Gaisler

rRONTGRADC

USER MANUAL

RELEASED JUNE 2025

Buildroot for LEON and NOEL systems

Gaisler Buildroot

Gaisler Buildroot User's Manual

BRLEON Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Géteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 2025.02-1.0

frontgrade.com/gaisler

rRONTGRADE

Gaisler

Table of Contents

O [L oo (8 1o o PP POPPPTRRPPPPN 3
L1 OVEIVIEBIW ittt ettt ettt ettt e e e s 3

1.2. HOSt SyStem REQUITEIMENES iiiiii ittt ettt e et e et e e et e e e et e e e e et e e eeeneaeeeee 3

L3 INSAITBIION oot e ettt et e e e aee 3

2. QUICK SEAM QUIGE .ottt ettt e et et e e et e s 4
2.1. Running the default LEON RAM IMAJE .coeuiiiiiiiiiee e 4

2.2. Running the default NOEL RAM IMaJE ...oouiiiiiiiiie e 4

3. Configuring and BUIlOING coeeieeeii et 5
3.1. Default ConfigUIALIONS uuieiiiiie ettt e et eeeaeas 5

3. 1.1 LEON LinNUX B.13 BELA ...eieetiiieiiiti ettt e et e e 5

3.2. BUIlroot CONFIQUIBLION ... eieetieeeeii ettt et e et e et e e e et e e e ena s 5

3.3. Linux Kernel Configuralionooouueoiieii et 6

3.4. MKLINUXIMG Configuration for LEON =coouuiiiiiiiieiiii e 6

3.5. OpenSBI Configuration fOr NOEL coiiiiiiiiii e 6
3.5.1. Configure a custom FDT address for a firmware with payloadccccoeiviiiiiinnenn, 6

3.6. MKPROM2 Configuration for LEON iiiiiiiiiii e 6

BT BUIAING et 6
7.1 REDUIIAING e e e e 7

3.8. Project-specific CUSIOMIZALION coouuiieiiiiie e 7
3.8.1. Project Customization EXAMPIE oouiiiiiiii e 7

3.0, NFS EXAMPIES oot 9
3.9.1. How to mount an NFS fIlESYSIEM iiiiii e 9

3.9.2. How to boot Linux from NS ..o 10

4. Building the Linux Kernel in BUIlArootcooouiiiiiiii e 13
4.1, Linux Kernel Configurationooeuuuoieeeieiiiii ettt e e e 13

4.2. Caveats on Loosing the Kernel Configurationoooiieiiiiiiiiiiiieeceec e 13

4.3. Setting up external Linux kernel source dir€Cloryocoveviieeiiiinieeiie e 13

4.4. Setting up external MKLINUXIMG SOUrCe dir€CtOrY ..oo.vvnivieiiieiiiiieeeeei e 14

4.5. Frontgrade Gaisler GRLIB driver packagecooouiioiiiiiiiiiii e 14

I oo o o=] PP UOPPPTPRPPPPIN 16
5.1. External TOOIChAINS ...t 16

5.2. BUIldroot-built tOOICNEINS cieiiiieeiii e e 16

5.3. Architecture choiCes fOr LEON ... e 16
5.3.1. Errata workarounds for UT700 couuuiiiiiineiiiii ettt e e e e 16

6. Upgrading BUIlArOOL ...ttt 17
6.1. Upgrading to a new Gaisler Buildroot release ocooiiiiiiiiiiiieii e 17

6.2. Follow upstream stable branch o. oo 17

S 6 o 1 PP PTRPPTI 18

BRLEON Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Géteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 2025.02-1.0 2

frontgrade.com/gaisler

rRONTGRADE

Gaisler

1. Introduction

1.1. Overview

This Buildroot release for LEON and NOEL is suitable for using Buildroot as a frontend for building both the
Linux kernel and aroot file system with user space software. It contains default configurations for LEON and
NOEL systemsthat can be used as abaseline. Nothing however is preventing it to be used to build only auserspace
environment, that can be used together with an externally built kernel.

The main documentation for how to work with Buildroot is found in the regular Buildroot manual. It is provided
in several different formsinthedocs/ prebui | t directory, including astext, PDF and HTML. In the top level
directory thereis ageneral Buildroot README file aswell as a changelog, in the CHANGES file, for the upstream
Buildroot release the Gaisler Buildroot release is based on. This manual and achangelog for the Gaisler Buildroot
release can befound inthedocs/ gai sl er directory.

This document describes the particulars of the Buildroot release for LEON and NOEL. It describes what it adds
in on top of the official Buildroot release it is based upon, as well as giving some pointers and tips. Our latest
Linux kernel releaseisincluded askernel patchesthat are automatically used when using our default configuration.
Our LEON toolchain, the MKLINUXIMG second stage bootloader as well as optionally the MKPROM?2 boot
loader for LEON, and OpenSBI for NOEL, can be downloaded automatically and configured within the Buildroot
configuration interface.

This Buildroot release is not aimed to be used under the Linuxbuild LEON Linux kernel and userspace build
environment, that is being phased out. It is rather aimed to be used instead of Linuxbuild.

1.2. Host System Requirements

The Buildroot frontend is only supported under Linux. See the section “ System requirements” in Chapter 2 of the
regular Buildroot manual for details on what is required to be installed on the host system.

In particular for configuring Buildroot, the Linux kernel and some other components it is advisable to install
development versions of the Qt5 library.

1.3. Installation

Download gaisler-buildroot-2025.02-1.0.tar.bz2 available from https://gaisler.com. Unpack it anywhere with

tar xf gaisler-buildroot-2025.02-1.0.tar.bz2

Thiswill unpack to adirectory gai sl er - bui | dr oot - 2025. 02- 1. 0. Enter it with:

cd gai sl er-buildroot-2025.02-1.0

Thisisthe top level Buildroot directory from which everything is done unless otherwise specified. Relative paths
in configurationsarein general relativeto this Buildroot top level directory. Thisgoesfor relative paths mentioned
in this manual aswell.

Tools specific for LEON such as LEON Linux toolchains, MKLINUXIMG, and MKPROM 2, and likewise NOEL
OpenSBI for NOEL, are downloaded automatically, potentialy after selecting between versions in the Build-
root configuration. For both LEON and NOEL it is possible to build a toolchain using Buildroot, but a pre-built
toolchain is downloaded by default.

BRLEON Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 2025.02-1.0 3

frontgrade.com/gaisler

rRONTGRADE

Gaisler

2. Quick start guide

Install Buildroot

tar xf gaisler-buildroot-2025.02-1.0.tar. bz2

Enter the Buildroot top level directory.

cd gai sl er-buildroot-2025.02-1.0

Set up the default configuration, e.g.

make gai sl er_| eon_defconfig

for aLEON system with memory at 0x40000000, or

make gai sl er_noel 64_def config

for 64-bit NOEL-V. Other possible default configurations are listed in Section 3.1.

Optionally, do additional configurationsin the Kconfig interface:

make xconfig

See Section 1.2 for system requirements. See the configuration section printed by make hel p for additional
means of configuration, e.g. nake nenuconfi g.
Start the process of downloading and building everything:

make

2.1. Running the default LEON RAM image

The resulting RAM image can be found at out put /i nages/ i mage. ram It is ready to be loaded and run
in e.g. GRMON or TSIM on a LEON system with memory at address 0x40000000. Symbols for the kernel for
debugging purposes can be found in out put /i mages/ v i nux. They can be loaded from within GRMON
or TSIM with the symbols command, or in GDB with the symbol-file command.

Loading and running the image using GRMON3 can be done, replacing “-debuglink” with an appropriate debug
link, with e.g.

grrmon -debuglink -nosram-nb -u -e "l oad output/images/imge.ram synbols output/imges/vminux; run"

Loading and running the image in the TSIM3 simulator can be done with e.g.

tsi ml eon3 -nosram out put/inmages/i nage. ram -sym out put/i nmages/vm inux -e "run"

2.2. Running the default NOEL RAM image

Theresulting RAM image can be found at out put /i mages/ f w_payl oad. el f . Itisready to be loaded and
runin e.g. GRMON on a suitable NOEL system. Symbols for the kernel for debugging purposes can be found in
the kernel build directory, generally out put / bui | d/ | i nux- VER/ v i nux, where VER is the base kernel
version, or cust omif working with an external Linux kernel source directory. They can be loaded from within
GRMON with the symbols command, or in GDB with the symbol-file command.

Loading and running the image using GRMON3 can be done, replacing “-debuglink” with an appropriate debug
link, and “somedtb” with an appropriate DTB file, with e.g.

grrmon -debuglink -u -e "dtb somedtb; |oad output/images/fw_image.ram run"

BRLEON Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 2025.02-1.0 4

frontgrade.com/gaisler

rRONTGRADE

Gaisler

3. Configuring and Building

General information on how to configure Buildroot and different packages can be found in the regular Buildroot
manual.

3.1. Default Configurations

Thischapter liststhe different default configurationsfor LEON and NOEL systemsthat are provided in therelease.
These can be built upon to suit a particular LEON and NOEL system. These default configurations also chooses
adefault Linux kernel configuration.

Table 3.1. Default Configurations

Configuration Target Notes
gaisler_leon_defconfig General LEON3/4/5 systems Assumes memory at 0x40000000
gaisler_noel64_defconfig |Genera 64-bit NOEL-V systems |Assumes memory at 0x0

gaider_noel32_defconfig |Genera 32-bit NOEL-V systems |Assumes memory at 0x0

gaisler_gr740_defconfig |GR740 General GR740 config to base board specificson

frontgrade ut700_defconfigUT700 General UT700 config, with erratafixes enabled,
to base board specifics on

Asan example, to use e.g. “gaisler_leon_defconfig” configuration, just do

make gai sl er_| eon_defconfig
3.1.1. LEON Linux 6.13 Beta

Thisreleaseincludesabetaversion of LEON Linux 6.13, intended for early testing of new Linux features currently
in development such as Real-time Linux (PREEMPT_RT), ftrace, lock debugging, and high-resolution timers.
See the LEON Linux 6.13 Beta User's manual [https://download.gai sler.com/anonftp/linux/linux-6/doc/leon-lin-
ux-6.13-beta-1.pdf] for more information.

The LEON Linux 6.13 beta release is based on a kernel version without LTS support which means that no
new official releases from kernel.org is to be expected. The features we have added in this release will later
be made available in a suitable version with LTS support.

The following default configurations are provided. These default configurations also chooses a default Linux
kernel configuration.

Table 3.2. Default Configurations

Configuration Target Notes

gaisler_leon linux6.13-beta_defconfig General LEON3/4/5 systems | Assumes memory at 0x40000000

gaider_gr740_linux6.13-beta_defconfig GR740 General GR740 Linux 6.13 config
to base board specifics on

gaisler_gr740_linux6.13-beta rt_defconfig |GR740 General GR740 config with
Real-time Linux enabled
(PREEMPT_RT).

Asan example, to use e.g. “gaider_leon_linux6.13-beta_defconfig” configuration, just do

make gai sl er_| eon_linux6. 13- bet a_defconfig

3.2. Buildroot Configuration

Buildroot, what packets to build and some configuration of built packets can be configured using e.g.

make xconfig

or

BRLEON Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 2025.02-1.0 5

frontgrade.com/gaisler
https://download.gaisler.com/anonftp/linux/linux-6/doc/leon-linux-6.13-beta-1.pdf
https://download.gaisler.com/anonftp/linux/linux-6/doc/leon-linux-6.13-beta-1.pdf
https://download.gaisler.com/anonftp/linux/linux-6/doc/leon-linux-6.13-beta-1.pdf

rRONTGRADE

Gaisler

nmake menuconfig
See the regular Buildroot manual for details and alternatives.

The Buildroot configuration file is by default placed in . conf i g in the top level directory. The configuration
fileitself isunaffected by nake cl ean.

See also the LEON Linux User's manual [https://download.gaisler.com/products/leon-linux/doc/leon-linux.pdf]
for some pointers on useful Buildroot packages for certain drivers and kernel subsystems for Linux on LEON.

3.3. Linux Kernel Configuration
The kernel can be configured using e.g.

make |inux-xconfig

See Chapter 4 for Linux kernel matters.
3.4. MKLINUXIMG Configuration for LEON

The MKLINUXIMG second stage bootloader is enabled and configured as part of the Buildroot configuration
under the bootloader section for LEON. Just as regular Buildroot packages, it is downloaded and installed auto-
matically.

See also the LEON Linux User's manual [https://download.gaisler.com/products/leon-linux/doc/leon-linux.pdf]
for input on specific configuration needs for different drivers and subsystems for Linux on LEON.

3.5. OpenSBI Configuration for NOEL

The OpenSBI is enabled and configured as part of the Buildroot configuration under the bootloader section for
NOEL. It is downloaded and installed automatically.

3.5.1. Configure a custom FDT address for a firmware with payload

The default configuration for afirmware with payload (f w_payl oad. el f) in Buildroot for NOEL will forward
the address of the Flattened Device Tree (FDT) provided to OpenSBI by the loader (e.g. GRMON) to the next
booting stage (i.e. Linux).

To explicitly specify the address at which the FDT passed from the previous boot stage should be placed before
executing the next stage, configure the following option in Buildroot:
e Copy FDT to this address (BR2_TARGET_OPENSBI_FW_PAYLOAD_FDT_ADDR)

under “Bootloaders’ under “openshi”.

Alternatively, you can specify an offset from the OpenSBI |oad address to determine the FDT load address
* FDT address offset (BR2_TARGET_OPENSBI_FW_PAYLOAD_FDT_OFFSET)
under “Bootloaders’ under “openshi”.

If both the address and the offset are set, OpenSBI will use the explicitly specified address and ignore the offset
value.

For more details on configuring afirmware with payload, refer to the OpenSBI documentation [https://github.com/
riscv-software-src/openshi/bl ob/master/docs/firmware/fw_payload.md].

3.6. MKPROM2 Configuration for LEON

The optional MKPROM?2 bootloader is enabled and configured as part of the Buildroot configuration under the
bootloader section for LEON. Just as regular Buildroot packages, it is downloaded and installed automatically.

3.7. Building
When al configuration has been done, build everything with
nake
BRLEON Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 2025.02-1.0 6

frontgrade.com/gaisler
https://download.gaisler.com/products/leon-linux/doc/leon-linux.pdf
https://download.gaisler.com/products/leon-linux/doc/leon-linux.pdf
https://download.gaisler.com/products/leon-linux/doc/leon-linux.pdf
https://download.gaisler.com/products/leon-linux/doc/leon-linux.pdf
https://github.com/riscv-software-src/opensbi/blob/master/docs/firmware/fw_payload.md
https://github.com/riscv-software-src/opensbi/blob/master/docs/firmware/fw_payload.md
https://github.com/riscv-software-src/opensbi/blob/master/docs/firmware/fw_payload.md

rRONTGRADE

Gaisler

The resulting images will by default be placed in the out put / i mages. For example:

Table 3.3. Produced in out put / i nages

File Description

i mage. ram Executable RAM file produced by MKLINUXIMG for LEON.

fw_payl oad. el f Executable RAM file produced by OpenSBI for NOEL.

vl i nux Kernel file. Use as symbol file for kernel debug. Found in kernel build directory for
NOEL.

i mage. prom Executable ROM file from MKPROM2 for LEON.

rootfs.cpio CPIO Root file system, suitable for initramfs.

3.7.1. Rebuilding

When adding new packages via the Buildroot configuration, or reconfiguring the kernel via the Buildroot make
system, it is often enough to just do

make

but sometimesthat isnot enough. Seethe section “ Understanding how to rebuild packages’ in the regular Buildroot
manual for more details. See also the section “Understanding when a full rebuild is necessary” in the regular
Buildroot manual for details on rebuilding and when that is necessary.

Beware of lost Linux kernel configurations (and other configurations done via separate configuration targets) on
afull rebuild. See Section 4.2 on how to prevent that.

3.8. Project-specific customization

It is recommended to read the chapter about “Project-specific customization” in the Buildroot manual as it de-
scribes best practices when customizing Buildroot for aproject. In Buildroot there are several config options avail-
able for customizing the generated target filesystem. Here follows a brief introduction to some of these options.

The layout of the final rootfs can be customized using filesystem overlays. A filesystem overlay is atree of files
that iscopied directly over to thetarget filesystem after it hasbeen built. Therootfsoverlay isenabled by providing
alist of paths (space-separated) to the config option BR2_ROOTFS OVERLAY.

If the system need to set specific permission or ownership on files or device nodes this can be achieved by provid-
ing alist (space-separated) of paths to permission tables to the config option BR2_ ROOTFS DEVICE_TABLE.
Custom user accounts can be added by providing alist (space-separated) of pathsto user tablesto the config option
BR2_ROOTFS_USER _TABLES.

Post-build scripts are shell scripts called after Buildroot builds al the selected software, but before the rootfs
images are assembled. The post-build scripts can be used to modify or delete files on the target filesystem or by
running extra commands before generating the file system image. Enablethis by providing alist (space-separated)
of post-build script paths to the config option BR2_ ROOTFS POST BUILD_SCRIPT.

There is also a similar option for post-image scripts, which are run after all images have been creat-
ed and it is enabled by providing a list (space-separated) of post-image script paths to the config option
BR2_ROOTFS_POST_IMAGE_SCRIPT.

For certain packages it is possible to customize features and options using fragment files. The options
specified in the fragment files are merged with the main configuration file during the build. For exam-
ple the Linux kernel can be configured by providing a list of space-separated paths to fragment files
to the config option BR2_LINUX_KERNEL_CONFIG_FRAGMENT_FILES. Another example is BusyBox
which can be configured by providing a list of space-separated paths to fragment files to the config option
BR2_PACKAGE_BUSYBOX_CONFIG_FRAGMENT_FILES.

3.8.1. Project customization example

In Buildroot there is a mechanism called “br2-external”. This mechanism allows to keep package recipes, board
support, rootfs overlays, configuration files etc outside of the Buildroot treein an external location but still having

BRLEON Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 2025.02-1.0 7

frontgrade.com/gaisler

rRONTGRADE

Gaisler

it integrated in the build logic. The location of thiskind of structure isreferred to as “br2-external tree”. Buildroot
can then be instructed to include one (or more) “br2-external tree(s)” by setting the BR2_ EXTERNAL (to the
path(s) of the trees) variable when invoking make. Buildroot include custom package recipes specified in thefiles
“Config.in” and “external.mk” of the “br2-external tree”. These packages can then be configured under “ External
options” menu using Buildroot's top-level configuration menu.

An example of a br2-externa tree is available in docs/ gai sl er/ br 2- ext er nal - exanpl e. tar. bz2
and this section shows an example of how to integrate it in Buildroot.

The example shows how to use the config options mentioned in Section 3.8 such as customizing the rootfs by
using afilesystem overlay, adding a custom user and setting ownership. It aso include a post-build script which
modifies afilein the target file system and fragment files for Linux and BusyBox. The example also includes a
custom package recipe for a helloworld application. The system will get the following customization:

A custom user, bob, is added
The filesystem overlay adds /home/bob and /etc/buildtime

e Ownership of /home/bob is set to bob

 The post-build script file will modify /etc/buildtime

« BusyBox will include the applet timeout

e The Linux kernel will have timestamps enabled for printk

< A custom package, helloworld, is enabled and installed.
The example include a defconfig called “my-example_defconfig”and it contains all the config options to achieve
the customization mentioned above:

BR2_ROOTFS_OVERLAY="$(BR2_EXTERNAL_PROQJECT_EXAMPLE_PATH) / boar d/ my- boar d/ over| ay/ "

BR2_ROOTFS_POST_BUI LD_SCRI PT="$(BR2_EXTERNAL_PRQIJECT_EXAMPLE_PATH) / boar d/ ny- boar d/ post - bui | d. sh"

BR2_ROOTFS_DEVI CE_TABLE="syst enf devi ce_t abl e. t xt $(BR2_EXTERNAL_PROJECT_EXAMPLE_PATH) / boar d/ ny- boar d/ devi ce_t abl e. t xt "
BR2_ROOTFS_USERS_TABLES="$(BR2_EXTERNAL_PROJECT_EXAMPLE_PATH) / boar d/ ny- boar d/ user _t abl e. t xt "

BR2_LI NUX_KERNEL_CONFI G_FRAGVENT_FI LES="$(BR2_EXTERNAL_PRQIECT_EXAMPLE_PATH) / boar d/ ny- boar d/ ker nel . confi g"
BR2_PACKAGE_BUSYBOX_CONFI G_FRAGMVENT_FI LES="$(BR2_EXTERNAL_PROJECT_EXAMPLE_PATH) / boar d/ ny- boar d/ busybox. confi g"
BR2_PACKAGE_HELL ONORLD=y

The option BR2 EXTERNAL PROJECT EXAMPLE PATH (as can be seen in the paths above) is a spe-
cial option created by Buildroot when using a “br2-external tree”. Buildroot gets the name from a file called
ext er nal . desc which should be located at the path given to the BR2_ EXTERNAL variable when invoking
make. Thisisthe content of ext er nal . desc from the example:

nane: PRQJECT_EXAMPLE
desc: Project exanple of a br2-external tree

Note that when changing the namein ext er nal . desc all references must be updated where it is used.
Here follows instructions on how to integrate the example:

Enter the Buildroot top directory, extract the archive and place it in an external directory.

tar xf docs/gaisler/br2-external -exanple.tar.bz2 -C <dir_path>

In this example the project will be based on the default configuration “gaisler_leon_defconfig” and the board con-
fig “my-board_defconfig” from the br2-external example tree. The mentioned board configs needs to be merged
before configuring Buildroot. There is a support tool available for merging config files in support/ kcon-
fi g/ merge_config.sh

CONFI G_=BR2_ support/kconfi g/ merge_config.sh -m configs/gaisler_|leon_defconfig \
<di r _pat h>/ br 2- ext er nal - exanpl e/ confi gs/ ny-boar d_def confi g

Buildroot needsto be configured and aware about the location of the br2-external exampletree. Thisis done once
by setting BR2_EXTERNAL when invoking a make target that configures Buildroot. Open up the configuration
editor, save the changes and exit, for example, if using xconfig:

make BR2_EXTERNAL=<di r _pat h>/ br 2- ext er nal - exanpl e xconfig

BRLEON Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 2025.02-1.0 8

frontgrade.com/gaisler

rRONTGRADE

Gaisler

Now the configurationisdone and it'spossibleto build asystemimage by invoking make. Buildroot will remember
BR2_EXTERNAL so thereisno need to passit at every make invocation.

3.9. NFS Examples

With NFSit is possible to access and share files with others over a computer network. The first example cover
how to mount aNFS share. Thisisvery convenient in some situations, for example, when the system needs access
to shared data or if the dataistoo large to be built-in to theimage. The second example covers how the kernel can
boot and use aroot file system from an NFS share instead of using aRAM file system.

The examples are based on the Buildroot configurations mentioned in Section 3.1. For a custom configuration,
make sure that the Linux kernel has been configured with:

e Aeroflex Gaider GRETH Ethernet MAC support (GRETH)

« NFSclient support (NFS_FS)

Itisfundamental that the client can reach the server. Make surethat it is possible to configure the network interface
of the client so it is possible to ping the intended NFS server.

Set up the mac-address of the device to avoid collisions
ifconfig ethO hw ether <mac address>

Assign an | P and enable the ethO interface

ifconfig ethO <NFS client |IP address> up

Ping the NFS server

pi ng <NFS server |P address>

3.9.1. How to mount an NFS filesystem
3.9.1.1. Server setup

Thefirst step isto setup and configure an NFS server:
* Ingtall the NFS server software
o Start the NFS server
» Configure access to the NFS server

These steps might differ depending on the running system of the server. An example of how this can be done on
a Ubuntu based system will be covered, but in general, when using amajor Linux distribution, the necessary NFS
server software isinstalled using the package manager of the running distribution. After the NFS server has been
installed and started the final step is to configure it so clients are allowed to access the shared directories. The
NFS server is configured using afile called “exports’ which usualy isinstaled in / et ¢ and it controls which
directories that can be shared over NFS. The general syntax of anentry in/ et ¢/ exports s

<export> <host >(<opti ons>)

» export isthe directory being exported.
* host isthe host or network to which the export is being shared.
« options contains the options set for the host or network.

A changeto/ et ¢/ export isapplied by invoking:
sudo exportfs -ra
In this example the following entry is used:

[hone/ export *(rw, sync, no_subtree_check, no_root _squash)

Table 3.4. Description of the options used in the example

Option Description

/home/export The directory that will be exported.

* Allow all incoming IP addresses. This can be restricted to a single IP address or to a
range.

rw Mounts of the exported file system is read+writeable. Thefile system can be maderead
only by setting it to “ro”.

sync Replies to requests will wait until after changes to be committed to stable storage has
been made.

BRLEON Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler

Jun 2025, Version 2025.02-1.0 9

frontgrade.com/gaisler

rRONTGRADE

Gaisler
Option Description
no_subtree_check Disables subtree checking as it might cause problems with accessing files that are re-
named while a client has them open.
no_root_squash Allows the root of the client to access the share as the local root (of the NFS server).

This setting could be a potential security risk so it isrecommended that it is only used
in trusted environments and that the exported directories are not important to the server
(i.elimit the data share to what is needed by the client).

The complete syntax of the exports file can be read in the man page:

man exports
Here follows an example on how to setup an NFS server on a Ubuntu based system.

Start by installing the NFS server software:

sudo apt install nfs-kernel-server

The next step isto start the NFS server:

sudo systenct!| start nfs-kernel-server.service

Then the final step isto configure the NFS server by adding thisentry tothe/ et ¢/ export s file:
/ home/ export *(rw, sync, no_subtree_check, no_root _squash)

The change needs to be applied:

sudo exportfs -ra

Now the directory is ready to be accessed by aclient through the NFS server.
3.9.1.2. Client setup

On the client side the only thing that isrequired is to setup the network interface:
Set up the mac-address of the device to avoid collisions
ifconfig ethO hw ether <mac address>

Assign an I P and enable the ethO interface
ifconfig ethO <IP address> up

The client can now to mount the network share:
mount <NFS Server |P>:/honme/export /mt -onol ock>

Please note that the mount request might fail if Buildroot has been configured with the
package BR2 PACKAGE_UTIL_LINUX_MOUNT enabled. If that is the case then the package
BR2_PACKAGE_NFS_UTILS needs to be enabled. By default the mount command comes from the Busybox
application suite and it works without adding any additional packages.

3.9.2. How to boot Linux from NFS

This example shows how a system can be configured to use aroot filesystem from a network share instead of the
built-in RAM file system (initramfs) which istypically used in the configs mentioned in Section 3.1. This allows
for aflexible system where different root file systems can be used with the same kernel build.

3.9.2.1. Buildroot configuration

Thefirst step isto configure Buildroot. Open up the configuration editor, for example, if using xconfig:

make xconfig
Under “Filesystem images’ select:
 “tar theroot filesystem " (BR2_TARGET_ROOTFS_TAR)

Under “Filesystem images’ unselect:
« “initial RAM filesystem linked into linux kernel” (BR2_TARGET_ROOTFS_INITRAMFS)

Thefinal step isto add a couple of NFS root related parameters to the kernel command line so the kernel can set
up the network interface and mount the NFS share on boot. Here is an overview of the parameters:

BRLEON Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 2025.02-1.0 10

frontgrade.com/gaisler

rRONTGRADE

Gaisler

root =/ dev/ nfs
nf sroot =[<server-ip>:]<root-dir>[, <nfs-options>]
i p=<client-ip>:<server-ip>: <gw i p>: <net mask>: <host nane>: <devi ce>: <aut oconf >: <dns0-i p>: <dns1-i p>: <nt p0-i p>

SeeDocunent at i on/ adm n- gui de/ nf s/ nf sroot . r st intheLinux kernel sourcefor moreinformation
about the parameters.

Hereis an example of a configuration:

* server-ip: 192.168.0.69
 client-ip: 192.168.0.244

e gw-ip: 192.168.0.1

e netmask: 255.255.255.0

* hostname: soc

* device: ethO

« root-dir: /home/export/nfsroot
* nfs-options. nolock,tcp,vers=3

The expanded parameters would then look like this:

root =/ dev/nfs
nf sroot =192. 168. 0. 69: / hone/ export/ nf sroot, nol ock, tcp, vers=3
i p=192. 168. 0. 244: 192. 168. 0. 69: : 255. 255. 255. 0: soc: et h0: none: 192. 168.0.1 rw

Under “Bootloaders’ under “mklinuximg” append the NFS parameters (space separated) to:
» “Commandline to pass to the kernel” (BR2_TARGET_MKLINUXIMG_CMDLINE)

Exit the Buildroot configuration tool and save the changes.

3.9.2.2. Linux kernel configuration

The second step isto configure the kernel. Open up the Linux configuration editor, for example, if using xconfig:
make |inux-xconfig

Under “File systems” under “Network File systems” select:
* “Root file system on NFS” (ROOT_NFS)

Under “Device Drivers’ under “Generic Driver Options’ select:

¢ “Maintain adevtmpfs filesystem to mount at /dev” (DEVTMPFS)
e “Automount devtmpfs at /dev, after the kernel mounted the rootfs " (DEVTMPFS_MOUNT)

Under “General setup” clear:
 “Initramfs source file(s)” (INITRAMFS_SOURCE)

Under “General setup” unselect:
e “Initial RAM filesystem and RAM disk (initramfg/initrd)” (BLK_DEV_INITRD)

Everything is now configured for NFS boot. Exit the kernel configuration tool and save the changes.
3.9.2.3. Build & deploy

The next step is to build and unpack the root filesystem to the nfs root directory. In the example / home/ ex-
port/ nf sroot isusedastheroot directory. Itisexpected that/ honme/ expor t hasbeen exported as described
in the NFS mount example (see Section 3.9.1).

Start abuild by invoking:

make

Now extract the generated r oot f s. t ar from out put /i mages to the nfs-root directory (note that sudo is
used):

sudo tar -xavf output/images/rootfs.tar -C /hone/export/nfsroot

Now everything is ready for the NFS boot. On a successful boot the following output is printed:

| P- Config: Conplete:

BRLEON Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 2025.02-1.0 11

frontgrade.com/gaisler

rRONTGRADE

Gaisler

devi ce=et h0, hwaddr=00: 00: 7c: cc: 01: 45, i paddr=192. 168. 0. 244, mask=255. 255. 255. 0, gw=255. 255. 255. 255
host =soc, domai n=, ni s-donai n=(none)
boot server=192. 168. 0. 69, rootserver=192.168. 0. 69, rootpath=
nameserver 0=192. 168. 0. 1
VFS: Mounted root (nfs filesysten) on device 0:12.

If the following is printed when the network serviceis started:

Starting network: ip: RTNETLINK answers: File exists
FAI L

The output indicates that the NETLINK interface already has been setup and it will not cause any issues on the
running system. This happens because the localhost interface is setup by the kernel during boot. It is possible to
avoid the warning by using the ifupdown package in Buildroot (BR2_PACKAGE_IFUPDOWN). Before it can
be selected the package BR2_ PACKAGE_BUSYBOX_SHOW_OTHERS must be selected.

BRLEON Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 2025.02-1.0 12

frontgrade.com/gaisler

rRONTGRADE

Gaisler

4. Building the Linux Kernel in Buildroot

This chapter touches on matters related to setting up, configuring and building the Linux kernel specificaly in
the Buildroot environment. For our general documentation on LEON Linux, see the LEON Linux User's manual
[https://downl oad.gai s er.com/products/leon-linux/doc/leon-linux.pdf]. As usual, the regular Buildroot manual is
the main source of information on these matters. This chapter aims to give some helpful pointers and tips.

4.1. Linux Kernel Configuration

The kernel can be configured using e.g.

make |inux-xconfig

or

make |inux-menuconfig

See the regular Buildroot manual for details and alternatives to the above configuration methods. See for general
LEON Linux kernel documentation including specific kernel configuration options related to our drivers and
kernel subsystems.

4.2. Caveats on Loosing the Kernel Configuration

The Linux kernel configuration file is by default placed in out put / bui | d/ | i nux-version/.config,
wherever si on corresponds to the kernel version being used. It isimportant to note that when doing

nake cl ean

the Linux kernel configuration file will be removed together with everything else that is cleaned up, due to the
fact that it residesin theout put / bui | d directory.

To savethe Linux kernel configuration, configure Buildroot in the Kernel section, like so:
» Select the “Using a custom (def)config file” option.
* BR2_LINUX_KERNEL_CUSTOM_CONFIG
* Set the “Configuration file path” to a filename (outside of the out put directory) where you want to save
the kernel configuration. A relative path will put it relative to the Buildroot top directory.
« BR2 LINUX_KERNEL_CUSTOM_CONFIG_FILE
 Clear the “Additional configuration fragment files” if is set to anything.
* BR2_LINUX_KERNEL_CONFIG_FRAGMENT_FILES
and then save the configuration to the configured destination with

make |inux-update-config

to save the full configuration file, or

make |inux-update-defconfig

to save a slimmed down configuration file with only changes from default val ues.

This procedureis not automatic, and one of the two last steps needs to be repeated after changing the Linux kernel
configuration for those changesto surviveamake cl ean.

Other packages with their own pkgnane- xconf i g configuration target (or similar) can be affected in the same
way. Seethe section on “ Storing the configuration of other components” in theregular Buildroot manual for details.

4.3. Setting up external Linux kernel source directory

When Buildroot is configured to build the kernel, as is the case in our default configurations, the kernel source
codeisdownloaded and patched. Thisis fine when not having any needs to change any Linux kernel source code.
When actively doing kernel development it is better to set the kernel sourcein an external (to Buildroot) directory
and configure Buildroot to use that.

The LEON Linux kernel releases can be downloaded as separate packages and set up agit work directory with the
LEON Linux kernel asagit branch. This can be more suitable as a kernel source setup for kernel development.

BRLEON Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 2025.02-1.0 13

frontgrade.com/gaisler
https://download.gaisler.com/products/leon-linux/doc/leon-linux.pdf
https://download.gaisler.com/products/leon-linux/doc/leon-linux.pdf

rRONTGRADE

Gaisler

For NOEL, the patchesunder boar d/ gai sl er/ noel - cormon/ pat ches/ | i nux/ VER where VERis
the base kernel version, is the canonical source for our Linux kernel patches for NOEL. the kernel can be cloned
from official sources and those patches can be applied on top of the corresponding upstream kernel version.

When the kernel sources has been set up externally, create al ocal . nk, in the same directory as the Buildroot
. confi g file, containing

LI NUX_OVERRI DE_SRCDI R = /path/to/linux-src

filling in the path to the checked Linux kernel sourcetree. Thiswill make Buildroot use these source filesinstead,
by syncing the sources to its build directory and. To rebuild after akernel source code change, do

make |inux-rebuild all
to make sure that both the sources are synced properly and that the entire build chain is triggered.

Note that the cavesats in Section 4.2 still applies when using external sources. See the “Using Buildroot during
development” section in the regular Buildroot manual for more details on setup up external sourcesin general.

4.4, Setting up external MKLINUXIMG source directory

MKLINUXIMG is atool that creates a RAM image with a second stage boot |oader for LEON SPARC systems
which preparesthe system before booting Linux. It a so providesthe kernel with early consolefacilitiesand system
information, including information for building the devicetree, during kernel boot. See the Mklinuximg User's
manual [https://download.gaisler.com/products/leon-linux/doc/mklinuximg.pdf] for more information on how the
second stage boot |oader prepares the system.

When Buildroot is configured to build MKLINUXIMG, asisthe casein our default configurations for LEON, the
MKLINUXIMG source code is downloaded. This is fine when not having any needs to change anything in the
MKLINUXIMG source code. When actively doing MKLINUXIMG development it is better to set the sourcein
an external (to Buildroot) directory and configure Buildroot to use that.

When the MKLINUXIMG sources has been set up externally, create al ocal . nk, in the same directory as the
Buildroot . conf i g file, containing

MKLI NUXI MG_OVERRI DE_SRCDI R = / pat h/ t o/ nkl i nuxi ng- src

filling in the path to the checked MKLINUXIMG source tree. This will make Buildroot use these source files
instead, by syncing the sourcesto itsbuild directory and. To rebuild after aMKLINUXIMG source code change, do

make nklinuximg-rebuild
4.5. Frontgrade Gaisler GRLIB driver package

The “Frontgrade Gaisler GRLIB driver package” contains drivers for certain cores of the Frontgrade Gaisler GR-
LIB IP-core library that are not part of the official kernel tree. SpaceWire for example does not have a gener-
ic driver model in Linux. For our general documentation, see the GRLIB Linux driver package User's Manual
[https://downl oad.gai sl er.com/products/gai sl er-buil droot/doc/grlib-linux-drvpkg-um.pdf]

In Buildroot, the “ Frontgrade Gaisler GRLIB driver package’ is available as a kernel extension. When the exten-
sion is enabled, Buildroot will automatically download the latest version and install it in the kernel tree.

Open up the Buildroot configuration tool (for example xconfig):

make xconfig

Enable the kernel extension by selecting:

« Frontgrade Gaisler GRLIB Driver package (BR2_LINUX_KERNEL_EXT_GRLIB_DRVPKG)
under “Linux Kernel Extensions’ under “Kernel”

Save and close the configuration tool and open the Linux kernel configuration tool (for example using linux-xcon-
fig):
make |inux-xconfig

The GRLIB driver package can now be enabled by selecting

BRLEON Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 2025.02-1.0 14

frontgrade.com/gaisler
https://download.gaisler.com/products/leon-linux/doc/mklinuximg.pdf
https://download.gaisler.com/products/leon-linux/doc/mklinuximg.pdf
https://download.gaisler.com/products/leon-linux/doc/mklinuximg.pdf
https://download.gaisler.com/products/gaisler-buildroot/doc/grlib-linux-drvpkg-um.pdf
https://download.gaisler.com/products/gaisler-buildroot/doc/grlib-linux-drvpkg-um.pdf

rRONTGRADE

Gaisler

e GRLIB Driver support (GRLIB_DRVPKG)

under “Device Drivers’. Enabling this option will reveal a new submenu, where you can configure additional
options and select specific driversincluded in the driver package.

The kernel extension is only installed by Buildroot when using a kernel within Buildroot. When using an exter-
nal Linux kernel source directory (by overriding the source with the LINUX_OVERRIDE_SRCDIR) the driver
package must be installed separately.

Kernel extensions in Buildroot are installed after the kernel sources are extracted but before any kernel patches
are applied. If akernel extension is enabled after a kernel build has already been performed, the kernel must be
rebuilt from scratch to ensure the extension is properly installed.

BRLEON Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 2025.02-1.0 15

frontgrade.com/gaisler

rRONTGRADE

Gaisler

5. Toolchains

The regular Buildroot manual isthe main source of information on the various options for toolchains under Buil-
droot. This chapter gives additional information on specific support from our side.

5.1. External Toolchains

For both LEON and NOEL, in our Buildroot releases we support using the latest external toolchain released by
us and have it automatically downloaded and used. Our default Buildroot configuration (defconfig) files are set
up to use this by default. Although we make it possible to use and build other toolchains, this toolchain choice
isour officialy supported one.

A different version than the one that was the latest one at the time of the Buildroot release can be used via the
normal external Buildroot configuration methods.

5.2. Buildroot-built toolchains

Buildroot can be set up to build atoolchain from scratch. Thisiswhat the regular Buildroot manual calls internal
toolchain. Thisisthe Buildroot default when not using any of our default configurations.

For both LEON and NOEL, our Buildroot release makes is possible to build an internal toolchain with the same
GCC and Glibc versions as our external toolchain, including our extra patches on top of the upstream versionsthey
are based upon. When using the kernel headers from the kernel that is being built, then “ Custom kernel headers
series’ should be set to a matching series, otherwise it might not be possible to select “ Glibc” as C library.

5.3. Architecture choices for LEON

For LEON we support choosing between “leon3” and “leon5” as SPARC architecture variants in Buildroot. The
former is suitable for LEON3 and LEON4, but also works fine with LEONS. The latter has instruction timing
tuned to LEONS specifically.

5.3.1. Errata workarounds for UT700
When choosing “leon3” as architecture we also support enabling errata fixes for UT700. This can be done both

using our external toolchain, or building a Buildroot-built toolchain when our specific GCC and Glibc versions
are selected.

BRLEON Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 2025.02-1.0 16

frontgrade.com/gaisler

rRONTGRADE

Gaisler

6. Upgrading Buildroot

6.1. Upgrading to a new Gaisler Buildroot release

These are the basic steps for upgrading from an one Gaisler Buildroot release to another.

« Unpack the new Gaisler Buildroot release as per Section 1.3.

» Preserve your Linux kernel config as per Section 4.2.

» Preserve other external configurations and additions. See the “Quick guide to storing your project-specific
customizations” sectionintheregular Buildroot manual for details. Note that these guidelines suggests storing
them in-tree, but it is also possible to store them out of tree with absolute paths.

» Copy the Buildroot .config configuration file to the new Buildroot base directory (or external output directory
if using that).

« Copy over any user added in-treefiles or directoriesreferred to by the Buildroot .config to the new directory.

 Rebuild from the new installation.

6.2. Follow upstream stable branch

This section gives some pointers on how to follow an upstream stable Buildroot branch instead of waiting for a
new Gaidler Buildroot release from us. See Section 6.1 on how to preserve and move configurations from one
Buildroot directory to the new one created by the procedure below.

The example below shows the procedure from the point of view of Gaisler Buildroot 2025.02-gaisler1.0 that is
based upon upstream Buildroot release 2025.02. That the upstream release in this case is 2025.02 can be seen in
the CHANGES changelog fileindocs/ prebui I t.

Check out the upstream Buildroot release that the Gaisler Buildroot rel ease that you are using is based on, e.g.
git clone git://git.buildroot.net/buildroot

cd bui | droot
git checkout -b branchname 2025. 02

Create a git commit out of the Gaisler Buildroot release. Adjust path to archive as needed.

git checkout -b custom gaisler-buildroot 2025.02

tar xf /tnp/gaisler-buildroot-2025.02-gaislerl.0.tar.bz2 --strip-conmponents=1
sed -i '/export BR2_VERSION :=/ s/-.*$//' Makefile

git add *

git commit -m"Gaisler Buildroot 2025.02-gaislerl.0 additions"

Rebase upon the later upstream release, in this example 2025.02.1.

git rebase 2025.02.1

In case of rebase conflict, standard git procedures apply. Make sure to include the sed command above to avoid
an otherwise highly probable rebase conflict.

BRLEON Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 2025.02-1.0 17

frontgrade.com/gaisler

rRONTGRADE

Gaisler

7. Support
For support contact the support team at support@gaiser.com.

When contacting support, pleaseidentify yourself in full, including company affiliation and site name and address.
Please identify exactly what product that is used, specifying if it is an IP core (with full name of the library
distribution archive file), component, software version, compiler version, operating system version, debug tool
version, simulator tool version, board version, etc.

The support serviceisonly for paying customers with a support contract.

BRLEON Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 2025.02-1.0 18

frontgrade.com/gaisler

rRONTGRADE

Gaisler

Frontgrade Gaisler AB
Kungsgatan 12

411 19 Goteborg
Sweden
frontgrade.com/gaisler
sales@gaisler.com

T: +46 31 7758650

F: +46 31 421407

Frontgrade Gaisler AB, reserves the right to make changes to any products and services described herein at any time without
notice. Consult the company or an authorized sales representative to verify that the information in this document is current before
using this product. The company does not assume any responsibility or liability arising out of the application or use of any product
or service described herein, except as expressly agreed to in writing by the company; nor does the purchase, lease, or use of
a product or service from the company convey a license under any patent rights, copyrights, trademark rights, or any other of
the intellectual rights of the company or of third parties. All information is provided as is. There is no warranty that it is correct or

suitable for any purpose, neither implicit nor explicit.

Copyright © 2025 Frontgrade Gaisler AB

BRLEON Frontgrade Gaisler AB | Kungsgatan 12 | SE-411 19 | Goteborg | Sweden | frontgrade.com/gaisler
Jun 2025, Version 2025.02-1.0 19

frontgrade.com/gaisler
frontgrade.com/gaisler

	
	Table of Contents
	1. Introduction
	1.1. Overview
	1.2. Host System Requirements
	1.3. Installation

	2. Quick start guide
	2.1. Running the default LEON RAM image
	2.2. Running the default NOEL RAM image

	3. Configuring and Building
	3.1. Default Configurations
	3.1.1. LEON Linux 6.13 Beta

	3.2. Buildroot Configuration
	3.3. Linux Kernel Configuration
	3.4. MKLINUXIMG Configuration for LEON
	3.5. OpenSBI Configuration for NOEL
	3.5.1. Configure a custom FDT address for a firmware with payload

	3.6. MKPROM2 Configuration for LEON
	3.7. Building
	3.7.1. Rebuilding

	3.8. Project-specific customization
	3.8.1. Project customization example

	3.9. NFS Examples
	3.9.1. How to mount an NFS filesystem
	3.9.1.1. Server setup
	3.9.1.2. Client setup

	3.9.2. How to boot Linux from NFS
	3.9.2.1. Buildroot configuration
	3.9.2.2. Linux kernel configuration
	3.9.2.3. Build & deploy

	4. Building the Linux Kernel in Buildroot
	4.1. Linux Kernel Configuration
	4.2. Caveats on Loosing the Kernel Configuration
	4.3. Setting up external Linux kernel source directory
	4.4. Setting up external MKLINUXIMG source directory
	4.5. Frontgrade Gaisler GRLIB driver package

	5. Toolchains
	5.1. External Toolchains
	5.2. Buildroot-built toolchains
	5.3. Architecture choices for LEON
	5.3.1. Errata workarounds for UT700

	6. Upgrading Buildroot
	6.1. Upgrading to a new Gaisler Buildroot release
	6.2. Follow upstream stable branch

	7. Support

