byte boundary) DMA accesses.
nports Number of SpaceWire portsin hardware. Values: 1 or 2.
ndma_chans Number of DMA Channelsin hardware. Values: 1,2,3 or 4.
strip_adr non-zero if GRSPW can strip ADR from packet data.
strip_pid non-zero if device can strip PID from packet data.
hw_version 27..16 The 12-bitsindicates GRLIB AMBA Plug & Play device ID of APB device.
Indicates if GRSPW, GRSPW2 or GRSPW2_DMA.
4.0 The 5 LSB bitsindicates GRLIB AMBA Plug & Play device version of APB
device. Indicates subversion of GRSPW or GRSPW2.
reserved Not used. Reserved for future use.

3.3.3. Link Control

The SpaceWirelink is controlled and configured using the device API functions described below. Thelink control

functionality is described in Section 3.2.3.

Table3.7.gr spw_| i nk_ct r| function declaration

di v)

Proto |void grspw link ctrl(void *d, int *options, int *stscfg, int *clk-

About |Read and configure link interface settings, such as clock divisor, link start and error options.

Param |d [IN] pointer
Deviceidentifier. Returned from gr spw_open.

Param |opt i ons [IO] pointer to bitmask

t i on bit declarations.

If opti ons pointsto -1, the link options are only read from the /O registers, otherwise they are up-
dated according to the value in memory pointed to by opt i ons. Use LINKOPTS * definesfor op-

Themasksfor LI NKOPTS_DI S_ON* arein effect even when the option LI NKOPTS_El RQis not

enabled.

Bitmask Description (prefixed LINKOPTS)
DISABLE Read/Set enable/disable link option.
START Read/Set start link option.

AUTOSTART | Read/Set enable/disable link auto-start option.

DIS ONERR |Read/Set disable DMA transmitters when a link error occurs option.

EIRQ Read/Set interrupt generation on link error option.

DIS ON_CE Read/Set disable link on credit error option.

DIS ON_ER Read/Set disable link on escape error option.

DIS ON_DE Read/Set disable link on disconnect error option.

DIS ON_PE Read/Set disable link on parity error option.

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 24

frontgrade.com/gaisler

FRONTGRADE
DIS ON_WE |Read/Set disable link on write synchronization error option (GRSPW1 only).
DIS ON_EE Read/Set disable link on early EOP/EEP error option.
Param |st scf g [IO] pointer to bitmask

If st scf g pointsto -1, the link status configuration is only read, otherwise it is updated according to
the value in memory pointer to by st scf g. Use LINKSTS * definesfor st scf g bit declarations.

The status configuration selects which link status bits to clear by the driver ISR. Bitsin the link status
register are cleared by the driver interrupt service routine if and only if the corresponding bit is set in
the st scf g parameter.

Bitmask Description (prefixed LINKSTS)

CE Read/Set clear status from ISR for credit error

ER Read/Set clear status from | SR for escape error

DE Read/Set clear status from ISR for disconnect error

PE Read/Set clear status from ISR for parity error

WE Read/Set clear status from ISR for write synchronization error (GRSPW1 only)
1A Read/Set clear status from ISR for invalid address

EE Read/Set clear status from ISR for early EOP/EEP

Param |cl kdi v [IQ] pointer to integer

If cl kdi v pointsto -1, the clock divisor fields are only read from the 1/O registers, otherwiseit is up-
dated according to the value in memory pointed to by cl kdi v.

Return |None.

Table 3.8. gr spw_| i nk_st at e function declaration

Proto |spw link _state t grspw . |ink state(void *d)
About |Read and return current SpaceWire link status.

Param |d [IN] pointer

Deviceidentifier. Returned from gr spw_open.

Return |enum spw_link_state t. SpaceWire link status according to SpaceWire standard FSM state machine
numbering. The possible return values are listed below, all numbers must be prefixed with SPW_LS
declared by enum spw_link_state t.

Value Description.

ERRRST Error reset.

ERRWAIT Error Wait state.

READY Error Wait state.

CONNECTING Connecting state.

STARTED Stated state.

RUN Run state - link and DMA isfully operational.

Table 3.9. gr spw_| i nk_st at us function declaration

Proto |unsigned int grspw_|ink_status(void *d)
About |Reads and returns the current value of the GRSPW status register.

The status register bits can be cleared by calling gr spw_| i nk_st at us_cl r withreturn value as
parameter.

Param |d [IN] pointer
Deviceidentifier. Returned from gr spw_open.
Return |unsigned int. Current value of the GRSPW Status Register.

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 25

frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table 3.10. gr spw_| i nk_st at us_cl r function declaration

Proto |void grspw link status_clr(void *d, unsigned int nmask)
About |Clear bitsin the GRSPW status register.

The mask can be the return value of functiongr spw_| i nk_st at us
Param |d [IN] pointer
Device identifier. Returned from gr spw_open.

Param |mask [IN] Integer
Status bitsto clear

Return |None.

3.3.4. Node address configuration

This part for the device API controls the node address configuration of the RMAP target and DMA channels. The
node address configuration functionality is described in Section 3.2.7. The data structures and functionsinvolved
in controlling the node address configuration are listed below.

struct grspw_addr_config {

/* lIgnore address field and put all received packets to first
* DMA channel .
*/

int prom scuous;

/* Default Node Address and Mask */

unsi gned char def_addr;

unsi gned char def _mask;

/* DVA Channel custom Node Address and Mask */
struct {

char node_en; /* Enabl e Separate Addr */
unsi gned char node_addr; /* Node address */
unsi gned char node_nask; /* Node address mask */

} dme_nacfg[4];

Table 3.11. grspw_addr_config data structure declaration

promiscu- |Enable (1) or disable (0) promiscous mode. The GRSPW will ignore the address field and put all
ous received packetsto first DMA channel. See hardware manual for. Thisfield is also used to by the
driver indicate if the settings should be written and read, or only read. See function description.

def addr GRSPW default node address.
def_mask | GRSPW default node address mask.

dma _nacfg |DMA channel node address array configuration, see below field description. DMA channel N is
described by dma_nacf g[N] .

Field Description
node_en Enable (1) or disable (1) separate node address for DMA channel N (determined by
array index).

node addr |If separate node addressis enabled this option sets the node address for DMA chan-
nel N (determined by array index).

node_mask |If separate node address is enabled this option sets the node address mask for DMA channel N
(determined by array index).

Table 3.12. gr spw_addr _ct r| function declaration

Proto |void grspw addr_ctrl(void *d, struct grspw addr_config *cfg)

About |Alwaysread and optionally set the node addresses configuration. The GRSPW device is either con-
figured to have one single node address or arange of addresses by masking. The cf g input memory
layout is described by the grspw_addr_config data structure in Table 3.11. When using multiple DMA
channels one must assign each DMA channel a unique node address or a unique range by masking.
Each DMA channel isrepresented by theinput dma_nacf g[N] .

Param |d [IN] pointer

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 26

frontgrade.com/gaisler

rRONTGRADE

Gaisler

Deviceidentifier. Returned from grspw_open.

Param |cf g [IO] pointer

Address to where the driver will read or write the address configuration from. If the pr omi scous
field is set to -1 the hardware is not written, instead the current configuration is only read and memory
content updated accordingly.

Return |None.

3.3.5. Time Code support

SpaceWire Time Code handling is controlled and configured using the device API functions described below. The
Time Code functionality is described in Section 3.2.4.

Table3.13. gr spw_t c_ct rl function declaration

Proto |void grspw tc ctrl(void *d, int *options)
About | Alwaysread and optionally set TimeCode settings of GRSPW device.

It is possible to enable/disable reception/transmission and interrupt generation of TimeCodes.

See TCOPTS_* definesfor available options.
Param |d [IN] pointer
Deviceidentifier. Returned from gr spw_open.

Param |opt i ons [IO] pointer to bit-mask

If options points to -1, the TimeCode options is only read from the I/O registers, otherwise it is updat-
ed according to the value in memory pointed to by options. Use TCOPTS _* defines for option bit dec-
larations.

Value Description

EN_RXIRQ |When 1 enable, when zero disable TimeCode receive interrupt generation (affects TQ
and |E bit in control register).

EN_TX Enable/disable TimeCode transmission (affects TT bit in control register).
EN_RX Enable/disable TimeCode reception (affects TR bit in control register).
Return |None.

Table 3.14. gr spw_t c_t x function declaration

Proto |void grspw tc_tx(void *d)

About |Generates a TimeCode Tick-In.

Param |d [IN] pointer

Deviceidentifier. Returned from gr spw_open.

Return |None.

Table 3.15. gr spw_t c_i sr function declaration

Proto |void grspw tc_isr(void *d, void (*tcisr)(void *data, int tc), void
*dat a)
About |Assigns aInterrupt Service Routine (1SR) to handle TimeCode interrupt events. The ISR is called

from the GRSPW device's interrupt handler, thus the isr is called in interrupt context and care needs to
be taken.

The ISR is called when a Tick-Out event has happened and an interrupt has been generated. The ISR
is called with a custom argument dat a and the current value of the GRSPW TC register. The TC reg-
ister contains TimeCode control flags and counter.

The GRSPW interrupt handler always clears the GRSPW statusfield. It is performed after the ISR has
been called.

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 27

frontgrade.com/gaisler

rRONTGRADE

Gaisler

Note that even if the Tick-Out interrupt generation has not been enabled the ISR may till be called if
other GRSPW interrupts are generated and the GRSPW status indicates that a Tick-Out has been re-
ceived.

Param |d [IN] pointer
Device identifier. Returned from gr spw_open.

Param |t ci sr [IN] pointer to function

If argument isNULL the Tick-Out ISR call is disabled. Otherwise the pointer will be used in afunc-
tion call from interrupt context when a Tick-Out event is detected.

Param |dat a [IN] pointer to custom data
Thisvalueis given as the first argument to the ISR.

Return |None.

Table 3.16. gr spw_t ¢_t i me function declaration

Proto |void grspw tc time(void *d, int *tine)

About |Optionally writes and always reads the current TimeCode control flags and counter from hardware
registers. The values are written into the address pointedto by t i ne.

Param |d [IN] pointer
Deviceidentifier. Returned from gr spw_open.
Param |t i me [IO] pointer to bit-mask

If time pointsto -1, the TimeCode options are only read from the 1/0 registers. Otherwise hardware
is updated according to the value in memory pointed to by time before reading the hardware registers.
Use TCOPTS * defines for time bit declarations.

bits Description

5.0 The 6 LSB bits reads/writes the time control flags.
7.6 The 2 bits reads/writes the time counter value.
Return |None.

3.3.6. Port Control

The SpaceWire port selection configuration, hardware support and current hardware status can be accessed using
the device API functions described below. The SpaceWire port support functionality is described in Section 3.2.3.

In cases where only one SpaceWire port isimplemented this part of the APl can safely be ignored. The functions
still deliver consistent information and error code failures when forcing Port1, however provides no real function-
ality.

Table3.17. gr spw_port _ct r| function declaration

Proto |int grspw port_ctrl(void *d, int *port)

About | Always read and optionally set port control settings of GRSPW device. The configuration determines
how the hardware selects which SpaceWire port that is used. Thisis an optional feature in hardware to
support one or two SpaceWire ports. An error isreturned if operation not supported by hardware.

Param |d [IN] pointer
Deviceidentifier. Returned from gr spw_open.
Param |port [IO] pointer to bit-mask

The port configuration isfirst written if por t does not point to -1. The port configuration is always
read from the 1/O registers and stored in the por t address.

Value |Description

-1 The current port configuration is read and stored into the por t address.

Force to use PortO.

Force to use Port1.

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 28

frontgrade.com/gaisler

rRONTGRADE

Gaisler

>1 Hardware auto select between PortO or Port1.

Return

Value. Description
0 Request successful.
-1 Request failed. Portl is not implemented in hardware.

Table 3.18. gr spw_port _count function declaration

Proto

int grspw port _count(void *d)

About

Reads and returns number of ports that hardware supports.

Param

d [IN] pointer
Deviceidentifier. Returned from gr spw_open.

Return

int. Number of portsimplemented in hardware.
Vaue |Description

1 One SpaceWire port isimplemented in hardware. In thiscasegr spw_port _ctr!| function
has no effect and gr spw_port _act i ve alwaysreturnsO.

2 Two SpaceWire ports are implemented in hardware.

Table 3.19. gr spw_port _act i ve function declaration

Proto

int grspw port_active(void *d)

About

Reads and returns the currently actively used SpaceWire port.

Param

d [IN] pointer
Device identifier. Returned from gr spw_open.

Return

int. Currently active SpaceWire port
Value |Description

0 SpaceWire portO is active.

1 SpaceWire portlis active.

3.3.7. RMAP Control

The device API described below is used to configure the hardware supported RMAP target. The RMAP support
is described in Section 3.2.5.

When RMAP CRC isimplemented in hardware it can be used to generate and append a CRC on a per packet
basis. It is controlled by the DMA packet flags. Header and data CRC can be generated individualy. See
Table 3.30 for more information.

Table 3.20. gr spw_r map_support function declaration

Proto

int grspw_rmap_support(void *d, char *rmap, char *rnmap_crc)

About

Reads the RMAP hardware support of a GRSPW device. It is equivalent to use the
gr spw_hw_support function to get the RMAP functionality present in hardware.

Param

d [IN] pointer
Deviceidentifier. Returned from gr spw_open.

Param

r map [OUT] pointer
If not NULL the RMAP configuration is stored into the address of r nap.

Value |Description

0 RMAP target is not implemented in hardware.

1 RMAP target is implemented in hardware.

Param

rmap_cr ¢ [OUT] pointer

LINDRV-UM

Jun 2025, Version 1.3.0 29

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

frontgrade.com/gaisler

FRONTGRADE
If not NULL the RMAP configuration is stored into the address of r map.
Vaue |Description
0 RMAP CRC agorithm is not implemented in hardware
1 RMAP CRC agorithm isimplemented in hardware
Return |None.

Table 3.21. gr spw_r map_ct r| function declaration

Proto |int grspw rmap_ctrl(void *d, int *options, int *dstkey)

About |Read and optionally write RMAP configuration and SpaceWire destination key value. This function
controls the GRSPW hardware implemented RMAP functionality.

Set opt i on to NULL not to read or write RMAP configuration. Set dst key to NULL to not read or
write RMAP destination key. Setting both to NULL results in no operation.

Param |d [IN] pointer
Deviceidentifier. Returned from gr spw_open.

Param |opt i ons [IO] pointer to bit-mask

The RMAP configuration isfirst written if opt i ons does not point to -1. The RMAP configuration
isalways read from the 1/O registers and stored in the opt i ons address. See RMAPOPTS _* defini-
tionsfor bit declarations.

Bit Description
EN_RMAP |Enable (1) or Disable (0) RMAP target handling in hardware.

EN_BUF Enable (0) or Disable (1) RMAP buffer. Disabling ensuresthat all RMAP requests
are processed in the order they arrive.

Param |dst key [IO] pointer

The SpaceWire 8-bit destination key isfirst written if dst key does not point to -1. The destination
key configuration is always read from the I/O registers and stored in the dst key address.

Return |int. Status
0 Request successful.
-1 Failed to enable RMAP handling in hardware. Not present in hardware.

3.3.8. Statistics

The driver counts statistics at certain events. The GRSPW device driver counters can be read out using the device
API. The number of interrupts serviced and different kinds of link error can be obtained.

Statistics related to a specific DMA channel activity can be accessed using the DMA channel API.

The read function is not protected by locks. A GRSPW interrupt could cause the statistics to be out of sync.
For example the number of link parity errors may not match the number of interrupts, by one.

struct grspw_core_stats {

int irg_cnt;

int err_credit;

int err_eeop;

int err_addr;

int err_parity;

int err_disconnect;

int err_escape;
int err_wsync; /* only in GRSPW */
IE

Table 3.22. grspw_core_stats data structure declaration

irq_cnt Number of interrupts serviced for this GRSPW device.
err_credit Number of credit errors experienced for this GRSPW device.
err_eeop Number of Early EOP/EEP errors experienced for this GRSPW device.
LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 30

frontgrade.com/gaisler

rRONTGRADE

Gaisler

err_addr Number of invalid address errors experienced for this GRSPW device.

err_parity Number of parity errors experienced for this GRSPW device.

err_disconnect | Number of disconnect errors experienced for this GRSPW device.

err_escape Number of escape errors experienced for this GRSPW device.

err_wsync Number of write synchronization errors experienced for this GRSPW device. Thisisonly ap-

plicable for GRSPW cores.

Table 3.23. gr spw_st at s_r ead function declaration

Proto |void grspw stats read(void *d, struct grspw core_stats *sts)

About |Readsthe current driver statistics collected from earlier events by GRSPW device and driver usage.
The statistics are stored to the address given by the second argument. The layout and content of the
statistics are defined by the grspw_core_stats data structure described in Table 3.22.

Note that the snapshot is taken without lock protection, as a consequence the statistics may not be syn-
chronized with each other. This could be caused if the function isinterrupted by athe GRSPW inter-
rupt.

Param |d [IN] pointer
Deviceidentifier. Returned from gr spw_open.
Param |st s [OUT] pointer

If NULL no operating is performed. Otherwise a snapshot of the current driver statistics are copied to
this user provided buffer.

The layout and content of the statistics are defined by the grspw_core_stats data structure described in
Table 3.22.

Return |None.

Table 3.24. gr spw_st at s_cl r function declaration

Proto |void grspw stats_clr(void *d)

About |Resetsthe driver GRSPW device statistical countersto zero.
Param |d [IN] pointer

Device identifier. Returned from gr spw_open.

Return |None.

3.4. DMA interface

This section covers how the driver can be interfaced to an application to send and transmit SpaceWire packets
using the GRSPW hardware.

GRSPW2 and GRSPW2_DMA devices supports more than one DMA channel. The device channel zero isaways
present.

3.4.1. Opening and closing DMA channels

The first step before any SpaceWire packets can be transferred is to open a DMA channel to be used for trans-
mission. As described in the device API Section 3.3.1 the GRSPW device the DMA channel belongs to must be
opened and passed onto the DMA channel open routines.

The number of DMA channels of a GRSPW device can obtained by calling gr spw_hw_support .

An opened DMA channel can not be reopened unless the channel is closed first. When opening a channel the
channel is marked opened by the driver. This procedure is thread-safe by protecting from other threads by using
the GRSPW driver's semaphore lock. The semaphore is used by all GRSPW devices on device opening, closing
and DMA channel opening and closing.

During opening of a GRSPW DMA channel the following steps are taken:

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 31

frontgrade.com/gaisler

rRONTGRADE

Gaisler

« DMA channel 1/O registers are initialized to a state where most are zero.
* Resources like semaphores used for the DMA channel implementation itself are allocated and initialized.
« The channel is marked opened to protect the caller from other users of the DMA channel.

Below is a partial example of how the first GRSPW device's first DMA channel is opened, link is started and a
packet can be received.

nt spw_recei ve_one_packet ()

{

}

voi d *device;

void *dma0;

int count, options, clkdiv;
spw_link_state_t state;
struct grspw_list Ist;

devi ce = grspw_open(0);
if (!device)
return -1; /* Failure */

/* Start Link */

options = LI NKOPTS_ENABLE | LINKOPTS_START; /* Start Link */

clkdiv = (9 << 8) | 9; /* dock Dvisor factor of 10 (100MHz input) */
grspw_link_ctrl (device, &options, &clkdiv);

/* wait until link is in run-state */
do {

state = grspw_| i nk_state(device);

} while (state !'= SPWLS RUN);

/* Open DVA channel */

dma0 = grspw_dma_open(device, 0);
if (!dna0) {

grspw_cl ose(devi ce);

return -2;

}

/* Initialize and activate DVA */
if (grspw._dma_start(dma0)) {
grspw_dma_cl ose(dma0) ;
grspw_cl ose(devi ce);
return -3;

}
AR

/* Prepare driver with RX buffers */
grspw_dma_r x_prepare(dma0, 1, &preinited_rx_unused_buf_list0);

/* Start sending a nunber of SpaceWre packets */
grspw_dma_t x_send(dma0O, 1, &preinited_tx_send_buf_list);

/* Receive at |east one packet */

do {

/* Try to receive as many packets as possible */
count = -1;

grspw_dma_rx_recv(dma0O, 0, & st, &count);

} while (count <= 0);

printf("GRSPW. DMAO: Received % packets\n", count);
[* o0 %]
grspw_dma_cl ose(dma0) ;

grspw_cl ose(devi ce);
return 0; /* success */

Table 3.25. gr spw_dna_open function declaration

Proto |void *grspw _dma_open(void *d, int chan_no)

About |OpensaDMA channel of a previously opened GRSPW device. The GRSPW deviceisidentified by
its device handle d and the DMA channel isidentified by index chan_no.

The returned value is used as input argument to al functions operating on the DMA channel.

Param |d [IN] pointer
Deviceidentifier. Returned from gr spw_open.

Param |chan_no [IN] Integer

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 32

frontgrade.com/gaisler

rRONTGRADE

Gaisler

DMA channel identification number. DMA channels are indexed by 0, 1, 2 or 3. Other input values
cause NULL to be returned. The index must be equal or greater than zero, and smaller than the num-
ber of DMA channels reported by gr spw_hw_support.

Return |Pointer. Status and driver'sinternal device identification.
Value Description

NULL Indicates failure to DMA channel. Failsif device semaphore operation fails, DMA channel
does not exists, DMA channel already has been opened or that DMA channel resource al-
location or initialization fails.

Pointer | Pointer to internal driver structure. Should not be dereferenced by user. Input to all DMA
channel API functions, identifies which DMA channel.

Notes |May blocking until other GRSPW device operations compl ete.

Table 3.26. gr spw_dna_cl ose function declaration

Proto |int grspw dma_cl ose(void *c)

About |Closesa previously opened DMA channel. The specified DMA channel must be in stopped state be-
fore calling this function.

Prior to closing the user isresponsible for calling gr spw_drma_st op to stop on-going DMA trans-
fersand interrupts, free DMA channels resources and to unblock tasks waiting for RX/TX eventson
this DMA channel. Blocked tasks must have exited the device driver otherwise an error code isre-
turned.

If threads have been blocked within DMA operations they will be woken up and
gr spw_dma_cl ose waits N ticks until they have returned to the caller with an error return value.

Param |c [IN] pointer
DMA channel identifier. Returned from gr spw_dma_open.
Return |int. Return code asindicated below.

Value Description
0 Success.
1 Failure dueto DMA channel is active (started) or tasks may be blocked within the driver

by the RX/TX wait interface of this specific device.

-1 Failure due to invalid input arguments or unknown semaphore error.

3.4.2. Starting and stopping DMA operation

The start and stop operational modes are described in Section 3.2.13. The functions described below are used to
change the operational mode of aDMA channels. A summary of which DMA API functions are affected arelisted
in Table 3.27, see function description for details on limitations.

Table 3.27. functions available in the two operational modes

Function Stopped Started

gr spw_dma_open N/A N/A

grspw_dma_cl ose Yes Yes

grspw_dnma_start Yes No

gr spw_dma_st op No Yes

grspw_dma_rx_recv Yes, with limitations, see |Yes
Section 3.4.6

grspw _dnma_r x_prepare Yes, with limitations, see |Yes
Section 3.4.6

grspw_dna_r x_count Yes, with limitations, see |Yes
Section 3.4.7

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 33

frontgrade.com/gaisler

rRONTGRADE

Gaisler

Function Stopped Started

grspw_dma_r x_wai t No Yes

grspw _dnma_t x_send Yes, with limitations, see |Yes
Section 3.4.5

grspw _dma_t x_reclaim Yes, with limitations, see |Yes
Section 3.4.5

grspw_dnma_t x_count Yeswith limitations, see |Yes
Section 3.4.7

grspw_dma_t x_wai t No Yes

grspw _dma_config Yes No

grspw_dnma_config_read Yes Yes

grspw _dma_stats_read Yes Yes

grspw_dma_stats_clr Yes Yes

Table 3.28. gr spw_dna_st art function declaration

Proto |int grspw dma_start(void *c)

About |Starts DMA operational mode for the DMA channel indicated by the argument. After thisstepitis
possible to send and receive SpaceWire packets. If the DMA channel already isin started mode, no
action will be taken.

The start routine clears and initializes the following:

« DMA descriptor rings.

* DMA queues.

o Statistic counters.

* |nterrupt counters

* 1/O registers to match DMA configuration

* Interrupt

+ DMA Status

 Enablesthe receiver
Even though the receiver is enabled the user is required to prepare empty receive buffers after this
point, seegr spw_dma_r x_pr epar e. The transmitter is enabled when the user provides send
buffersthat ends up in the TX SCHED queue, seegr spw_dma_t x_send.

Param |d [IN] pointer
Deviceidentifier. Returned from gr spw_open.

Return |int. Always returns zero.

Table 3.29. gr spw_dna_st op function declaration

Proto |void grspw dnma_stop(void *c)

About | Stops DMA operational mode for the DMA channel indicated by the argument. The transmitter will
abort ongoing transfers and the receiver disabled.

Blocked tasks within the DMA channel will be woken up and return to caller with an error indica-
tion. Thiswill cause the stop function to wait in N ticks until the blovked tasks have exited the driver.
When no tasks have previously been blocked this function is not blocking either.

Packets in the RX READY, RX SCHED queues will be moved to the RX RECV queue. The
RXPKT_FLAG_RX packet flag isused to signal if the packet was received or just moved. Similar-
ly, the packets in the TX SEND and TX SCHED queues are moved to the TX SENT queue and the
TXPKT_FLAG_TX marksif the packet actually was transferred or not.

Param |d [IN] pointer
Deviceidentifier. Returned from gr spw_open.

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 34

frontgrade.com/gaisler

rRONTGRADE

Gaisler

’ Return ‘ None. ’

3.4.3. Packet buffer description

The GRSPW packet driver describes packets for both RX and TX using acommon memory layout defined by the
data structure grspw_pkt. It is described in detail below.

There are differencesin which fields and bits are used between RX and TX operations. Thebitsusedinthef | ags
field are defined different. When sending packets the user can optionally provide two different buffers, the header
and data. The header can maximally be 256Bytes due to hardware limitations and the data supports 24-bit length
fields. For RX operations hdr and hl en are not used. Instead all datareceived is put into the data area.

struct grspw_pkt {
struct grspw pkt *next; /* Next packet in list. NULL if |ast packet */

unsi gned int pkt_id; /* User assigned ID (not touched by driver) */

unsi gned short flags; /* RX/TX Options and status */

unsi gned char reserved; /* Reserved, nust be zero */

unsi gned char hlen; /* Length of Header Buffer (only TX) */

unsi gned int dlen; /* Length of Data Buffer */

u32 data; /* 4-byte or byte aligned address depends on HW*/

u32 hdr; /* 4-byte or byte aligned address depends on HW (only TX) */

I
Table 3.30. grspw_pkt data structure declaration

next The packet structure can be part of alinked list. Thisfield is used to point out the next packet in the
list. Set to NULL if this packet isthelast in the list or asingle packet.

pkt_id |User assigned ID. Thisfield is never touched by the driver. It can be used to store a pointer or other
datato help implement the user buffer handling.

flags |RX/TX transmission options and flags indicating resulting status. The bits described below isto be
prefixed with TXPKT_FLAG_or RXPKT_FLAG_ in order to match the TX or RX options defini-
tions declared by the driver's header file.

Bits TX Description (prefixed TXPKT_FLAG)

NOCRC_MASK |Indicatesto driver how many bytes should not be part of the header CRC calcula-
tion. 0 to 15 bytes can be omitted. Use NOCRC_LENN to select a specific length.

IE Enable (1) or Disable (0) IRQ generation on packet transmission completed.

HCRC Enable (1) or disable (0) Header CRC generation (if CRC isavailable in hard-
ware). Header CRC will be appended (one byte at end of header).

DCRC Enable (1) or disable (0) Data CRC generation (if CRC is available in hardware).
Data CRC will be appended (one byte at end of packet).

TX Is set by the driver to indicate that the packet was transmitted. This does no signa

a successful transmission, but that transmission was attempted, the LINKERR bit
needs to be checked for error indication.

LINKERR Set if alink error was exhibited during transmission of this packet.

Bits RX Description (prefixed RXPKT_FLAG)

IE Enable (1) or Disable (0) IRQ generation on packet reception completed.
TRUNK Set if packet was truncated.

DCRC Set if data CRC error detected (only valid if RMAP CRC is enabled).
HCRC Set if header CRC error detected (only valid if RMAP CRC is enabled).
EEOP Set if an End-of-Packet error occurred during reception of this packet.
RX Marksif packet was received or not.

hlen Header length. The number of bytes hardware will transfer using DMA from the address indicated by
the hdr pointer. Thisfield is not used by RX operation.

dien Data payload length. The number of bytes hardware DMA read or written from/to the address indicat-
ed by the data pointer. On RX thisis the complete packet data received.

data Header Buffer Address. DMA will read from this. The address can be 4-byte or byte aligned depend-
ing on hardware.

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 35

frontgrade.com/gaisler

rRONTGRADE

Gaisler

hdr Header Buffer Address. DMA will read hl en bytes from this. The address can be 4-byte or byte
aligned depending on hardware. Thisfield is not used by RX operation.

3.4.4. Blocking/Waiting on DMA activity

Blocking and polling mode are described in the Section 3.2.11. The functions described below are used to set up
RX or TX wait conditions and blocks the calling thread until condition evaluates true.

Table 3.31. gr spw_dnma_t x_wai t function declaration

Proto |int grspw dma tx wait(void *c, int send cnt, int op, int sent_cnt,
int timeout)

About |Block until send_cnt or fewer packets are queued in TX "Send and Scheduled" queue, op (AND or
OR), sent _cnt or more packet "have been sent" (Sent Q) condition is met.

If alink error occurs and the "Disable on Link error” is defined, this function will also return to caller.
The timeout argument is used to return after t i meout ticks, regardless of the other conditions. If
timeout is zero, the function will wait forever until the condition is satisfied.

If IRQ of TX descriptors are not enabled conditions are never checked, this may hang infinitely
unless a timeout has been specified.

Param |d [IN] pointer

Device identifier. Returned from gr spw_open.

Param |send_cnt [IN]int

Sets the condition's number of packetsin TX SEND queue.

Param |op [IN] boolean

Condition operation. Set to zero for AND or one for OR.
Param |sent _cnt [IN]int

Sets the condition's number of packetsin TX SENT queue.
Param [ti meout [IN]int

Sets the timeout in number of system clock ticks. The operating system's semaphore service is used to
implement the timeout functionality. Set to zero to disable timeout, negative value isinvalid.

Return |Int. See return code below.

Value |Description

-1 Error.

0 Returning to caller because specified conditions are now fullfilled.
1 DMA stopped.

2 Timeout, conditions are not met.

3 Another task is aready waiting. Serviceis Busy.

Table 3.32. gr spw_dnma_r x_wai t function declaration

Proto |int grspw dma_rx_wait(void *c, int recv_cnt, int op, int ready_cnt,
int timeout)

About |Block until r ecv_cnt or more packets are queued in RX RECV queue, op (AND or OR),
ready_cnt or fewer packet buffers are availablein the RX "READY and Scheduled" queues, con-
dition is met.

If alink error occurs and the "Disable on Link error" is defined, this function will also return to caller,
however with an error. Thet i meout argument is used to return after t i neout number of ticks, re-
gardless of the other conditions. If timeout is zero, the function will wait forever until the condition is
satisfied.

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 36

frontgrade.com/gaisler

rRONTGRADE

Gaisler

If IRQ of RX descriptors are not enabled conditions are never checked, this may hang infinitely
unless atimeout has been specified.

Param |d [IN] pointer
Deviceidentifier. Returned from gr spw_open.

Param |recv_cnt [IN]int
Sets the condition's number of packetsin RX RECV queue.

Param |op [IN] boolean
Condition operation. Set to zero for AND or one for OR.

Param |ready_cnt [IN]int
Sets the condition's number of packetsin RX READY queue.
Param |ti meout [IN]int

Sets the timeout in number of system clock ticks. The operating system's semaphore service is used to
implement the timeout functionality. Set to zero to disable timeout, negative valueisinvalid.

Return |Int. See return code below.

Vaue |Description

-1 Error.

0 Returning to caller because specified conditions are now fullfilled.
1 DMA stopped.

2 Timeout, conditions are not met.

3 Another task is already waiting. Serviceis Busy.

3.4.5. Sending packets

Packets are sent by adding packets to the SEND queue. Depending on the driver configuration and usage the
packets eventually are put into SCHED queue where they will be assigned a DMA descriptor and scheduled for
transmission. After transmission has compl eted the packet buffers can be retrieved to view the transmission status
and to be able to reuse the packet buffers for new transfers. During the time the packet is in the driver it must
not be accessed by the user.

Transmission of SpaceWire packets are described in Section 3.2.1.

In the below example Figure 3.4 three SpaceWire packets are scheduled for transmission. Thecount should be set
to three. The second packet is programmed to generate an interrupt when transmission finished, GRSPW hardware
will aso generate a header CRC using the RMAP CRC algorithm resulting in a 16 bytes long SpaceWire packet.

pkts (input)

head = &p0 /_' next =NULL
- flags =0
tail = &p2 - _
next =&pl next = &p2 hlen =0
flags =0 flags = dlen =4
hlen =0 FLAG_IE| DATA2 PAYLOAD
FLAG_HCRC data = &d2
dlen =5 a|b|c|d
hlen =7 hdr =NULL
data=&d0
dlen =8
hdr =NULL DATA1PAYLOAD
data =&d1 >
har=ent alblcld[e]f]g[n

—
DATAO PAYLOAD

a|b|c|d|e

HEADERL1 (without CRC)
a|b|c|d|e|f|g

Figure 3.4. TX packet description pkt s inputtogr spw_t x_dma_send

The below tables describe the functions involved in initiating and completing transmissions.

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 37

frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table 3.33. gr spw_dma_t x_send function declaration

Proto |int grspw dma_tx send(void *c, int opts, struct grspw.|ist *pkts,
i nt count)

About |Schedulesalist of packets for transmission at some point in future. The packets are put to the SEND
queue of the driver. Depending on the input arguments a selection of the below steps are performed:

1. Move transmitted packetsto SENT List (SCHED->SENT).
2. Add the requested packetsto the SEND List (USER->SEND)
3. Schedule as many packets as possible for transmission (SEND->SCHED)

Skipping both step 1 and 3 may be useful when IRQ is enabled, then the worker thread will be respon-
sible for handling descriptors.

The GRSPW transmitter is enabled when packets are added to the TX SCHED queue.

The fastest solution in retrieving sent TX packets and sending new framesisto call:
1. grspw_dma tx_reclaim(opts=0)
2. grspw_dma tx_send(opts=1)

NOTE: the TXPKT_FLAG_TX flag must not be set in the packet structure.

Param |c [IN] pointer

DMA channel identifier. Returned from gr spw_dma_open.
Param |opt s [IN] Integer bit-mask

The above steps 1 and/or 3 may be skipped by setting opt s argument according the description be-
low.

Bit Description

0 Set to 1 to skip Step 1.
1 Set to 1 to skip Step 3.
Param |pkt s [IN] pointer

A linked list of initialized SpaceWire packets. The grspw_list structure must be initialized so that
head pointsto thefirst packet and t ai | pointsto the last.

Cdll thisfunction with pkt s set to NULL to avoid step 2. Just doing step 1 and 3 as determined by
opt s isnormally performed in polling-mode.

The layout and content of the packet is defined by the grspw_pkt data structureis described in Ta
ble 3.30. Note that TXPKT_FLAG_TX of thef | ags field must not be set.

Param |count [IN] integer

Number of packetsin the packet list.

Return | Status. See return codes below

Value |Description

-1 Error occurred, DMA channel may not be valid.

0 Successfully added pktsto TX SEND/SCHED list.
1 DMA stopped. No operation.

Notes |Thisfunction performs no operation when the DMA channel is stopped.

Table 3.34. gr spw_dma_t x_r ecl ai mfunction declaration

Proto |int grspw_dma_tx_reclaimvoid *c, int opts, struct grspw_|ist *pkts,
int *count)

About |Reclaim TX packet buffers that has previously been scheduled for transmission with

gr spw_dma_t x_send. The packetsin the SENT queue are moved to the pkt s packet list. When
the move has been completed the packet can safely be reused again by the user. The packet structures
have been updated with transmission status to indicate transfer failures of individual packets. Depend-
ing on the input arguments a selection of the below steps are performed:

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 38

frontgrade.com/gaisler

rRONTGRADE

Gaisler

1. Move transmitted packetsto SENT List (SCHED->SENT).
2. Moveall SENT List to pktslist (SENT->USER).
3. Schedule as many packets as possible for transmission (SEND->SCHED)

Skipping both step 1 and 3 may be useful when IRQ is enabled, then the worker thread will be respon-
sible for descriptor processing. Skipping only step 2 can be useful in polling mode.

The fastest solution in retrieving sent TX packets and sending new framesisto call:
1. grspw_dma tx_reclaim(opts=0)
2. grspw_dma tx_send(opts=1)

NOTE: the TXPKT_FLAG_TX flag indicatesif the packet was transmitted.

Param |c [IN] pointer
DMA channel identifier. Returned from gr spw_dma_open.

Param |opt s [IN] Integer bit-mask

The above steps 1 and/or 3 may be skipped by setting opt s argument according the description be-
low.

Bit Description
0 Set to 1 to skip Step 1.
1 Set to 1 to skip Step 3.

Param |pkt s [OUT] pointer

The list will beinitialized to contain the SpaceWire packets moved from the SENT queue to the pack-
et list. The grspw_list structure will beinitialized so that head pointsto the first packet, t ai | points
to the last and the last packet (tail) next pointer isNULL.

Cdll thisfunction with pkt s set to NULL to avoid step 2. Just doing step 1 and 3 as determined by
opt s isnormally performed in polling-mode.

The layout and content of the packet is defined by the grspw_pkt data structureis described in Ta
ble 3.30. Note that TXPKT_FLAG_TX of thef | ags field indicatesif the packet was sent of not.
In case of DMA being stopped one can use this flag to seeif the packet was transmitted or not. The
TXPKT_FLAG_LINKERR indicatesif alink error occurred during transmission of the packet, re-
gardlessthe TXPKT_FLAG_TX is set to indicate packet transmission attempt.

Param |count [IO] pointer
Number of packets in the packet list.

Vaue |Input Description
NULL [Moveal packetsfrom the SENT queue to the packet list.

-1 Move all packets from the SENT queue to the packet list.
0 No packets are moved. Same asif pktsis NULL.
>0 Move a maximum of "* count' packets to the packet list.

Value |Output Description
NULL |Nothing performed.
others |™count' is updated to reflect number of packetsin packet list.

Return | Status. See return codes below
Value |Description

-1 Error occurred, DMA channel may not be valid.
0 Successful. pktslist filled with al packets from sent list.
1 Indicates that DMA is stopped. Same as 0 but step 1 and 3 were never done.

Notes |Thisfunction can only do step 1 and 2 to allow read out sent packets when in stopped mode. Thisis
useful when alink goes down and the DMA activity is stopped by user of by driver automatically.

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 39

frontgrade.com/gaisler

rRONTGRADE

Gaisler

3.4.6. Receiving packets

Packets are received by adding empty/free packetsto the RX READY queue. Depending on the driver configura-
tion and usage the packets eventually are put into RX SCHED queue wherethey will beassigned aDMA descriptor
and scheduled for reception. After a packet is received into the buffer(s) the packet buffer(s) can be retrieved to
view the reception status and to be able to reuse the packet buffers for new transfers. During the time the packet
isinthe driver it must not be accessed by the user.

Reception of SpaceWire packets are described in Section 3.2.1.

In the Figure 3.5 example three SpaceWire packets are received. The count parameters is set to three by the
driver to reflect the number of packets. The first packet exhibited an early end-of-packet during reception which
also resulted in header and data CRC error. All header points and header lengths have been set to zero by the user
since they are no used, however the values in those fields does not affect the RX operations. The RX flag is set
to indicate that DMA transfer was performed.

pkts (input)

head = &p0 next = NULL
il =2 — o —— | flags=
next = &pl next = &p FLAG_RX
flags = flags = hlen =0
FLAG_RX | FLAG_RX " 2
en =
FLAG_EEOP | hlen =0 DATA2 PAYLOAD
FLAG_DCRC| data = &d2
dlen =8 a|b|lc|d
FLAG_HCRC hdr = NULL | | |
hlen =0 data =&d1
dlen=5 hdr =NULL DATA1PAYLOAD
data = &dO0 a|b|c|d|e|f|g|h
—a! DATAO PAYLOAD
hdr =NULL

a|b|c|d|e

Figure 3.5. RX packet output fromgr spw_r x_dna_r ecv
The below tables describe the functions involved in initiating and completing transmissions.

Table 3.35. gr spw_dna_r x_pr epar e function declaration

Proto |int grspw dna_rx_prepare(void *c, int opts, struct grspw.|ist *pkts,
i nt count)

About |Add more RX packet buffers for future for reception. The received packets can later be read out with
grspw_dma_r x_r ecV. The packets are put to the READY queue of the driver. Depending on the
input arguments a selection of the below steps are performed:

1. Move Received packetsto RECV List (SCHED->RECV).
2. Addthepkt packet buffersto the READY List (USER->READY).
3. Schedule as many packets as possible (READY ->SCHED).

Skipping both step 1 and 3 may be useful when IRQ is enabled, then the worker thread will be respon-
sible for handling descriptors. Skipping only step 2 can be useful in polling mode.

The fastest solution in retrieving received RX packets and preparing new packet buffers for future re-
ceive, isto call:

1. grspw_dma rx_recv(opts=2, &recvlist) (Skip step 3)

2. grspw_dma rx_prepare(opts=1, &fredlist) (Skip step 1)
NOTE: the RXPKT_FLAG_RX flag must not be set in the packet structure.
Param |c [IN] pointer
DMA channel identifier. Returned from gr spw_dna_open.

Param |opt s [IN] Integer bit-mask

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 40

frontgrade.com/gaisler

rRONTGRADE

Gaisler

The above steps 1 and/or 3 may be skipped by setting opt s argument according the description be-
low.

Bit Description

0 Set to 1 to skip Step 1.
1 Set to 1 to skip Step 3.
Param |pkt s [IN] pointer

A linked list of initialized SpaceWire packets. The grspw_list structure must be initialized so that
head pointsto thefirst packet andt ai | pointsto the |ast.

Call thisfunction with pkt s set to NULL to avoid step 2. Just doing step 1 and 3 as determined by
opt s isnormally performed in polling-mode.

The layout and content of the packet is defined by the grspw_pkt data structureis described in Ta-
ble 3.30. Note that RXPKT_FLAG_RX of thef | ags field must not be set.

Param |count [IN] integer

Number of packetsin the packet list.
Return | Status. See return codes bel ow

Vaue |Description

-1 Error occurred, DMA channel may not be valid.

0 Successfully added pktsto RX READY/SCHED list.
1 DMA stopped. No operation.

Notes |Thisfunction performs no operation when the DMA channel is stopped.

Table 3.36. gr spw_dna_r x_r ecv function declaration

Proto |int grspw dma_rx recv(void *c, int opts, struct grspw.list *pkts,
int *count)

About |Get received RX packet buffers that has previously been scheduled for reception with
gr spw_dma_r x_pr epar e. The packetsin the RX RECV queue are moved to the pkt s pack-
et list. When the move has been completed the packet(s) can safely be reused again by the user. The
packet structures have been updated with reception status to indicate transfer failures of individual
packets, received packet length. The header pointer and length fields are not touched by the driver, all
data ends up in the data area. Depending on the input arguments a selection of the below steps are per-
formed:

1. Move scheduled packetsto RECV List (SCHED->RECV).

2. Moveal RECV packet to the calerslist (RECV->USER).

3. Schedule as many free packet buffers as possible (READY ->SCHED).
Skipping both step 1 and 3 may be useful when IRQ is enabled, then the worker thread will be respon-
sible for descriptor processing. Skipping only step 2 can be useful in polling mode.

The fastest solution in retrieving received RX packets and preparing new packet buffers for future re-
ceive, isto call:

1. grspw_dma rx_recv(opts=2, &recvlist) (Skip step 3)

2. grspw_dma rx_prepare(opts=1, &fredlist) (Skip step 1)
NOTE: the RXPKT_FLAG_RX flag indicatesif a packet was received, thusif the data field contains
new valid data or not.

Param |c [IN] pointer
DMA channel identifier. Returned from gr spw_dma_open.
Param |opt s [IN] Integer bit-mask

The above steps 1 and/or 3 may be skipped by setting opt s argument according the description be-
low.

Bit ‘ Description

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 41

frontgrade.com/gaisler

rRONTGRADE

Gaisler

0 Set to 1 to skip Step 1.
1 Set to 1 to skip Step 3.
Param |pkt s [OUT] pointer
Thelist will be initialized to contain the SpaceWire packets moved from the RECV queue to the pack-
et list. The grspw_list structure will beinitialized so that head pointsto the first packet, t ai | points
to the last and the last packet (tail) next pointer isNULL.
Call thisfunction with pkt s set to NULL to avoid step 2. Just doing step 1 and 3 as determined by
opt s isnormally performed in polling-mode.
The layout and content of the packet is defined by the grspw_pkt data structureis described in Ta
ble 3.30. Note that RXPKT_FLAG_RX of thef | ags field indicatesif the packet was received or
not. In case of DMA being stopped one can use this flag to see if the packet was received or not. The
TRUNK, DCRC, HCRC and EEOP flags indicates if an error occurred during reception of the packet,
regardlessthe RXPKT_FLAG_RX is set to indicate packet reception attempt.
Param |count [IO] pointer
Number of packetsin the packet list.
Vaue |Input Description
NULL [Moveal packetsfrom the RECV queue to the packet list.
-1 Move all packets from the RECV queue to the packet list.
0 No packets are moved. Same asif pktsis NULL.
>0 Move a maximum of *count' packets to the packet list.
Vaue |Output Description
NULL |Nothing performed.
others | count' is updated to reflect number of packetsin packet list.
Return |Status. See return codes below
Value |Description
-1 Error occurred, DMA channel may not be valid.
0 Successful. pktslist filled with al packets from recv list.
1 Indicates that DMA is stopped. Same as 0 but step 1 and 3 were never done.
Notes |Thisfunction can only do step 1 and 2 to alow read out received packets when in stopped mode. This
is useful when alink goes down and the DMA activity is stopped by user or by driver automatically.

3.4.7. Transmission queue status

The current status of send and receive transmissions can be obtained by looking at the DMA channel's packet
gueues. Notethat the queues content does not change unlessthe user callsthe driver to perform work or if thework
thread triggered via DMA interrupts is enabled. The current number of packets actually processed by hardware
can also be read using the functions described below.

Table 3.37. gr spw_dna_t x_count function declaration

Proto |void grspw dnma_tx_count(void *c, int *send, int *sched, int *sent,
int *hw)

About | Get current number of packetsin respective TX queue and current number of unhandled packets that
hardware processed (from descriptor table).

Param |c [IN] pointer
DMA channel identifier. Returned from gr spw_dma_open.

Param |send [OUT] pointer
If not NULL the TX SEND Queue count is stored into the address of send.

Param |sched [OUT] pointer

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 42

frontgrade.com/gaisler

FRONTGRADE
If not NULL the TX SCHED Queue count is stored into the address of sched.
Param |sent [OUT] pointer
If not NULL the TX SENT Queue count is stored into the address of sent .
Param |hw[OUT] pointer

If not NULL the number of packets completed transmitted by hardware. Thisis determined by look-
ing at the TX descriptor pointer register. The number represents how many of the SCHED queue that
actually have been transmitted by hardware but not handled by the driver yet. The number is stored in-
to the address of hw.

Return |None.

Table 3.38. gr spw_dna_r x_count function declaration

Proto |void grspw dnma rx_count(void *c, int *ready, int *sched, int *recv,
int *hw)

About | Get current number of packetsin respective RX queue and current number of unhandled packets that
hardware processed (from descriptor table).

Param |c [IN] pointer

DMA channel identifier. Returned from gr spw_dma_open.

Param |r eady [OUT] pointer

If not NULL the RX READY Queue count is stored into the address of r eady.
Param |sched [OUT] pointer

If not NULL the RX SCHED Queue count is stored into the address of sched.
Param |r ecv [OUT] pointer

If not NULL the RX RECV Queue count is stored into the address of r ecv.
Param |hw[OUT] pointer

If not NULL the number of packets completed received by hardware. Thisis determined by looking at
the RX descriptor pointer register. The number represents how many of the SCHED queue that actual-
ly have been received by hardware but not handled by the driver yet. The number is stored into the ad-
dress of hw.

Return |None.

3.4.8. Statistics

The driver counts statistics at certain events. The driver's DMA channel counters can be read out using the DMA
API. The number of interrupts serviced by the worker task, packet transmission statistics, packet transmission
errors and packet queue statistics can be obtained.

The read function is not protected by locks. A GRSPW interrupt or other tasks performing driver operations
on the same device could cause the statistics to be out of sync. Similar to the statistic functionality of the
device API.

struct grspw dne_stats {
/* IRQ Statistics */

int irg_cnt; /* Nunber of DMA | RQs generated by channel */

/* Descriptor Statistics */

int tx_pkts; /* Nunber of Transmitted packets */

int tx_err_link; /* Nunber of Transmitted packets with Link Error*/
int rx_pkts; /* Nunber of Received packets */

int rx_err_trunk; /* Nunber of Received Truncated packets */

int rx_err_endpkt; /* Nunber of Received packets wi th bad ending */

/* Diagnostics to hel p devel opers sizing their nunber buffers to avoid

* out-of-buffers or other phenonenons.

*

/
int send_cnt_mn; /* M ni mum nunber of packets in TX SEND queue */
int send_cnt_nax; /* Maxi mum nunber of packets in TX SEND queue */
int tx_sched_cnt_nmin; /* M ni mum nunber of packets in TX SCHED queue */

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 43

frontgrade.com/gaisler

int tx_sched_cnt_max;
int sent_cnt_nmax;
int tx_work_cnt;
int tx_work_enabl ed;

int ready_cnt_min;
int ready_cnt_nax;
int rx_sched_cnt_min;
int rx_sched_cnt_max;
int recv_cnt_nax;

int rx_work_cnt;

int rx_work_enabl ed;

h

rRONTGRADE

Gaisler

/* Maxi mum nunber of packets in TX SCHED queue */
/* Maxi mum nunber of packets in TX SENT queue */
/* Times the work thread processed TX BDs */

/* No. TX BDs enabl ed by work thread */

/* M ni mum nunber of packets in RX READY queue */
/* Maxi mum nunber of packets in RX READY queue */
/* M ni mum nunber of packets in RX SCHED queue */
/* Maxi mum nunber of packets in RX SCHED queue */
/* Maxi mum nunber of packets in RX RECV queue */
/* Times the work thread processed RX BDs */

/* No. RX BDs enabl ed by work thread */

Table 3.39. grspw_dma_stats data structure declaration

irq_cnt Number of interrupts serviced for this DMA channel.
tx_pkts Number of transmitted packets with link errors.
tx_err_link Number of transmitted packets with link errors.
rx_pkts Number of received packets.

rx_err_trunk Number of received Truncated packets.
rx_err_endpkt Number of received packets with bad ending.

send cnt_min

Minimum number of packetsin TX SEND queue.

send_cnt_max

Maximum number of packetsin TX SEND queue.

tx_sched cnt_min

Minimum number of packetsin TX SCHED queue.

tx_sched cnt_max

Maximum number of packetsin TX SCHED queue.

sent_cnt_max

Maximum number of packetsin TX SENT queue.

tx_work_cnt Times the work thread processed TX BDs.
tx_work_enabled Number of TX BDs enabled by work thread.

ready _cnt_min Minimum number of packetsin RX READY queue.
ready_cnt_max Maximum number of packetsin RX READY queue.

rx_sched cnt_min

Minimum number of packetsin RX SCHED queue.

rx_sched cnt_max

Maximum number of packetsin RX SCHED queue.

recv_cnt_max

Maximum number of packetsin RX RECV queue.

rx_work_cnt

Times the work thread processed RX BDs.

rx_work_enabled

Number of RX BDs enabled by work thread.

Table 3.40. gr spw_dnma_st at s_r ead function declaration

Proto |void grspw dnma_stats_read(void *d, struct grspw dnma_stats *sts)

About | Readsthe current driver statistics collected from earlier events by aDMA channel and DMA channel

usage. The statistics are stored to the address given by the second argument. The layout and content of
the statistics are defined by the grspw_dma_stats data structure is described in Table 3.39.

Note that the snapshot is taken without lock protection, as a consequence the statistics may not be syn-
chronized with each other. This could be caused if the function isinterrupted by athe GRSPW inter-
rupt or other tasks performing driver operations on the same DMA channel.

Param

¢ [IN] pointer
DMA channel identifier. Returned from gr spw_dma_open.

Param

st s [OUT] pointer
A snapshot of the current driver statistics are copied to this user provided buffer.

The layout and content of the statistics are defined by the grspw_dma_stats data structure is described
in Table 3.39.

Return

None.

LINDRV-UM

Jun 2025, Version 1.3.0 44

Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table 3.41. gr spw_dma_st at s_cl r function declaration

Proto |void grspw dna_stats_clr(void *c)

About |Resetsone DMA channel's statistical counters. Most of the driver's counters are set to zero, however
some have other initial values, for examplethesend_cnt _mi n.

Param |c [IN] pointer
DMA channel identifier. Returned from gr spw_dma_open.

Return |None.

3.4.9. DMA channel configuration

Various aspects of DMA transfers can be configured using the functions described in this section. The configu-
ration affects:

* DMA transfer options, no-spill, strip address/PID.

* Receive max packet length.

o RX/TX Interrupt generation options.

struct grspw_dma_config {

int flags; /* DVA config flags, see DVAFLAG * options */
int rxmaxlen; /* RX Max Packet Length */

int rx_irg_en_cnt; /* Enable RX I RQ every cnt descriptors */

int tx_irg_en_cnt; /* Enable TX I RQ every cnt descriptors */

b

Table 3.42. grspw_dma_config data structure declaration

flags RX/TX DMA transmission options See below.

Bits Description (prefixed DMAFLAG_or DMAFLAG2)

NO_SPILL Enable (1) or Disable (0) packet spilling, flow control.

STRIP_ADR |Enable (1) or Disable (0) stripping node address byte from DMA write
transfers (packet reception). See hardware support to determine if present in
hardware. See hardware documentation about DMA CTRL SA hit.

STRIP_PID Enable (1) or disable (0) stripping PID byte from DMA write transfers
(packet reception).(if CRC is available in hardware). See hardware sup-
port to determineif present in hardware. See hardware documentation about
DMA CTRL SP hit.

TXIE Enable (1) or disable (0) DMA TX interrupts on DMA transmission. This
affectsthe DMA-CTRL TI register bit. This can be used in combination
with packet flags to allow the user to control precisely which TX Spw
bufferswill generate interrupt(s) on send completed.

RXIE Enable (1) or disable (0) DMA RX interrupts on DMA reception. This af-
fectsthe DMA-CTRL RI register bit. This can be used in combination with
packet flags to allow the user to control precisely which RX SpW buffers
will generate interrupt(s) on receive completed.

rxmaxlen Max packet reception length. Longer packets with will be truncated see
RXPKT_FLAG_TRUNK flagin packet structure.

rx_irq_en cnt | Controls RX interrupt generation. Thisinteger number enable RX DMA IRQ every ‘cnt' de-
scriptors.

tx_irqg_en cnt |Controls TX interrupt generation. Thisinteger number enable TX DMA IRQ every ‘cnt' de-
scriptors.

Table 3.43. gr spw_dna_conf i g function declaration

Proto

int grspw. dma_config(void *c, struct grspw dnma_config *cfqQ)

About

Set the DMA channel configuration options as described by the input arguments. It is only possible
the change the configuration on stopped DMA channels, otherwise an error code is returned.

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 45

frontgrade.com/gaisler

rRONTGRADE

Gaisler

The hardware registers are not written directly. The settings take effect when the DMA channel is
started calling gr spw_dna_st art .

Param |c [IN] pointer
DMA channel identifier. Returned from gr spw_dma_open.

Param |cf g [IN] pointer

Address to where the driver will read or write the DMA channel configuration from. The configura-
tion options are described in Table 3.42.

Return |int. Return code as indicated below.
Vaue |Description

0 Success.

-1 Failure due to invalid input arguments or DMA has already been started.

Table 3.44. gr spw_dma_confi g_r ead function declaration

Proto |void grspw dnma_config read(void *c, struct grspw dma_config *cfg)

About | Copiesthe DMA channel configuration to user defined memory area.

Param |c [IN] pointer

DMA channel identifier. Returned from gr spw_dma_open.

Param |st s [OUT] pointer

The driver DMA channel configuration options are copied to this user provided buffer.

The layout and content of the statistics are defined by the grpsw_dma_config data structureis de-
scribed in Table 3.42.

Return |None.

3.5. APl reference

This section lists all functions and data structures part of the GRSPW driver API, and in which section(s) they are
described. The API is also documented in the source header file of the driver, see Section 3.1.2.

3.5.1. Data structures
The data structures used together with the Device and/or DMA API are summarized in the table below.

Table 3.45. Data structures reference

Data structure name Section
struct grspw_pkt 343
struct grspw_list 3.2.10
struct grspw_addr_config 334
struct grspw_hw_sup 332
struct grspw_core_stats 3.38
struct grspw_dma_config 34.9
struct grspw_dma_stats 3438

3.5.2. Device functions

The GRSPW device API. The functions listed in the table below operates on the GRSPW common registers and
driver set up. Changes here typically affects all DMA channels and link properties.

Table 3.46. Device function reference

Prototype Section
i nt grspw dev_count (voi d) 331
LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 46

frontgrade.com/gaisler

rRONTGRADE

Gaisler

Prototype Section
void *grspw_open(int dev_no) 331
voi d grspw cl ose(void *d) 331
voi d grspw _hw support(void *d, struct grspw hw sup *hw) 332
void grspw stats_read(void *d, struct grspw core_stats *sts) 3.38
void grspw stats_clr(void *d) 3.38
void grspw addr_ctrl (void *d, struct grspw addr_config *cfg) 3.34,
3.27
spw link state t grspw |link state(void *d) 333,
323
void grspw_link_ctrl(void *d, int *options, int *clkdiv) 333,
323
unsigned int grspw_|ink_status(void *d) 3.3.3,
323
void grspw link status clr(void *d, unsigned int nask) 333,
323
void grspw_tc_ctrl(void *d, int *options) 3.3.5,
324
void grspw_tc_tx(void *d) 3.35,
324
void grspw tc_isr(void *d, void (*tcisr)(void *data, int tc), void |335
*dat a) 3.24
void grspw tc_tinme(void *d, int *tine) 3.35,
3.24
int grspwrmap ctrl(void *d, int *options, int *dstkey) 3.3.7,
325
voi d grspw_rmap_support(void *d, char *rmap, char *rmap_crc) 3.3.7,
3.25,
332
int grspw port_ctrl(void *d, int *port) 3.3.6,
3.26
int grspw port_count(void *d) 3.3.6,
3.2.6,
332
int grspw_port_active(void *d) 3.3.6,
326

3.5.3. DMA functions

The GRSPW DMA channel API. The functions listed in the table below operates on one GRSPW DMA channel

and its driver set up. Thisinterface is used to send and receive SpaceWire packets.
GRSPW2 and GRSPW2_DMA devices supports more than one DMA channel.

Table 3.47. DMA channel function reference

Prototype Section
void *grspw dma_open(void *d, int chan_no) 3.21,
34.1,
331
LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 47

frontgrade.com/gaisler

rRONTGRADE

Gaisler

Prototype Section
void grspw dma_cl ose(void *c) 3.21,
34.1,
331
int grspw dna_start(void *c) 34.2,
3.2.13
voi d grspw dma_stop(void *c) 34.2,
3213
int grspw.dma_rx _recv(void *c, int opts, struct grspw.list *pkts, 3.4.6,
int *count) 321
int grspw. dme_rx_prepare(void *c, int opts, struct grspw.list *pk- |[3.4.6,
ts, int count) 321
void grspw dnma_rx_count(void *c, int *ready, int *sched, int *recv) |347,
32101
int grspw dnma_rx wait(void *c, int recv_cnt, int op, int ready cnt, (344,
int timeout) 3211
int grspw. dma_tx_send(void *c, int opts, struct grspw.list *pkts, 3.4.5,
int count) 321
int grspw dma_tx _reclain(void *c, int opts, struct grspw.list *pk- [3.45
ts, int *count) 321
void grspw dnma_tx _count(void *c, int *send, int *sched, int *sent) |347,
32101
int grspw dnma_tx wait(void *c, int send _cnt, int op, int sent_cnt, |[3.44,
int timeout) 3211
int grspw dme_config(void *c, struct grspw dma_config *cfqQ) 34.9
void grspw dma_config_read(void *c, struct grspw dnma_config *cfqQ) 34.9
void grspw dnma_stats read(void *c, struct grspw dnma_stats *sts) 348
void grspw dma_stats clr(void *c) 3438
LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0 48

frontgrade.com/gaisler

rRONTGRADE

Gaisler

4. SpaceWire Router APB Register Driver

4.1. Introduction

This section describes the Linux Frontgrade Gaisler SpaceWire Router APB registers kernel driver. It provides
user space applications with a SpaceWire Router configuration interface. The driver allows the user to configure
the router and control the SpaceWire links.

The SpaceWire router is accessed using the standard UNIX i oct | routine.
4.1.1. Sources

The GRSPW driver sources are provided under the GPL license, they are available in the GRLIB driver package
as described in the table below. Applications should include the "GRSPW Kernel Driver header” file. All filesare
relative the base of the driver package.

Table 4.1. SpaceWire Router driver sources

L ocation Description

Spw grspw_router.c SpaceWire Router APB Registers Driver

i nclude/linux/grlib/grspwrouter.h SpaceWire Router APB Registers header

4.1.2. Using the driver
Applicationswanting to access SpW Router registers from user-space should include the Router driver header file.

Each SpW Router core is accessed using a single major/minor number. The Major/Minor numbers are determined
by the driver package configuration, see Section 1.5.

4.1.3. Examples

Within the GRLIB driver package there is a user space example of how this driver can be used, the examplefile
isnamed spwr out er _cust om confi g. c.

4.2. Control Interface
4.2.1. Overview

The SpaceWire router can be configured using the control interface described in this section. The interface is
router hardware specific and a good knowledge of the hardware is necessary. See hardware documentation. The
data structures are described in the header file available in the GRLIB driver package.

The control interface is accessed using the standard UNIX i oct | routine.

In the table below all currently supported i oct | commands and their argument is listed. All router commands
starts with GRSPWR_IOCTL_ which has to be added to the command name given in the table below. The data
direction below indicates in which direction data is transferred to the kernel:

* Input: Argument is an address. The driver reads data from the given address.

* Output: Argument is an address. The driver writes data to the given address.
Input/Output: both above cases.
< Argument: 32-bit ssimple Argument, no data transferred between kernel/user.
« None: Argument ignored.

Table4.2.i oct | commands supported by the GRSPW Kernel driver.

Command Data Di-|Argument Type |Description
rection
HWINFO Output struct Copy hardware configuration of the router core, such as

grspw_hw_info* |number of SpaceWire ports, number DMA port, number
of FIFO port, etc.

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 49

frontgrade.com/gaisler

rRONTGRADE

Gaisler

Command Data Di-|Argument Type |Description
rection
CFG_SET Input struct Configure the router by writing the configuration bit of
router_config * the Control/Status register, setting the Instance ID, Start
up Clock Divisor, Timer prescaler and the timer reload
registers.
CFG_GET Output struct Reads the current router configuration into the user spec-
router_config * ified memory area.
ROUTES SET Input struct router_routes| Configure the 224 words long router table.
*
ROUTES GET Output struct router_routes| Copy the current 224 words long router table to user pro-
* vided buffer.
PS SET Input struct router_ps* | Configurethe port setup registersaccording to user buffer.
PS GET Output struct router_ps* | Copy the current port setup registers to user buffer.
WE_SET Argument |int If the argument's bit zero is one then the WE bit in the
configuration write enable register is set, otherwise it is
cleared. This enabled the user to write protect the current
configuration.
PORT Input/Out- |struct router_port * | Write and/or Read (in that order) the port control and port
put status registers of one port of the SpaceWire router. The
f I ag field determines which operations should be per-
formed. S;eeROUTER_PORTFLG_*.Theport field se-
lects which port isto be written/read.
CFGSTS _SET Argument |unsigned int Writes the Config/Status register.
CFGSTS GET Output unsigned int * Copies the current value of the Config/Status register to
the user provided buffer.
TC GET Output unsigned int * Copies the current value of the Time-code register to the
user provided buffer.
LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 1.3.0

50

frontgrade.com/gaisler

rRONTGRADE

Gaisler

5. MAPLIB Device Memory Driver

5.1. Introduction

This section describes the Linux MAPLIB kernel driver. It provides user space applications with a possibility to
memory map a configurable number 128 KBytes blocks of memory to user space. The memory is direct memory
access (DMA) capable and can therefore be used in other GRLIB drivers which implements user provided device
memory buffers. In order for memory to be DMA capable a number of things must be satisfied, for example that
memory is linear with one DMA operation and that the cache is handled correctly. Currently the MAPLIB driver
memory maps with the memory management unit (MMU) cacheable hit set, this means that the driver will not
work for systems with lacks data cache snooping (unless flush is performed by the using driver).

Memory is mapped and unmapped to user space using the nmap, mmap2 and unnmap functions. The functions
are described in the man-page of respective function.

Thedriver provides asecure way of mapping, calling the using drivers when the memory is unmapped or changed
in any other way. The using driver should then stop all DMA operation to that memory area and report an error
to the user.

Thedriver'smain intentionisto let other drivers more easily implement zero-copy between user space and kernel
space, both between the the same device instance and between different device instance and even between device
instances of different drivers. For example a SpaceWire packet received on GRSPW[0] may be sent on GRSPW[2]
without copying the actual data, or for example parts of a SpaceWire packet received on GRSPW[1] may be sent
to ground using the driver for GRTM[0] device.

Blocks of 128K Bytes are allocated within the Linux Kernel in low memory. The amount of memory allocated is
configurable through the standard UNIX i oct | interface of the MAPLIB driver.

5.1.1. Sources

The MAPLIB driver sources are provided under the GPL license, they are available in the GRLIB driver package
asdescribed in thetable below. Applications should includethe"MAPLIB Driver header” file. All filesarerelative
the base of the driver package.

Table 5.1. MAPLIB driver sources

L ocation Description
m sc/ maplib.c Device memory library
include/linux/grlib/maplib.h Device memory library header

5.1.2. Using the driver

Applications wanting to access DMA capable memory from user space using the MAPLIB device driver should
include the MAPLIB driver header file. The amount of memory requested

Debug output is available through the / pr oc/ knsg interface, and additional debug output can be enabled by
defining MAPLIB_DEBUG in the driver sources mapl i b. c.

Each MAPLIB driver isaccessed using amajor/minor number. The driver has abuild-time configurable number of
"memory pools* (device nodes). The Major/Minor numbers are determined by the driver package configuration,
see Section 1.5.

One can list the current address space mappings of aprocess by concatenating the/ pr oc/ PROCESS NUVBER/
maps. Reading the file after the mapping processes is completed will reveal the mapping range and access per-
missions and so on.

5.1.3. Examples

Withinthe GRLIB driver package there are (at the time of writing) two examples, one example using the MAPLIB
driveronly t eset _mapl i b. ¢, and one SpaceWire example which demonstrates how the MAPLIB can be used
in areal application using the GRSPW driver.

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 51

frontgrade.com/gaisler

rRONTGRADE

Gaisler

5.2. Control Interface
The control interface is accessed using the standard UNIX i oct | routine.

In thetable below al currently supportedi oct I commandsand their argument islisted. All MAPLIB commands
starts with MAPLIB_IOCTL_ which has to be added to the command name given in the table below. The data
direction below indicates in which direction data is transferred to the kernel:

* Input: Argument is an address. The driver reads data from the given address.

¢ Output: Argument is an address. The driver writes data to the given address.
Input/Output: both above cases.
Argument: 32-bit simple Argument, no data transferred between kernel/user.
* None: Argument ignored.

Table5.2.i oct | commands supported by the MAPLIB Kernel driver.

Command Data Di-|Argument Type Description
rection
SETUP Input struct maplib_setup * | Configure Memory MAP Library, and allocate all need

memory, all previous (if any) memory mapped pages must
be unmapped otherwise and error will occur and errno set
to EINVAL.

MMAPINFO | Output struct Get Current MMAP Info from Driver, thistellsthe user how
maplib_mmap_info* |to memory map the memory into user space. It tellsthe user
how many blocks, their size and the offset intothe MAPLIB
device memory mmap() should try to map from.

5.3. Mapping Interface

Once the driver has been configured using the control interface the memory must be mapped to the user space
process address space before any other driver or the application itself can start using the DMA capable memory.
Once the memory is used by a device driver the driver will be signaled if munmap() or close() is called upon the
MAPLIB memory/device, it will also be signaled if a process is terminated.

The memory must be mapped in one mmap() call, creating one linear memory mapping in user space. However
in physical address space the memory islinear in blocks of 128KBytes.

The MMAPINFO command reveal show large and at what of fset the device memory islocated withinthe MAPLIB
device, after it has been configured using SETUP. Below is an example how to memory map.

struct maplib_mmap_info mapi;
unsigned int start, end;
int fd;

fd = open("/dev/maplib0", O RDWR);

if (fd<o0) {
printf("Failed to open MVAPLi b\ n");
return -1;

}
/* CONFI GURE MAPLI B HERE USI NG MAPLI B_I OCTL_SETUP */

/* Get MVAP information calculated by driver */

if (ioctl(fd, MAPLIB_I OCTL_MVAPI NFO, &mapi)) {
printf("Failed to get MVMAPINFO, errno: %\ n", errno);
return -1;

}

/* Map all SpaceWre Packet Buffers */
start = mapi->buf _of fset;
end = mapi - >buf _of fset + mapi - >buf _| engt h;

/* Menory MAP driver's Buffers READ-and-WRI TE */
adr = mmap(NULL, mapi . buf_| ength, PROT_READ| PROT_WRI TE, MAP_SHARED,
fd, start);
if ((unsigned int)adr == Oxffffffff) {
printf("MVAP Bufs Failed: %, errno %, 9%\n", adr, errno, mapi->buf_|length);
return -1;

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 52

frontgrade.com/gaisler

rRONTGRADCE

Gaisler

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 53

frontgrade.com/gaisler

rRONTGRADE

Gaisler

Frontgrade Gaisler AB
Kungsgatan 12

411 19 Goteborg
Sweden
frontgrade.com/gaisler
sales@gaisler.com

T: +46 31 7758650

F: +46 31 421407

Frontgrade Gaisler AB, reserves the right to make changes to any products and services described herein at any time without
notice. Consult the company or an authorized sales representative to verify that the information in this document is current before
using this product. The company does not assume any responsibility or liability arising out of the application or use of any product
or service described herein, except as expressly agreed to in writing by the company; nor does the purchase, lease, or use of
a product or service from the company convey a license under any patent rights, copyrights, trademark rights, or any other of
the intellectual rights of the company or of third parties. All information is provided as is. There is no warranty that it is correct or

suitable for any purpose, neither implicit nor explicit.

Copyright © 2025 Frontgrade Gaisler AB

LINDRV-UM Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 1.3.0 54

frontgrade.com/gaisler
frontgrade.com/gaisler

	
	Table of Contents
	1. Introduction
	1.1. Drivers included in the package
	1.2. Requirements
	1.2.1. Hardware support and limitations

	1.3. Installing
	1.4. Device tree bindings
	1.5. Device node numbering

	2. GRSPW SpaceWire Driver
	2.1. Introduction
	2.1.1. Sources
	2.1.2. Using the driver
	2.1.3. Examples

	2.2. Control Interface
	2.2.1. Overview

	2.3. Packet Transfer Interface
	2.3.1. Packet Reception
	2.3.1.1. RX(PREPARE)
	2.3.1.2. RX(RECEIVE)

	2.3.2. Packet Transmission
	2.3.2.1. TX(SEND)
	2.3.2.2. TX(RECLAIM)

	2.4. User-space access routines

	3. GRSPW Kernel Library driver
	3.1. Introduction
	3.1.1. Hardware Support
	3.1.2. Driver sources
	3.1.3. Examples
	3.1.4. Known driver limitations

	3.2. Software design overview
	3.2.1. Overview
	3.2.2. Initialization
	3.2.3. Link control
	3.2.4. Time Code support
	3.2.5. RMAP support
	3.2.6. Port support
	3.2.7. SpaceWire node address configuration
	3.2.8. SpaceWire Interrupt Code support
	3.2.9. User DMA buffer handling
	3.2.9.1. Buffer List help routines

	3.2.10. Driver DMA buffer handling
	3.2.10.1. DMA Queues
	3.2.10.2. DMA Queue operations

	3.2.11. Polling and blocking mode
	3.2.12. Interrupt and work queue
	3.2.13. Starting and stopping DMA
	3.2.14. Thread concurrency
	3.2.15. SMP Support
	3.2.16. User space support

	3.3. Device Interface
	3.3.1. Opening and closing device
	3.3.2. Hardware capabilities
	3.3.3. Link Control
	3.3.4. Node address configuration
	3.3.5. Time Code support
	3.3.6. Port Control
	3.3.7. RMAP Control
	3.3.8. Statistics

	3.4. DMA interface
	3.4.1. Opening and closing DMA channels
	3.4.2. Starting and stopping DMA operation
	3.4.3. Packet buffer description
	3.4.4. Blocking/Waiting on DMA activity
	3.4.5. Sending packets
	3.4.6. Receiving packets
	3.4.7. Transmission queue status
	3.4.8. Statistics
	3.4.9. DMA channel configuration

	3.5. API reference
	3.5.1. Data structures
	3.5.2. Device functions
	3.5.3. DMA functions

	4. SpaceWire Router APB Register Driver
	4.1. Introduction
	4.1.1. Sources
	4.1.2. Using the driver
	4.1.3. Examples

	4.2. Control Interface
	4.2.1. Overview

	5. MAPLIB Device Memory Driver
	5.1. Introduction
	5.1.1. Sources
	5.1.2. Using the driver
	5.1.3. Examples

	5.2. Control Interface
	5.3. Mapping Interface

