(==25 == ,

GAISLER RESEARCIH

SnapGear Linux for LEON

Manual: SnapGear Linux for LEON

Written by Daniel Hellstrom

LINUX-SNAPGEAR
Version 1.36.0
December 2007

Forsta Langgatan 19
413 27 Goteborg
Sweden

tel: +46 31 7758650
fax: +46 31 421407
www.gaisler.com

http://www.gaisler.com/
http://www.gaisler.com/

L

=

LINUX-SNAPGEAR 2 GAISLER RESEARCH
Table of Contents

1 INTRODUGCTION ...ttt ettt b bt sttt s bt bbbt e b et e e et e st es e e st eneenteeneee 5
1.1 LEON LINUX .1ttt ettt ettt ettt sttt sttt e st et et e s e st e st es e eseeseebeebesbeeseebeabessensententenseenbeenns 5
1.2 SNAPGEAT LANUK.....eetiiieiieiieeieeiieeteetteste et e st e et e ette e teessaeesseessseesseessseesseensseanseesssaenseesssessseensseesanses 5
1.3 Boot loader for LEON LINUX......ccooiiiieiiiierieiieie ettt ettt sseeseesseesbe st e sneeesneeeanee 5
1.4 LEON simulator to speed up the development ProCess..........ooouerierierieriereereneene e seee e 6
1.5 ODbtaining the SOTIWATE.......cc.eiiieiiiie ettt ettt et e e st e e neeeennees 6
1.6 SUPPOTted RATAWATE. ..ottt sttt ettt 6
1.7 SUPPOTL ...ttt ettt ettt ettt et s ae et eae et eaeesa e e s e s bt e e e bt esn e ettt e et n e s e e e enanee 6
2 INSTALLING GNU TOOLCHAIN AND LEON LINUX......ccceotieieieieeeieiesiesieeiese e see e 7
2.1 Selecting TOOICRAIN. ...c..couietiitirtitetct ettt ettt ettt ettt st be e eae s e en 7
2.2 Installing the t0OIChAIN.cc.ciiriiriirici ittt ettt st 7
2.3 Installing SnapGear for LEON LinuX 2.0.......cccerieiiirierieiieie et eeesieeee s eeesseesaeessee e 8
2.4 Installing SnapGear for LEON LinNUX 2.0.......cccevieriirierieiieieseesieseeieeeseieesaesseesesssessesseenssessssaeenns 8
3 CONFIGURING LINUZX ...cttitiitiitesteteiestetetet ettt ettt sttt et et seeseebeebeabeseesaeeenneenees 9
3.1 Processor type and MIMU...........cooiiiuiiiiiiiciici ettt ettt aesteesae s e esbesteessesssesbeessesseessesseenseennns 9
3.2 C lIDTATY ettt ettt ettt e et et e st e bt e st eb e eb e e bt eb e ek et et et et et et enteneeneenaeente s 10
3.2.1 Static vs DyNamic HNKING.c.coiiiiiiiiiiieii ettt sttt et e e eaeee e 10
322 To0lchaing fOr LIMUX 2.6.....cc.eiiiiiieiieiieitiee ettt ettt ae et e st e e et enateeenneens 10
323 Toolchaing fOr LiMUX 2.0.....cc.eeiuiiieiieiiese ettt ettt ettt e e st et e st eseeneenneeeeneees 10
33 | 4T IR 5 (o) PSSP 10
34 Configuring the DOOt 10AAET.........ccueriiiiiiiiieieere ettt e s 11
34.1 SYMMELIIC MUII-PIOCESSINEZ.....vvervreeietieeeriieiesteetesttestesseestesseeseesaeseesesseessesseesessseesseesssessnsseesnns 13
3.5 Configuring the 2.6.X KEIMEL........cceeciiiiieiieiieieeieie ettt ettt ebeenseeeseneeeeseeensneens 13
3.5.1 LEON PIOCESSOT TYPC..eeuuierutieriierieeniteettenttesteesitessteesisesseesssessseesseesseesssessseesssesseesssesssessssseesssnssees 13
352 Symmetric MUulti-ProCEeSSING SUPPOTL.....ccueervierrerrieierreeeerteeterseetesseessesseessesseesesseessesseeessseeessseennsns 13
353 Gaisler AMBA Plug&Play procfs SUPPOIt......cc.ecieriieieriieiertieeesteeieseeteseevesteeseeseeseessesseeseesseens 14
354 GRLib APBUART (LEON3).ttt sttt ettt et be st see e ss e enae s 14
3.5.5 LEON Serial (LEON2).....coiiieieieiei ettt ettt ettt ebesaesaeebesbestentese s ensenseneeneeneeneeneas 14
3.5.6 GRLib GRETH 10/100/1000........ccueititiieeeeeeie ettt ettt sttt st te et eneenseesseesnaeennean 14
3.5.7 GRLib OpenCores Ethernet MAC..........ooiiiiiiiieeeee ettt e 14
358 SMC 91X Ethernet MAC........ouieiieeeeeee ettt ettt ettt saeetesreeeesneeeennes 15
3.59 GRLib GRETH 10/100/1000 OVEr PClL.....ccocciiiiiiiieiiieeieieieeieeeet ettt ae s 15
3.5.10 GRLib OpenCores I2C-MAaStET.......cc.ccueiririririeririietentertent ettt ettt ettt st st b e et saeneenesane s 15
3.5.11 GRLID PCI SUPPOTL....tiiiieiiiieiieiestieteettete et ettt e e setesseestessessaesseessesseessasseensesseansesseansesssansesnsesseens 15
3.5.12 GRLID GRPS2....oiiii ettt ettt ettt et et b e bbbt bt b st et e it en 15
3.5.13 GRLID SPICTRL. ...ttt sttt ettt ettt et ebe et et ens 15
3.5.14 GRLID GRUSBHC ..ottt ettt bbbt b e s bt et saae e s 16
3.5.15 GRLID GRVGA ...ttt ettt ettt ettt eb e bttt ebeebesbesbetenaeneens 16
3.5.16 GRLID ATA CONIOIIET.....cuiiiiiitieiee ettt et eae et esbeeenteeeeens 17
3.6 Configuring the 2.0.X KEINeL........cooiiiiiiiiiiieee et 18
3.6.1 LEON PIOCESSOL LY. .. eueieuteruieteritenteeitenteentesteentesteenteeteetesuteeesstesseaseesbeentenseentesseentesseenseeesaeesnneens 18
3.6.2 GRLib APBUART (LEON3).....iiiiieieiieiietetteteeie sttt sttt est et seeseesessessessassessensanseennenn 18
3.6.3 LEON Serial (LEON2)......cciiieieieiieiieeieie et eteste st e ste e ste e testeseesteseesessessessessessessesesansensensensesseseenees 19
3.6.4 GRLib GRETH 10/100 Ethernet MAC..........coeieieieieieieiieit ettt eeseseeseesee e eseesessesnens 19
3.6.5 GRLib OpenCores 10/100 Ethernet MACccccuviririririnienenenteteieeetet ettt n 19
3.6.6 SMC 91C111 10/100 Ethernet MAC.......c.ccoeirimirinininientenientetetet ettt sttt e e 19
3.6.7 GRLib VGA text frame buffer SUPPOLt.......c.ccvecverieiieiieie ettt seeennee s 19
3.6.8 GRLib GRPS2 PS/2 interface/Keyboard............ccevuerieriiiieiieieiieiesieeeeste et seeesevae e 20
3.7 Applications included in ROMES..........cccooiiiiiiiiicce ettt 20
3.8 Template CONTIGUIALIONS.couiiietieieriieteeteete ettt e et ete st esbe st esbeseaesbeesbesseessesseesseeseesseesaesseaseesnseas 21
4 BUILDING SNAPGEAR ..ottt ettt ettt e 23
5 ADDING CUSTOM APPLICATIONS. ...ttt ettt sttt 24

L

=
LINUX-SNAPGEAR 3 GAISLER RESEARCH
5.1 Creating an APPLICALION.cc.eecueirieieitieieeietiettesteeeesteeseesteetesseessesseessesseessasseessesssesseeseesseessesseasseens 24
5.2 Setting up COMPIlAtiON AITECLIVES.ccviiieriiiieriiiietieterte et e rteete et eteeteesesreeseereessesseessesssesseessseesnns 24
53 Including application t0 file SYStEM........cciiieriieieiiieierieeie sttt sae e e eabeeenenas 24
6 DEBUGGING LINUX-2.6 AND APPLICATIONS.......cctitieieeeieieieeeeee ettt 25
6.1 DebUZZING SYMDOIS.eiuiiiiiiieie ettt ettt st e sttt e s bt e et e e bt e e es e et e eneennteeennees 25
6.2 Debugging the KeIMEL........c.oooiiiiieieiieeee ettt et e e ent e e 25
6.2.1 Configuring GRLIB for kernel debugging...........cceceveriririnininiiniiiicicieeeceenenceee e 26
6.2.2 USING GRIMON ...ttt ettt sttt ettt ettt b e bt sbeeb e bt sbe et naeneee 26
6.2.3 GRMON Example: debugging the LinuX Kernel............cccovvirieniirienieieieieeeeieseeee e 26
6.3 Debugging userspace appliCAtIONS.ecvirieriierieriieiereeieseetesteeteeseesseeseesseessesseessesseessseessssessnsees 29
6.3.1 Setting up a debugging CNVITONMENL..........cccvervierierierereeiereesseseessesaesseessesseessesseessesseessesseessessaenes 30
6.3.2 GDB INITOAUCTION. ¢ ...ttt sttt ettt a et e bt s et ekt sbe st e b e b e e e e enbesteneeneeseeeneeenneans 30
6.3.3 Starting GDB SETVET ON TATZET........ieiuierieeiieeieetterte et erteesteesteesbeesseeeseessaessseesseeaseesseessseessssseesans 30
6.3.4 Connecting With GDB t0 GdDSEIVET........coiiiiiiiiiiiiiieceeee e 31
6.3.5 GDB EXAMPIE USAZE.....c.eeeueetieiieetieieet ettt ettt sttt sttt e b e bt et e et e esee bt eseesbeeneesbeeneesaeenteeenbeeens 31
6.3.6 DDD And GDB......ooiiieeeeee ettt a ettt sttt be bt et e te et et et eteeneeenneenneenes 34
6.3.7 53T 44 LSRR 34
6.4 Using NFS to simplify application Updates..........c.ccoeeuerueriniiiienienieieieeeeneneseeese e 34
6.5 Console output When debUZZING........couevveriiriiiiiiieieiieeeererete ettt s s 35
6.5.1 Redirecting output t0 NES Share........c.ccviieiiieieriieieeieestec ettt ssee e e 35
6.5.2 TELNET 0ver TCP/IP NEtWOTK.....cc.coiiiriiiiiiriiierieseee ettt ettt 35
7 PS/2 KEYBOARD AND VGA CONSOLE.......cciiteieieieieieieitee ettt essessesse e s 36
7.1 Hardware CONTIGUIALION.cc.eeiiiriieieriiete sttt ettt ettt et eaesaeessessaesseesaesseensenseensenseensens 36
7.2 Configuring the boot loader and main SNapGear OPLIONS........c.ecvervreierieeieriieierereeeseereseesaeseneens 36
7.3 Configuring the LinuX KEIMEL.........ccoecieriiiieriieieiieie ettt esaesseenae e esaeensneens 36
7.4 Configuring SNapGear APPLICALIONS.......cc.eeverrierierrieieitetereeteseessessesseessesseessesseessesseesseesssessnsseens 37
7.5 Building the kernel and appliCations............ccevuiiieriiieriieierieereee ettt e et ae e be e esseeenenas 37
7.6 SEtNG UP /@EC/IMITEAD ... ecviiitiiiiieiete ettt ettt et e s e ebesreesesaeessesesesseessesseesseseessesseensenns 37
7.7 Building again with inittab and re.sh..........cooooiiiiiiii e 38
7.8 RUNNING 0N RATAWATE. ..ottt ettt et e bt e e 38
8 ROOT FILE SYSTEM OVER ETHERNET USING NFS......ccoiiiiieieeeieieieeeee e 39
8.1 Setting up NFS server on PC.......ccooiiiiiiiiiiiiiccctete ettt 39
8.2 Configuring the boot loader and main SnapGear OPLIONS..........ccverveereerireieriieiereeree e seesaeseneens 39
8.3 Configuring the LinuX KEIMeL.........ccoecieriieieniieieeiee ettt eae e esaeensnee s 40
8.4 Building kernel and Dot LOAdET..........c.ccveviirieriiiieriecteeee ettt saeeaeeabae e 40
8.5 RUNNING ON RATAWALE........cviiiiiiieieiicieceeieeec ettt se b sta b e esa e seessesseessaeeesseeensseesnneas 41
9 ROOT FILE SYSTEM OVER ETHERNET USING ATA OVER ETHERNET...........ccccecvneee. 42
9.1 SEttiNg UP ATAOE SCIVET......cioiiiiiiieieitete ettt ettt ste et esteeae s e eae s e essessaessseesnseeessseessseennns 42
9.2 Configuring the boot loader and main SNapGear OPLIONS........c.ccvverviereerieeieriieierieeie e eeeseesaeseneens 42
9.3 Configuring the LinuX KEIMEL.........coveieiiiiieriieiiiieie sttt ettt esae s esaesaeesesensaee s 43
9.4 Configuring the vendor/user appliCatiONSccevveeriiiieriieieriieeesreeeesreere e esse e eaeereeesereseeneeas 44
9.5 Building kernel, boot loader, and Kinit...........ccoooeeiiiiiiiiiiiiieeceee e 44
9.6 RUNNING 0N RATAWATE. ..ottt et et e et e e eat e e 45
10 RUNNING GRLINUX/SPLACK FROM AN ATA HARD DISK......cccesieieieieieieieeeeeeee e 46
10.1 Installing the kernel onto flash.........c.cocoiiiiiiiiiiinn e e 46
10.2 Preparing the Dard driVe.........cooieiieiei et e e e ennees 46
10.3 RUNNING SPIACK.....eetiiieiieiieieeiee ettt ettt et te e s e e saesaeessesseessessaensessaenseesnsseennsens 47
11 INSTALLING DEBIAN 3.1 ON LEON LINUZXcoooirieieieieieieieeeiieresie e ssesse e ssessesseaesseesenes 48

L

=
LINUX-SNAPGEAR 4 GAISLER RESEARCH
11.1 Preparing LEON TarZEL........ccieiiiiieieieeiteieeieeteste et este et e steestesteesaesseessesseessesseessesssessesssessesssessesnsens 48
11.2 Installing Debian installation utility to PC and LEON target..........cccccceevveviereeneeieenieieereevee e 49
11.3 Downloading Debian binaries using PC............ccocouiiiiiiiiieiiiieiieeceeeeere e 49
11.4 Installing Debain binaries from LEON target..........cccceoirieririinieiinieieececeeereeee e e 50
11.5 Adding a serial console t0 Debian..........ccuiiiiririiiiiiiiee e 50
11.6 Changing root directory and booting Debian.............ccceiiriiiieiiiiieiieee e 50
11.7 Adding a telnet server t0 Debian..........ccveiiiiiiiiieecee e e 50
11.8 Installing X.0rg X 11 SETVET.....ccuioiiiiiiiiiiieieeienteete sttt ettt 51
12 SUPPORT ...ttt ettt es e enes 52

e
=

LINUX-SNAPGEAR 5 GAISLER RESEARCH

1 INTRODUCTION

LINUX support for LEON2 and LEONS3 is provided through a special version of the SnapGear Embedded
Linux distribution. SnapGear Linux is a full source package, containing kernel, libraries and application code
for rapid development of embedded Linux systems. The LEON port of SnapGear supports both MMU and non-
MMU LEON configurations, as well as the optional V8 mul/div instructions and floating-point unit (FPU). A
single cross-compilation tool-chain is provided which is capable of compiling the kernel and applications for
any configuration.

LEON Linux has support for symmetric multi-processing (SMP), it has not been extensively tested yet, but
work is in progress.

1.1 LEON Linux

There are two different versions of the Linux kernel in the Gaisler SnapGear distribution, namely 2.6.x and
2.0.x. The 2.0 version is modified for use with MMU-less LEON systems, it is called micro controller Linux —
HCLinux. 2.6.x has support for MMU systems only, the kernel is from kernel.org with LEON specific patches
and additional drivers mainly for GRLib hardware.

The Linux kernel can be configured using a graphical interface. One can remove drivers and features to save
space. On LEONS systems the AMBA plug& play information is used to detect devices and load their respective
software drivers. LEON2 uses hard coded addresses to find its devices. During configuration the processor type
is selected, LEON2 or LEONS3, it is done from the Linux kernel configuration GUI and in the main SnapGear
GUI.

Multi processor LEON3 systems are supported by Linux 2.6.21.1, symmetric multi-processing support (SMP)
can be enabled through the Linux kernel configuration.

The Linux kernel can be used for other projects that need not be based on SnapGear. The boot loader will still
be needed but it is possible to create custom projects with custom file systems. Even though it is out of the
scope of this document, it is described how to set up Linux with other distributions via NFS.

1.2 SnapGear Linux

SnapGear Linux is a full source package, containing kernel, libraries and application code for rapid
development of embedded Linux systems. It is configured from a graphical interface similar to the Linux 2.4
kernel configuration utility.

1.3 Boot loader for LEON Linux

A small boot loader has been incorporated into the SnapGear Linux software distribution, it is designed
especially for the LEON processors, both SMP and uniprocessor systems. It is capable of passing arguments to
any of the Linux kernels and initialize low level hardware. The main purpose of the boot loader should be to
initialize basic hardware, such as memory controllers and console output for debugging, before launching
LEON Linux.

The SnapGear graphical interface as been extended to allow users to set boot loader parameters in an easy
fashion. The boot loader is stored in a non-volatile memory at the address where the LEON processor reads its
first instructions to be executed, usually stored in flash at address O.

During the development process grmon may be used to load the resulting image into RAM directly, thus
bypassing the flash. This shortens the development time drastically. Using this method only the last part of the
boot loader is executed, it is often referred to as “stage 2”. Instead, grmon initializes the hardware before
running stage 2.

e
=

LINUX-SNAPGEAR 6 GAISLER RESEARCH

14 LEON simulator to speed up the development process

There are simulators available for LEON and most of its peripherals, TSIM and the multiprocessor simulator
GRSIM. See www.gaisler.com for more information about simulators.

1.5 Obtaining the software

The Software is free of charge and distributed under the GPL licence. The software bundle can be downloaded
from Gaisler's homepage: www.gaisler.com under the downloads section.

1.6 Supported hardware

Below is a list of supported hardware in addition to the standard kernel:
¢ LEON2, with or without MMU, FPU, MUL/DIV.
e LEONS3, with or without MMU, FPU, MUL/DIV.
LEON3 multi processor systems, SMP
APBUART

GPTIMER

GRETH 10/100 and Gbit

OpenCores 10/100 Ethernet MAC

SMC91x 10/100 Ethernet MAC

APBPS2

APBVGA

GRUSBHC

GRVGA

ATACTRL

* GRPCI

* GRETH over PCI

* GR/OpenCores [2CMST

* SPICTRL

Note that new hardware is being added constantly.
1.7 Support

For support, contact the Gaisler Research support team at support@gaisler.com

mailto:support@gaisler.com
mailto:support@gaisler.com
mailto:support@gaisler.com
http://www.gaisler.com/
http://www.gaisler.com/
http://www.gaisler.com/
http://www.gaisler.com/
http://www.gaisler.com/
http://www.gaisler.com/

e
=

LINUX-SNAPGEAR 7 GAISLER RESEARCH

2 INSTALLING GNU TOOLCHAIN AND LEON LINUX

SnapGear has been split up into two different distributions, one for Linux 2.6 development and one for Linux
2.0 development.

The toolchain is a composition of several utilities used in the compilation process. It is intended to be used with
Linux only, the most important utilities are the GNU GCC compiler and linker. The toolchain is a cross-
compiler toolchain making it possible to compile LEON SPARC Linux binaries on an ordinary PC running
Linux. The toolchains are distributed as a binary package freely available at www.gaisler.com.

2.1 Selecting Toolchain

For Linux 2.0 selecting toolchain is simple, as only one is available, the sparc-linux-3.2.2. For Linux 2.6
however, one select toolchain based on what C Library is going to be used, installing multiple toolchains cause
no harm. The two toolchains available for Linux 2.6 are sparc-linux-3.4.4 and sparc-uclinux as indicated by the
table below. The next chapter gives a short introduction to the two different C Libraries.

Name Description Location

sparc-linux-3.2.2 Linux 2.0 and 2.6 GNU LibC toolchain linux/linux-2.0/toolchains/sparc-linux-3.2.2
sparc-linux-3.4.4 Linux 2.6 GNU LibC toolchain linux/linux-2.6/toolchains/sparc-linux-3.4.4
sparc-uclinux-3.4.4 Linux 2.6 uClibC toolchain linux/linux-2.6/toolchains/sparc-uclinux-3.4.4

Table 2.1: Toolchain description
The locations described in table 2.1 are all relative to the Gaisler FTP site ftp:/ftp.gaisler.com/gaisler.com.
2.2 Installing the toolchain

The installation process for the different toolchains is the same, it is only the names and paths that differ. All
toolchains must be installed to /opt and the path to the toolchain binary directory (/opt/sparc-[uc]-linux-
3.x.x/bin) added to the shell PATH variable. Below is an example of how to install the sparc-linux-3.2.2
toolchain.

Install by extracting the toolchain into /opt:

$ nkdir /opt
$ cd /opt
$ tar -jxf /path/to/tool chain/sparc-linux-1.0.0.tar.bz2

Add the toolchain to the PATH variable preferably in a shell start up script. For bash shells the following is
added to ~/.profile:
export PATH=$PATH: / opt/sparc-Iinux/bin

After installing the toolchain it is possible to cross compile applications for SPARC LEON Linux:

args.c:

int main(int argc, char *argv[]){
printf(“%: you passed %l argunent(s)\n”,argv[O0],argc-1);
return O;

}

Compile args by running;:

http://www.gaisler.com/
http://www.gaisler.com/
ftp://gaisler.com/gaisler.com/linux/snapgear
ftp://gaisler.com/gaisler.com/linux/snapgear
ftp://gaisler.com/gaisler.com/linux/snapgear
ftp://gaisler.com/gaisler.com/linux/snapgear
http://www.gaisler.com/

e
=

LINUX-SNAPGEAR 8 GAISLER RESEARCH

$ sparc-linux-gcc -0 args args.c
or

$ sparc-uclinux-gcc -0 args args.c

From the ELF header it can be read that the output binary is a SPARC binary:

$ file args
args: ELF 32-bit MSB executable, SPARC, version 1 (SYSV), dynanically
i nked (uses shared libs), not stripped

Running the binary on a SPARC Linux host results in:

$./args Gaisler
.largs: you passed 1 argumnent(s)

23 Installing SnapGear for LEON Linux 2.0

Install the SnapGear distribution by extracting it:

$ mkdir ~/1inux

$ cd ~/linux

$ tar -xjf /path/to/dist/snapgear-2.0-p36.tar.bz2
$1s

snapgear - 2. 0- p36

2.4 Installing SnapGear for LEON Linux 2.6

Install the SnapGear distribution by extracting it:

$ nkdir ~/1inux

$ cd ~/1inux

% tar -xjf /path/to/dist/snapgear-2.6-p36.tar.bz2
I's

snapgear - 2. 6- p36

—
—I—ljo
LINUX-SNAPGEAR 9 GAISLER RESEARCH

3 CONFIGURING LINUX

SnapGear comes with an easy to use graphical interface similar to the Linux kernel's configuration utility. From
the GUI it is possible to select processor, Linux version, C library and what applications will be included into
the root file system (ROMFS image) accessed by Linux during runtime. It is also possible to configure the boot
loader parameters and configure the Linux kernel.

The GUI can be launched by doing a 'make xconfig'. The main configuration menu should appear:

Vendor/Product Selection | Save and Exit |
KemelfLibrary/Defaults Selection | Quit Without Saving |
Template Configurations | Load Configuration from File |

Store Configuration to File |

Hllustration 3.1: SnapGear main configuration GUI
31 Processor type and MMU
Selecting processor is mandatory, the boot loader needs to know how to initialize low level hardware, which in

some cases are processor dependant. It is also important to select MMU support if memory protection hardware
is available for use.

MMU provides memory protection between kernel and user space, and also in between user space processes.
With MMU a faulty process cannot affect another process memory in a destructive manner as may be the case
without MMU.

Linux 2.6 cannot run without MMU, whereas HCLinux runs without MMU, indicated in the table below.

Version / MMU MMU MMU-less
2.0.x N/A HCLinux 2.0.x
2.6.x Linux 2.6 N/A

Table 3.1: Linux and MMU

[Vendor/Product Selection = |||

Vendor!/Product Selection |

‘ || Select the Vendor you wish to target | I

gaisler || Yendor | Help |

‘ || Select the Product you wish to target |

LITE || SnapGear Products | Help |
leon3mmu || gaisler Products | Help |
_A_I;n;z_ T _|| Select the options for a selected Product |

A leonZmmu | GaislerfLeonZ3/mmu options | 7
“* leon3

leon3mmu | Hext Prev |

Tllustration 3.2: Vendor/Product Selection

e
=

LINUX-SNAPGEAR 10 GAISLER RESEARCH

3.2 C library

Two different C libraries are available for selection from the graphical “xconfig” utility. The libraries differ in
binary size and one of them, puClibC, supports MMU-less systems. Table 3.2 outlines which C library is
available for which version of Linux. For configurations that supply their own root filesystem outside of
SnapGear (such as via NFS), a 'none' option is also provided to entirely omit the compilation of a C system
library.

Version / LibC LibC (GNU) pController LibC
pCLinux 2.0.x N/A Small footprint
Linux 2.6.x Normal footprint Small footprint

Table 3.2: LibC selection possibilities
3.2.1 Static vs Dynamic linking

When linking an application static, all code used from libraries are included into the output binary. This makes
the binary bigger. Linking all binaries static will make the same code appear in multiple locations (in each
binary that uses it) both in the file system and in main memory during execution.

Dynamic linking however, runs a dynamic linker during the start of the application on the target hardware, this
results in smaller main memory usage as code is shared between applications. Since the same code may appear
in different addresses in different applications, the code must be position independent. Generating position
independent machine code makes the code a bit slower and slightly bigger, it is done by passing the argument
-fPIC to the GNU compiler.

The more applications a file system has, the more space can be saved using dynamically linked binaries.
Depending on needs and resources, different embedded systems choose different linking strategies.

3.2.2 Toolchains for Linux 2.6

The available SPARC LEON toolchains for Linux 2.6 both contains a precompiled C Library. The library has
been built four times for CPUs with different combinations of FPU and mul/div hardware. Two different
toolchains are available the sparc-linux toolchain includes the GNU C library whereas the sparc-uclinux
toolchain has pClibC built in. The two toolchains are based on GCC 3.4.4. Installing both toolchains will not
conflict. See previous chapter for installation instructions.

3.23 Toolchains for Linux 2.0

For Linux 2.0 there are one toolchain available, based on GCC 3.2.2. For Linux 2.0 SnapGear projects the
toolchain's C Library isn't used, but the puClibC Library included in the SnapGear release. See installation
instructions in previous chapter.

33 Kernel version

Linux kernel version can be selected from the Kernel/Library sub menu. As described earlier in the introduction
there are two variants of the Linux kernel within the SnapGear LEON Linux distribution. One is intended to be
used with MMU-less systems and the other is based on an older version of the Linux kernel, 2.0. For MMU
based systems, Linux 2.6.x is available.

e
=

LINUX-SNAPGEAR 11 GAISLER RESEARCH

] Kernel/Library/Defaults Selection =0l
Kemel/Ubrary/Defaults Selection I
linux-2.6.18.1 || Kernel Version | Help | Ay
glibc-from-compiler || Libc Version | Help |
;_g;ih;;r;r;—;u;n;i;ar_ ~ fault all settings (lose changes) | Help |
. microLibe stomize Kemel Settings | Help |
“ udlibc stomize Vendor/User Settings | Help |
v ¥|~ || ®n| update Defaurt Vendor Settings | Help ||~
Main Menu | Next Prev |

Hllustration 3.3: Kernel, LibC and application selection menu

34 Configuring the boot loader

The boot loader sets up low level hardware before entering the Linux kernel. The parameters of the boot loader
can be set using the main SnapGear GUI. Below is a description of available boot loader parameters.

LINUX-SNAPGEAR

e
=

12 GAISLER RESEARCH

Name
SPARC v8, MUL/DIV

Description

When “Yes” the compiler emits hardware integer multiplier
instruction. If the LEON processor has been configured without
hardware multiplier select “No”, the compiler will then generate
SPARC v7 compatible code instead (without any MUL or DIV
instructions).

FPU support

Clock frequency

Baudrate

UART Loopback on

Select “Yes” if LEON has a Floating point unit (FPU).

The frequency is needed for the boot loader to calculate timing
values. Value is in kHz.

The baud rate of the first serial terminal. Typically 38400 baud.
It is favourable to use the same baud rate for the Linux kernel.

Enables the loopback mode of the UART, every character sent
will be recieved.

UART hardware flowctrl

In memory root file system

Custom initramfs source

Kernel command line

Hardware flow control will be used.

Romfs. Read only root file system. Created from snapgear-
pxx/romfs. This option is valid for Linux 2.0.x.

Initramfs. A read and write root file system put in main memory.
See linux-2.6.x/Documentation/filesystems/ ramfs-rootfs-
initramfs.txt for more information.

Custom, an initramfs is created, similar to initramfs. The
difference is that with this option one can make an file system
externally and provide a description how it is created. The
description is a text file as described in the Linux kernel
documentation at linux-2.6.x/ Documentation/filesystems/ramfs-
rootfs-initramfs.txt.

None. When specified the linker doesn't include the any root
file system. This means that Linux must read the root file
system from an alternative location, for example NFS or ATA-
disk.

The text file used to create an custom filesystem, not
necessarily based on SnapGear. See linux-2.6.x/
Documentation/filesystems/ramfs-rootfs-initramfs.txt for details.

The kernel parameters is specified by a string. The string is
interpreted by Linux during the boot sequence. See linux-
2.6.x/Documentation/kernel-parameters.txt for details.
Default: console=ttyS0,34800

Note: When using Linux 2.0.x the kernel command line is set
from within the kernel configuration tool under "General setup".

ROM bank size

ROM rws

ROM wws

Enable write cycles to PROM

RAM type

Alternative physical kernel address

Table 3.3: Boot loader parameters

Bank size of flash
Number of ROM/Flash read wait states
Number of ROM/Flash write wait states

Boot loader makes it possible to write to FLASH without
tampering with memory configuration registers.

RAM type to be used. SRAM or SDRAM

It is possible to manually select an address where the kernel
will be started from. The base address of the stack can be
changed as well.

One can this way make room for a custom data area, the Linux
kernel will only use the memory between the kernel base
address and the stack base.

e
=

LINUX-SNAPGEAR 13 GAISLER RESEARCH

341 Symmetric multi-processing

Multi LEON3 processor systems is supported by the boot loader. The multi processor support is controlled from
within the Linux 2.6.x kernel configuration GUI, once SMP is enabled the boot loader's SMP support is also
included when built the next time.

See 2.6.x configuration section.

35 Configuring the 2.6.x kernel

[T 1)

From the graphical interface it is possible to configure the selected kernel by selecting “y” at “Customize
Kernel Settings” and saving the new settings. After the main GUI has been closed and settings have been saved
a second GUI will appear that is specific for the kernel selected. The kernel configuration GUI for Linux 2.6 is
shown below. Details on how to configure the kernel can be found in the linux-2.6.x/Documentation directory.
In later chapters some common configurations will be presented.

The following sections will be used to describe some of the Linux kernel's settings specific to LEON Linux.

Features and drivers often depend on other features, the dependencies is sometimes not trivial. The
dependencies can be seen in a C programming similar syntax by enabling “Show debug info” from the Option
menu. The dependency can be seen down to the right by selecting the feature in question.

(- qeonf HEE)
Eile Option Help
[wsE] | I E]
Option IOptiun
Code maturity level options OSymmetric multi-processing support (does not work on sun4;
=-General setup OSupport for SUN4 machines (disables SUN4[CDM] support)
& Configure standard kernel features (for small systems) =-=@Running on SoC ‘Leon’, the open source sparc VHDL model
Loadable module support
| =-Block layer =(| -OSupport for PCI and PS/2 keyboard/mouse
10 Schedulers OOpenprom tree appears in /proc/openprom
. OSunam LED driver
=-Grlib: Amba device driver configuration =Kernel support for ELF binaries
Vendor Gaisler OKernel support for a.out and ECOFF binaries
Vendor Opencores OKernel support for MISC binaries
Networking — OsunOS binary emulation
=-Device Drivers =-Memory model
Generic Driver Options @Flat Memory
Connector - unified userspace <-> kernelspace linker 064 bit Memory and |0 resources (EXPERIMENTAL)

Memory Technology Devices (MTD)
Parallel port support [

il I D]

Plug and Play support Running on grlib's Leon3 (LEON_3)

Block devices

ATA/ATAPI/MFM/RLL support Say Y here if you are running on a Leon3 from grlib
SCSI device support (download from www.gaisler.com).

Multi-device support (RAID and LVM)
Fusion MPT device support
|EEE 1394 (FireWire) support
120 device support
=-Network device support
PHY device support
Ethernet (10 or 100Mbit)
Ethernet (1000 Mbit)
Ethernet (10000 Mbit)
Token Ring devices
il | R

Hlustration 3.4: Linux 2.6.x GUI configuration utility

DT

3.5.1 LEON processor type

The configuration of the processor type is done separately for the Linux boot loader and the kernel itself. This is
done to eliminate the kernel's dependency on SnapGear, LEON Linux can be used without SnapGear.

LEON must always be selected but LEON_3 is only selected for LEON3 targets. Selecting LEON 3 will result
in binary unable to run on LEON2 processors and vice versa.

Certain hardware is only available for LEONS3, their drivers will be invisible when LEON?2 is selected.

3.5.2 Symmetric multi-processing support

LEON Linux has support for multi processor systems, SMP can be enabled for LEON3 systems under “General
machine setup”. The LEON Linux boot loader is updated to initialize the SMP system correctly automatically
when enabling SMP from the Linux kernel configuration GUI.

SMP is only available for LEON3 processors.

e
=

LINUX-SNAPGEAR 14 GAISLER RESEARCH

353 Gaisler AMBA Plug&Play procfs support

Procfs is a “pseudo file system” that is normally mounted onto /proc. The procfs is directly linked to the
kernel's internals and can display information relevant to the system's operation. Enabling AMBA PROC
makes a directory /proc/bus/amba appear that can display information about devices on the AMBA bus.

Option

Option | Name
@ /proc filesystem for amba AMBA PROC

%--General machine setup

HEE Grlib: Amba device driver configuration
-Vendor Gaisler
.\Vendor Opencores

Ilustration 3.5AMBA procfs support

354 GRLib APBUART (LEON3)

If a serial UART is to be wused select GRLIB GAISLER APBUART, be sure to select
GRLIB_GAISLER _APBUART CONSOLE if one of the serial controllers are interfaced to a console. One of
the serial terminals can be set up as the system console via the kernel boot parameter, ex: console=ttyS0,38400
selects the first serial channel to act as the system console. The serial terminals will be available under
/dev/ttySx.

Option Option | Name

f-GeneraI machine setup -E.

. 2-Grlib: Amba device driver configuration =-EGrlib apbuart driver GRLIB_GAISLER_APBUART

[® Vendor Gaisler ~-@Grlib apbuart serial console GRLIB_GAISLER_APBUART_CONSOLE
.Vendor Opencores =-&Grlib's ethermac driver GRLIB_GAISLER_GRETH

i Networking (00007A) MSB 24 bits of ethern number (hex) GRLIB_GAISLER_GRETH_MACMSB

=-Device Drivers “-(CC0012) LSB 24 bits of ethern number (hex) GRLIB_GAISLER_GRETH_MACLSB

....................

Hllustration 3.6: APBUART and GRETH Linux configuration.
3.5.5 LEON Serial (LEON2)

For LEON2 systems the serial driver can be found under “Character devices / Serial drivers”. Selecting
SERIAL LEON enables the serial driver, the serial devices can be used to communicate over the serial line

PEL

ISDN subsystem o H R
+-Non-8250 serial port support

Telephony Support

~ Input device support #0Sun Zilog8530 serial support SERIAL_SUNZILOG
- Hardware 1/0 ports +0Sun SU serial support SERIAL_SUNSU
+-OSun Siemens SAB82532 serial support SERIAL_SUNSAB
;--D Digi International NEO PCI Support SERIAL JSM
~0OLeon SoC serial support (NEW) SERIAL_LEON

Watchdog Cards
i-Ftape, the floppy tape device driver

Hlustration 3.7: Serial support for LEON2

with an arbitrary protocol. The serial lines can be accessed from /dev/ttySx.

3.5.6 GRLib GRETH 10/100/1000

Select GRLIB_ GAISLER GRETH to enable the 10/100 Ethernet MAC or for grlib professional users, the
10/100/1000 Ethernet MAC.

The Ethernet MAC address of the GRETH MAC can also be edited directly from the GUI. The address is made
out of an unique 6 byte sequence. One can edit the 24 most significant bits (MSB) and the 24 least significant
bits (LSB) from GRLIB_ GAISLER._ GRETH_MACXSB.

“Networking”, “Network devices” and “TCP/IP” must be selected for standard network communication to be
available.

3.5.7 GRLib OpenCores Ethernet MAC

In the same way as the GRETH is configured the OpenCores MAC can be selected and it's MAC address can be
edited. The OpenCores MAC is found under “General machine setup / .. / Vendor OpenCores”.

e
=

LINUX-SNAPGEAR 15 GAISLER RESEARCH

3.5.8 SMC 91x Ethernet MAC

The SMC91x driver can be found under “Network device support / Ethernet 10/100”. The Ethernet MAC
address must be configured to an unique address as previous MAC controllers.

The chip is not a Plug&Play AMBA device and can therefore not be automatically detected by the driver. Both
address and IRQ number must be given to the driver for it to operate correctly.

3.5.9 GRLib GRETH 10/100/1000 over PCI

Select GRETH_PCI from “Network device support / Ethernet 10/100” to include a driver for Gaisler Ethernet
MAC connected via PCI. Usually GRETH is connected via the AMBA interface and is included as previously
described.

PCI support must also be enabled, see the sub section GRLib PCI support below.

3.5.10 GRLib OpenCores I*C-master

Enable “I2C support” and “I2C support / [2C Hardware Bus support / OpenCores I12C Controller”. The driver
will use the GRLib wrapper's interface when the kernel is configured to run on a Leon SoC. To use the I?C bus,
selections should also be made under “I2C support / [2C Algorithms” and “I2C support / Miscellaneous 12C
Chip support”, depending on which peripherals that are present in the system.

3.5.11 GRLib PCI support

GRPCI is a bridge between the AMBA bus and the PCI bus. The GRPCI core is mainly used to connect off chip
controllers to the LEON system. It can be enabled by selecting “PCI support” under “General machine setup”.

Once the GRPCI driver detects the GRPCI core by probing the AMBA Plug&Play bus, it initializes the core
and starts scanning the PCI bus for additional controllers.

3.5.12 GRLib GRPS2

Keyboard and mouse drivers are available for the Gaisler PS/2 controller. One can enable GRPS2 under “input
device / Hardware 1/O ports”. Input devices that use the PS/2 driver such as keyboard and mouse drivers are
enabled under “Input device support”, MOUSE PS2 and INPUT KEYBOARD.

+Token Ring devices
Wireless LAN (non-ham|
L. Wan interfaces
ISDN subsystem
Telephony Support

--Serial /O support SERIO

~@i8042 PC Keyboard controller SERIO_18042

[erial port line discipline SERIO_SERPORT

= rlib ps2 keyboard controller SERIO_LEON3

i *(5) Default keyboard IRQ number SERIO_LEON3_KEYB_IRQ

: '[_‘Dt e‘”ce DF’° - PS/2 driver library SERIO_LIBPS2
on e wae = Do -DRaw access to serio ports SERIO_RAW
% Character devices OGameport support GAMEPORT

i~Serial drivers

Hllustration 3.8: Adding support for GRPS2 controller.

To separate keyboard and mouse PS/2 devices from each other the IRQ number of the keyboard must be
specified. This is because the PS/2 controllers are identical to the kernel. PS/2 controllers found with an IRQ not
matching the keyboard IRQ number are assumed to be a PS/2 controller connected to a mouse.

The default keyboard IRQ number may be overridden by the kernel command line option:

grps2=kbdirqg:irqgno (irgno=0..15)

3.513 GRLib SPICTRL

The Gaisler SPI controller is enabled by selecting “SPI support” and “SPI support / Gaisler Research SPI
Controller”. The driver automatically detects the number of available slave select lines.

Adding support for specific SPI devices requires editing of the SPI initialization code found in /linux-
2.6.21.1/arch/sparc/kernel/leon_spic.c. This is necessary since the available SPI devices are normally hard
coded in platform specific code, and GRLib is used in a wide range of systems.

The current initialization code contains an example where a M25P05 SPI Flash memory is connected to the first
slave select line on SPI bus 1. To enable support for this specific memory device, select “Memory Technology
Devices / Self-contained MTD device drivers / Support for M25 SPI Flash”. To add support for another type of

e
=

LINUX-SNAPGEAR 16 GAISLER RESEARCH

SPI device, modify the example and configure support for the SPI device in question.

3.5.14 GRLib GRUSBHC

Support for GRUSBHC is enabled under “USB support / Support for Host-side USB”. Depending on the core's
configuration, the applicable host controller drivers are “EHCI HCD (2.0) support” and “UHCI HCD (most
Intel and VIA) support”.

=-Input device support -ESupport for Host-side USE USB

. Hardware IO ports -~OUSE verbose debug messages USE_DEBUG
—-Character devices

-) ~Miscellaneous USE options
~Serial drivers OUSB device filesystern UsSB_DEVICEFS
- 1P ~ODynamic USE minor allocation (EXPERIMENTAL) USB_DYNAMIC_MINORS
r-'Watchdog Cards ---USB Host Controller Drivers
“TPMh devices = support USB_EHCI_HCD
12C support I:IFuII speed |so transactions (EXPERIMENTAL) USB_EHCI_SPLIT_ISO
- 5Pl support. -ORoot Hub Transaction Translators (EXPERIMENTAL) USB_EHCI_ROOT _HUB_TT
~Dallas’s 1-wire bus “Olmproved Transaction Translator scheduling (EXPERMENTAL) USB_EHCI_TT_NEWSCHED
----Hardwarg Momtgr\ng suppof ~0ISP116% HCD support USB_ISP116x_HCD
~Multifunction device drivers ~BEUHCIHECD (most Intel and YIA) support USE_UHCI_HCD
= Mult\mecha devices ~OSLABT1HS HCD support USE_SLB11_HCD
i *Digital Video Broadcastin| ~USB Device Class drivers
- Graphics support , OUSE Modem [CDC ACM) support USB_ACM
--DBackhghlt & LCDIde\nce_ ~0IJSB Printer support USE_PRINTER
~Console display driver sy ~MOTE: USE_STORAGE enables SCSI, and 'SCS| disk support”
-Sound) —~may also be needed; see USE_STORAGE Help for more information
HID Devices --HUSE Mass Storage support UsSB_STORAGE

-0OUSB Mass Storage verbose debug USB_STORAGE_DEEBUG
~ODatafab Compact Flash Reader support (EXPERIMENTAL) USB_STORAGE_DATAFAE

SB Metwork Adapters

HED Carvinal Mamcsmcdbne oo

Hllustration 3.9: Adding support for USB 2.0 host controller.

To enable support for USB storage devices, “SCSI / SCSI device support” and “SCSI / SCSI disk support” must
first be enabled. USB connected human interface devices such as mice and keyboards are also supported.
Enable “USB / USB Human Interface Device (full HID) support”, and INPUT KEYBOARD and
INPUT_MOUSE under “Input device support”.

3.5.15 GRLib GRVGA

GRLib SVGA controller can be used in Linux using the frame buffer video driver written for GRVGA. X-
Windows and/or a frame buffer console can be run on top of the frame buffer driver. Normally one want mouse
or at least a keyboard together with the graphical interface, GRPS2 can be used to connect keyboard and mouse
devices.

One may need to consider bus bandwidth when selecting resolution and bit depth. The GRVGA controller will
cause heavy bus loads for high resolution on slower buses. Each word in the frame buffer will be read 60 times
on a system with 60 Hertz vertical refresh rate.

From the “Graphics support” menu one can enable the GRVGA frame buffer driver.

_ Multimedia devices ~OEnable firmware EDID FIRMWARE EDID
- ~-Digital Video Broadcasting Devices | || - @Support for frame buffer devices FB
-- Enable Video Mode Handling Helpers FB_MODE_HELPERS
. ~Console display driver support Enable Tile Blitting Support FB_TILEBLITTING
Logo configuration = Gaisler svga framebuffer support 'FB_GRVGA
g Backlight & LCD device support ~0OSBUS and UPA framebuffers FB_SBUS
§----Sound 0 Epson S1D13XXX framebuffer support FB_S1D13XXX

S.USB support OVirtual Frame Buffer support (ONLY FOR TESTING!) FB VIRTUAL
Hllustration 3.10: Adding Frame Buffer driver.

When using the SVGA controller to provide console interface to the system the resolution, bit depth and other
parameters can be set from the kernel parameters. Table 3.4 lists available arguments to the driver.

The Mem_size parameter can be calculated as resolution times bit depth in bytes. For example 614400 bytes
video buffer makes a resolution of 640x480 8-bit, 640x480 16-bit and 800x600 8-bit resolution possible,
however 800x600 16-bit would not fit into the memory as that would need 960000 bytes.

L

LINUX-SNAPGEAR 17 GAISLER RES_.—E?\"RCH

Order Value Custom/All Description

0 video=grvga: All Needed to select frame buffer driver

1 Custom All Select one of the values to the left. When full control
1024x768@60 I\Slvuzidc?:stscf)ricr:gjleis L;Zﬁzgqtenéoe?rguments 2-10 are
800x600@72 needed in addition to 11 and 12.
800x600@60
640x480@60

2 Pixelclock Custom Pixelclock in ns.

3 xres Custom Horizontal resolution in pixels.

4 rmargin Custom Horizontal Front porch in pixels.

5 hsync_len Custom Horizontal Sync length in pixels.

6 Imargin Custom Horizontal Back porch in pixels.

7 yres Custom Vertical resolution in lines.

8 limargin Custom Vertical Front porch in lines.

9 vsync_len Custom Vertical Sync length in lines.

10 umargin Custom Vertical Back porch in lines.

11 bit_per_pixel All Pixel depth in bits: 8,16,32-bits

12 Mem_size All Frame buffer memory size in bytes.

Table 3.4: GRVGA kernel parameter arguments

Below is an example how to configure the GRSVGA using 1024x768 resolution, 60Hz vertical refresh rate, 8-
bits pixel depth and 800kb video buffer. The system console will be displayed on virtual terminal zero /dev/tty0
which is connected to the framebuffer /dev/fb0 instead of a serial terminal.

consol e=tty0 vi deo=grvga: 1024x768@0, 8, 786432

1024x768@60 is a predefined mode by the driver, however a custom mode can be entered, see the table above
and kernel documentation for more details.

3.5.16 GRLib ATA Controller

Gaisler ATA controller can interface a hard disk or a compact flash card. Devices can be accessed from
/dev/hda. The ATACTRL can be selected from “ATA/.. support” menu.

The ATA controller depend upon the PCI subsystem to function correctly, PCI can be included from “General
Machine Setup”.

= Device Drivers - @ATA/ATAPI/MFM/RLL support
Generic Driver Options | || “-=mEnhanced IDE/MFM/RLL disk/cdrom/ftape/floppy support
~Connector - unified userspace <-> ke| -Please see Documentationfide txt for help/info on IDE drives
~Memory Technology Devices (MTD) -0 Support for SATA (deprecated; conflicts with libata SATA dr
Parallel port support OlInclude IDE/ATA-2 DISK support (NEW)
~Plug and Play support ~-OUse multi-mode by default (NEW)
- Block devices ~OlInclude IDE/ATAPI CDROM support (NEW)
[ATA/ATAP/MFM/RLL support Dinclude IDE/ATAPI TAPE support (EXPERIMENTAL) (NEW)
~5CS| device support ~OlInclude IDE/ATAPI FLOPPY support (NEW)
-~ Multi-device support (RAID and LVM) ~-OIDE Taskfile Access (NEW)
Fusion MPT device support IDE chipset support/bugfixes
~1EEE 1394 (FireWire) support ~E generic/default IDE chipset support (NEW)
120 device support B o RTACTRL ariver (AT Controier support |

Mabinimrk Adarica commaet

Illustration 3.11: Enabling ATACTRL.

Once the ATA controller is enabled the IDE devices that needs to be supported are to be selected, most
commonly the IDE/ATA-2 DISK support is selected.

mailto:1024x768@60
mailto:1024x768@60
mailto:1024x768@60

e
=

LINUX-SNAPGEAR 18 GAISLER RESEARCH

3.5.16.1 DMA Extension

The DMA extension of the GRLib ATA controller can be enabled by selecting BLK DEV IDEPCI,
BLK DEV IDEDMA PCI in addition to the options described for the standard ATA controller.

Note that enabling the DMA extension does not disable the standard ATA controller driver.

3.6 Configuring the 2.0.x kernel

[T 1}

From the graphical interface it is possible to configure the selected kernel by selecting “y” at “Customize
Kernel Settings” and saving the new settings. After the main GUI has been closed and settings been saved a
second GUI will appear that is specific for the kernel selected. The kernel configuration GUI for Linux 2.0 is
shown below. Details on how to configure the kernel can be found in the linux-2.0.x/Documentation directory.

The following sections will be used to describe some of the Linux kernel's settings specific to LEON Linux.

3.6.1 LEON processor type

The configuration of the processor type is done separately for the Linux boot loader and the kernel itself. This is
done to eliminate the kernel's dependency on SnapGear, LEON Linux can be used without SnapGear.

Certain hardware is only available for LEONS3, their drivers will be invisible when LEON?2 is selected.

] uClinux/Sparc (w/o MMU) Kernel Configuration Q@E]

Code maturity level options | Controller Area Metwork Cards/Chips

Loadable module support Networking options

Platform dependant setup

Quit Without Saving

Hetwork device support | Save and Exit

Hoppy, IDE, and other block devices Character devices Load Configuration from File

|

| |
General setup | Flesystems |

| |

| |

Leon3 Amba configuration Store Configuration to File

Hlustration 3.12: Linux 2.0.x kernel configuration utility

= Vendor Gaisler E]@E]
Ay
ﬂ g ﬂ e = ‘ i | O Platform dependant setup [=)(B](x]
Q g Q ‘ How | Platform dependant setup |
* vy~ ~r || VGA support ‘ Help |
Oxc0000000 | Base address of Videomem ‘ Help | @RS | G ‘ GEELD I
* GRETH Ethemet rt Hel |_Patform
ﬂ|g|J| St } H:|: i ﬂ‘ Q‘ ﬂ| LEON over TSIM - the remole SPARC simulator | Help |J
‘ Helg | ROM ‘ Kemel executes from ‘ Help | 7
| Henp | Main Menu | Next | Prev |
} :e:p i Hllustration 3.14: Platform set up
elp
| Heip |
| Psr drvers lw;
oK | Next | Prev |

Illustration 3.13: LEON3 AMBA device
configuration

3.6.2 GRLib APBUART (LEON3)

Select GRLIB_ GAISLER APBUART to include a UART driver for APBUART. One of the serial terminals
can be set up as the system console via the kernel boot parameter, ex: console=ttyS0,38400 selects the first
serial channel to act as the system console.

e
=

LINUX-SNAPGEAR 19 GAISLER RESEARCH

The serial terminals will be available by accessing /dev/ttySx.

3.63 LEON Serial (LEON2)

From “Character devices” sub menu the LEON2 UART driver can be enabled. It allows user space to
communicate with an arbitrary protocol over the serial line terminal interface /dev/ttySx.

This driver uses hard coded addresses instead of probing the AMBA bus for Plug&Play information. This driver
is intended for use with LEON2 only, LEON3 uses the AMBA Plug&Play information.

3.6.4 GRLib GRETH 10/100 Ethernet MAC
Select GRLIB_ GAISLER_GRETH to enable the 10/100 Ethernet MAC.

The Ethernet MAC address of the GRETH MAC can be edited directly from the GUI. The address is made out
of an unique 6 byte sequence. Byte 0 is the most significant byte. The Ethernet hardware address can be found
by running /shin/ifconfig on a UNIX machine.

3.6.5 GRLib OpenCores 10/100 Ethernet MAC

OpenCores 10/100 Ethernet MAC modified for the AMBA bus included in GRLib can be used by enabling the
driver under “Leon3 AMBA / Vendor Opencores®.

The Ethernet address must be set to an unique 6-byte network identifier.

The driver can force the Ethernet MAC to operate on a 100MHz signalling frequency by setting “Set MII to
100mb”.

3.6.6 SMC 91C111 10/100 Ethernet MAC

After enabling “Networking support” from the “General setup” sub menu the SMC driver can be enabled under
“Network device support”. The base address, IRQ and Ethernet address is configurable. The Ethernet address
must be unique on the network.

The base address and the IRQ number can be found by examining the hardware set up of the target board,
typically found in the user manual or the schematics.

3.6.7 GRLib VGA text frame buffer support

The VGA text frame buffer make it possible to output text onto a standard monitor. The programming interface
used to access the AMBA VGA graphics controller is called frame buffer. The frame buffer has hardware
device drivers called frame buffer drivers, the Gaisler VGA controller has a frame buffer driver that can be
included into the kernel from the AMBA configuration menu, but first frame buffer support needs to be
enabled. Enable “Console support” and “Frame buffer” under “General setup”, this makes the “VGA support”
able to select.

e
=

LINUX-SNAPGEAR 20 GAISLER RESEARCH
- General setup (=lz][x]
General setup |
ﬂ v | + n| PCI bios support | Help |S

S]] v |
ﬂ s | 4 n | Use linux memcpy |[memmove|bcopy et al | Help |
ﬂ w | v n| Hetworking support | Help |
v y| v |[®n] systemuvirc | ven |
ﬂ A | + n| Reduced memory footprint | Help |
ﬂ v | 4n | Kemel support for flat binaries | Help |
g ' | a4 | | Help |
ﬂ s | V4 n| Console support | Help |
ﬂ e | o | Frame buffer | Help | _/
Main Menu | Next | Prev |

Hlustration 3.15: General setup, console on frame

buffer
3.6.8 GRLib GRPS2 PS/2 interface/keyboard

The PS/2 driver is dependent on the VGA driver, see the section above on how to include the VGA driver. The
main purpose of the PS/2 driver is to provide the ability to interface a keyboard. Both the PS/2 driver and the
PS/2 keyboard driver must be enabled to be able to use the keyboard. The keyboard supported is an AT
keyboard.

O PS/2 drivers (=)=El[x]
PSI2 drivers |

|’ YHv ||vn|| P32 support | Helpl

J

4y~ |~ n| Pszkeyhoar | Hep ||

0K | Hext | Prev |

Hlustration 3.16: AMBA PS/2 driver
3.7 Applications included in ROMFS

Apart from the Linux kernel the SnapGear RAD environment consist of applications in the snapgear-pxx/user
directory that can be included into the root file system. The root file system is a read only file system that will
be copied and decompressed into RAM during the boot process.

Custom applications can be easily integrated into the directory structure and SnapGear. The steps involving
adding custom applications is described in a separate chapter.

From the main SnapGear GUI one can make a third GUI pop up after the main SnapGear GUI closes. This is

similar to what was earlier described for the Linux kernel. One simply selects “y” at “Customize Vendor/User
Settings” under “Kernel/Library/Defs Selection” and press “Quit and Save”.

BusyBox is a small footprint replacement for traditional UNIX core applications such as ls, find, mount etc.
BusyBox is highly configurable and can be configured from the BusyBox sub menu as shown below.

‘Eﬂ

—I—lio
LINUX-SNAPGEAR 21 GAISLER RESEARCH
= SnapGear Embedded Linux Application Configuration el
Core Applications | BusyBox |

Library Configuration Tinylogin

Flash Tools MicroWindows Save and Exit

MNetwork Applications Miscellaneous Configuration Load Configuration from File

| |

| | |
Filesystem Applications | Games | Quit Without Saving |

| | |

| | |

Miscellaneous Applications Debugy Builds Store Configuration to File

Hlustration 3.17: SnapGear application configuration main menu

Since SnapGear supports both the 2.0.x and the 2.6.x kernels and some of the applications needs certain kernel
interfaces, they may only be compiled for one of the kernels. A typical example of this is the flash support in
Linux, from Linux 2.4 and onwards a new interface called MTD (memory technology devices) has been
introduced. Linux 2.0 lacks the MTD interface and therefore cannot run applications that depend upon the MTD
interface. Flash utilities can be found under “Flash Tools”.

= BusyBox — ||| [
O Flash Tools (=3 BusyBox |
MI * y||v —||vn| BusyBox | Help -S
v Y || RV || A N || netflash uses HMAC-MDS signature | Help | S | Applets J
HAC-MDS key | netflash HMAC-MD3 key | Help | ~ y| ~ | s n| T | = |
v)’| V‘|vl‘l| recover hios only | Help | vY| v‘| 0n| ar | Help |
o :I oo I : :I :::::fer uses server config from flash I :::: I ~ y| ~ | *n | — | Help |
v v
ethd | recover ethemet interface | Help | e YI ~ I : : I cat I :e:p I
v ¥ || o || W N || recover uses static server | Help | ~ ¥~ . EXILE .
i ~¥|~ [®n]| chmoa | Hep |
0.0.0.0 | recover static server | Help |
. vy|v—|0n| chown | Helpl
W Y| W | W i | recover preserves existing config | Help |
v y| v - | +* n| flashloader | Help | v y| - | 7 n| Ehool | GIETD |
~ y| v - | * n| himemloader | Hep || hd y| b | 4n | clear | Help |
| MTD utils VY|V'|’“| cmp | Help |
v ¥~ [®n| miaums | e | * v~ |[~n] e | e |
v ¥|[~ -|[® n]| erase | e | v y|v [[®n] cn | hep |
v ¥|[~ - |[®][erasean | Hew ||, vyl |[®n] dae | hep ||,
Main Menu | Hext | Prev | Main Menu I Hext | Prev |
Hlustration 3.19: Flash Tools, MTD utilities Hlustration 3.18: BusyBox configuration
3.8 Template configurations

The “Template configurations” from the SnapGear main menu are provided as an source of examples. It
contains prepared Linux kernel, boot loader and SnapGear application configurations. However it does not
include setting and script files such as inittab and rcS.

Some of the prepared configuration files has been created for a certain template design. The template designs
can be found in the design directory in GRLIB. These configuration files has been used to generate the images
found in ftp:/ftp.gaisler.com/gaisler.com/anonftp/linux/images.

It is also possible to add custom configurations easily by creating a directory under
vendor/gaisler/target/templates/config dir and putting the snapgear-pxx/.config into the config dir named
vendor.config and snapgear-pxx/linux-x.x.x/.config named /linux.config. The configuration files will
automatically be copied into their respective directory upon selection. The template name config dir may not

e
=

LINUX-SNAPGEAR 22 GAISLER RESEARCH

contain '-' characters.

e
=

LINUX-SNAPGEAR 23 GAISLER RESEARCH

4 BUILDING SNAPGEAR

After configuring the kernel and the applications it is possible to compile and build the SnapGear LEON Linux
distribution. There are two very important options passed to the build scripts, the FPU and SPARCVS8 options
found in “Gaisler/Leon2/3/MMU options”.

Disabling the FPU makes the compiler replace the FPU instructions with software routines that calculates the
answer without needing a FPU. The compiler is run with the argument -msofi-float.

SPARC v8 processors have support for hardware integer multiplier/divider through the instructions MUL and
DIV instructions whereas SPARC v7 hasn't. LEON is a highly configurable processor, it can be compiled with
or without hardware integer multiplier support. To make the compiler generate code without MUL and DIV
instruction select “n” for the v8 option. The compiler will generate code compatible with SPARC v7 if started
with -mcpu=v7.

SnapGear is configured and compiled with:

make xconfig # config QU

make dep # only Linux 2.0.x needs this

make # conpile kernel, libraries, boot |oader, applications
and neke inages.

The resulting image produced during the build stage is put in snapgear-pxx/images.

Image Function

image.dsu RAM image, with partial boot loader
$ grmon nb
grmon> load image.dsu
grmon> run

image.flashbz Compressed Flash/PROM Image, with complete boot loader.
$ grmon -nb
grmon> flash erase 0 0x00300000
grmon> flash load image.flashbz
grmon> run 0

image.tsim TSIM LEON simulator image, if MMU is used TSIM must also support MMU.
$ tsim-leon3
tsim> load image.tsim
tsim> run

Table 4.1: Images available

The images can be downloaded and run using grmon as shown in table 4.1. Be sure to invoke grmon with the
-nb option so that Linux can take care of traps instead of having grmon stop the execution.

e
=

LINUX-SNAPGEAR 24 GAISLER RESEARCH

5 ADDING CUSTOM APPLICATIONS

Custom applications can be added into the SnapGear projects in several ways, the simplest ways is to add the
source code to the already prepared custom directory, snapgear-pxx/user/custom. It is also rather easy to modify
the menu of the SnapGear Application menu and add a new application to the GUI. It also possible to copy a
binary compiled outside of the SnapGear distribution folders. This chapter shows the simplest possible
alternative, adding an application to the user/custom directory.

5.1 Creating an application
A simple application that print out the number of arguments it was invoked is saved to user/custom/args.c:

#i ncl ude <stdio. h>

int main(int argc, char *argv[]){
printf("%: you passed % arguments\n",argv[O0], argc);
return O;

5.2 Setting up compilation directives

For the application to be compiled one must add it to user/custom/Makefile. The Makefile may be edited as
follows.

Add these 4 lines:
EXEC9 = args
OBJS9 = args.o

$(EXEC9) : $(OBIS9)
$(CC) $(LDFLAGS) -0 $@ $(0BJS9) $(LDLIBS$(LDLI BS $@)

Add $(EXECY) to the end of the all statement:
all: $(EXECL)...$(EXEC5) $(EXEC6) $(EXEC8) $(EXEC9) | NSMODEXE

53 Including application to file system

From the “Core Applications” it is possible to enable custom applications, the make utilities will enter the
user/custom directory and compile it as described by user/custom/Makefile.

Core Applications

Core Applications |
* Y| o | v n| custom tests app | Help |S
~ ¥/~ || ® n| canatinux test apps | Heip |
v ¥/~ | ®n| Modue_init_tools | Hep |
v ¥~ || 0] mr | Help |
~ y| W | L 2 n| enahle console shell | Help |
v ¥/~ | ®n]| execute firewall rules | Hep |
Sash | Shell Program | Heip |

Hllustration 5.1: Custom applications

e
=

LINUX-SNAPGEAR 25 GAISLER RESEARCH

6 DEBUGGING LINUX-2.6 AND APPLICATIONS

This section discusses different debugging methods used when debugging Linux 2.6.x userspace applications
and the kernel itself.

GRMON is documented in detail in the GRMON manual available at http://www.gaisler.com/doc/grmon.pdf.

When debugging with GRMON the SPARC v8 Architecture manual may come in handy for instruction
definition and the SPARC assembler conventions used by the C-compiler. The SPARC v8 manual is available
at http://gaisler.com/doc/sparcv8.pdf.

GRLIB IP core documentation is very use full when debugging the kernel and writing new drivers, it can be
found at http://gaisler.com/products/grlib/grip.pdf.

GDB documentation is available at http://sourceware.org/gdb/documentation.
6.1 Debugging symbols

In order to translate assembler instructions into C-code, debugging symbols and an application that can read
debugging symbols are needed. The application sparc-linux-objdump part of the binutils package provided with
the toolchain can provide us with information about compiled applications (ELF-binaries).

Debug symbols is made by GCC (sparc-linux-gcc) during compile time when at least one of the flags -g, -g3,
-ggdb, -gstabs are given. The debug symbols enlarges the output binary, but the debug symbols can be removed
- stripped - with the sparc-linux-strip utility prior to usage. An example of how the debugging information can
be created, viewed and removed:

$ sparc-linux-gcc -g3 userapp.c -0 userapp # create app and syns
$ sparc-|inux-objdunp -S userapp > userapp.S # deasm bi nary

$ sparc-Ilinux-objdunp -x userapp > userapp. X # list sections

$ sparc-linux-strip -s userapp # renove syns

$ |l ess userapp. S # vi ew out put

Debuggers can read the debug information directly from the binary making some of the steps above
unnecessary.

The GDB server run on the target, later discussed, does not need debug information, to save space the binary is
stripped with sparc-linux-strip.

Debugging information can be enabled in SnapGear from the "Application Configuration/Debug Builds/build
debugable applications".

6.2 Debugging the kernel

In practice, hardware debug support of some kind is needed when debugging the kernel. It is possible to debug
the kernel using various other methods such as inserting printk calls in the kernel code or using the /proc
filesystem. See the chapter "Debugging Techniques" in "Linux Device Drivers" for more information about
debugging techniques. However these methods are rather time consuming and may change the behaviour and
the execution path. Using a hardware controlling debugger gives the user a completely new way of controlling
and monitoring the execution. Hardware debuggers such as GRMON vastly accelerates the development
process. It is possible to read and manipulate both processor and core registers, walk the MMU page set up,
view cache content, list previous instructions (instruction trace) just to list a few.

The kernel's addresses are static and can be known on before hand whereas multiple user space
applications/threads may have the same virtual address making it impractical in many cases to use hardware
debuggers. Using a software debugger like GDB run natively or a GDB server acting as a server for remote
GDB connections is preferred when debugging userspace applications.

e
=

LINUX-SNAPGEAR 26 GAISLER RESEARCH

6.2.1 Configuring GRLIB for kernel debugging

It is assumed that hardware breakpoints/watchpoints and the instruction trace buffer have been enabled in the
GRLIB xconfig during system configuration. Depending on the complexity of the problem to be debugged the
number of breakpoints and the trace buffer length to select may vary. In the template design of the GRXC3S-
1500 board the trace buffer can be enabled from "Processor/Debug Support Unit/Instruction trace buffer" and
hardware breakpoints from "Processor/Integer Unit/Hardware watchpoints" in GRLIB xconfig (cd
designs/leon3-grxc3s-1500; make xconfig).

GRMON can verify the debugging support available by running the command 'info sys', below is a design with
2 hardware breakpoints (2 hwbp) and a 128 instruction deep trace buffer (itrace 128).

$ grnon -jtag
grnmon> info sys

02.01: 004 Gaisler Research LEON3 Debug Support Unit (ver Ox1)
ahb: 90000000 - a0000000
AHB trace 128 lines, stack pointer 0x43fffffO

CPU#0 win 8, hwbp 2, itrace 128, V8 nul/div, srmru, |ddel 1,
GRFPU-lite

icache 1 * 1 kbyte, 32 byte/line
dcache 1 * 1 kbyte, 32 byte/line

6.2.2 Using GRMON

GRMON can be used to debug the Linux kernel, it is primarily an assembler debugger but it is C-symbol aware.
Symbols created by gcc when compiling C code with the -g flag are automatically loaded by GRMON after a
successful load file command, but is also possible to load symbols manually by issuing the command symbol
file. The symbols last loaded are matched first.

During the image creating process in SnapGear (make) the image/ directory is populated with various images:
image, image.dis, image.dsu. The image.dsu is to be loaded into RAM and run, image contain the debug
information of the Linux kernel's virtual addresses and image.dis is a plain text file containing the disassembly
of image.

Starting GRMON with the -nb flag is essential so that Linux can handle traps correctly. The trace buffer can be
enabled by the command 'tm both' and later listed by inst.

Breakpoints trigger when the processor fetches an instruction at the given breakpoint address. Hardware
breakpoints are inserted with 'hbreak address' or 'hbreak symbol' . Inserting breakpoints with break instead
hbreak causes GRMON to insert an instruction (ta 1). Hardware breakpoints is preferred when working with
virtual addresses or debugging non writeable areas. GRMON stop the processor from executing further when a
breakpoint is reached, the exact state can be observed and manipulated. Breakpoints triggers on addresses the
processor executes, in this case virtual addresses.

The watchpoints implemented in GRLIB have support for stopping the processor when an address is being
accessed by the software, all variants if the instructions /d or st are supported. As with hardware breakpoints
watchpoints trigger on the address the processor accesses before MMU translation, thus virtual addresses is to
be used when debugging the Linux kernel and its applications with GRMON. Watchpoints need hardware
assistance to work, this cannot be done in software.

The architecture independent starting point of the kernel is at start kernel, at this point the kernel is executing
in virtual address space.

6.2.3 GRMON Example: debugging the Linux kernel

Below is an example of how the first call to printk can be debugged. By setting a hardware breakpoint on printk
the processor halts after the save instruction has been executed. Viewing the INS registers one can inspect the
arguments passed to the printk function. See SPARC v8 manual for SPARC calling conventions. From the
printk C-prototype we know that the first argument must hold a pointer to a format string, thus i0 register holds
a pointer to a string.

e
=

LINUX-SNAPGEAR 27 GAISLER RESEARCH

The register content can be viewed by the command reg. From the output of reg one can see that i0 is
0xF0227510. Listing the memory, with vmem, around the virtual address 0xF0227510 reveals that the argument
passed to printk was "PROMLIB: Sun Boot Prom Version %d Revision %d".

A virtual address can easily be translated to a physical address by doing a "MMU page table walk" with the
GRMON command walk. In the example below the virtual address 0xF0227510 is translated into 0x40227510
by the MMU. Listing the memory content, this time with mem instead of vmem, confirms that the memory
content is the same for the physical address as the virtual address.

By looking at the previous 20 instructions of the trace buffer it is easy to see that the instruction call is executed
two instructions before entering printk. As expected the call address is the address of printk. In the delay slot or
is executed. Searching for 0xf0031el8 in image.dis tells us that the caller is prom_init, from the string passed
to printk is seems reasonable.

As printk processes the string for output it must access the characters at some point or another, that point can be
found be setting a watchpoint at a character address. To demonstrate the watchpoint functionality the processor
is stopped when accessing the character S in the string. A watchpoint it set to 0xF0227519(S). As the execution
continues it can be observed that the processor is stopped at the space character, the character just before S, this
is because watchpoints must be aligned to a 32-bit boundary, GRMON does this for us.

The GRMON command bz, short for backtrace, show the current call history, from it one can see that prom_init
called printk which called vprintk and so on.

e
=

GAISLER RESEARCH

LINUX-SNAPGEAR 28

$ grnon -jtag

grlib> tmboth
conbi ned instruction/ AHB traci ng

grlib> 10 imge.dsu

section: .stage2 at 0x40000000, size 10240 bytes
section: .vminux at 0x40004000, size 3670272 bytes
total size: 3680512 bytes (226.5 khit/s)

read 5814 synbols
entry point: 0x40000000

grlib> synbol image
read 5805 synbol s

entry point: Oxf0004000
grlib> hbreak printk

grlib> run

breakpoint 1 printk (0xf003lelc)
grlib> reg
I NS LOCALS QUTS GLOBALS
0: F0227510 F0399000 F02275E0 00000000
1: 00000000 40000400 00000000 00000002
2: 00000000 00000000 00000000 F31010E3
3: FO000OC7C 00000000 00000140 FO000D94
4: 00000000 00000000 00000000 F0237000
5: 00000000 00000000 00000001 00000000
6: FOOOFF38 00000000 FOOOFEDO FOOOEOO0O
7: F0266124 00000000 F02666BC FO000C7C
psr: F3401FE6 wi m 00000001 tbr: F0004050 y: 00000000
pc: f003lelc nmv %0, %0
npc: f0031e20 st %1, [%p + 0x48]
grlib> dis 0xf0031e10
f0031el10 81c3e008 retl
f0031el14 01000000 nop
f0031e18 9de3bf 98 save Y%sp, -104, %p
f0031lelc 90100018 nov %0, %0
f0031e20 f227a048 st %1, [%p + 0x48]
f0031e24 f427a04c st %2, [%p + Ox4c]
f0031e28 f627a050 st %3, [Y%p + 0x50]
f0031le2c f827a054 st %4, [%p + 0x54]
f0031e30 fa27a058 st %5, [Y%p + 0x58]
f0031e34 40000004 call 0xf003le44
f0031e38 9207a048 add %p, 72, %1
f0031e3c 81c7e008 ret
f0031e40 9180008 restore %0, %0
f0031e44 9de3bf58 save Usp, -168, Y%p
f0031e48 113c0Oe2d sethi %i (Oxf 038b400), %0
f0031led4c d2022000 Id [%0], %1
grlib> vimem 0xF0227510
40227510 50524f4d 4c49423a 2053756e 20426f 6f PROWLI B: Sun Boo
40227520 74205072 6f6d2056 65727369 6f6e€2025 t Prom Version %
40227530 64205265 76697369 6f6e2025 640a0000 d Revision %l. ..
40227540 61766169 6c61626c 65000000 00000000 available.......

grlib> wal k 0xF0227510
Tabl ewal k: (f0) (8)(27)
+ct x(0) : 40002000 ct x- >4000241

+regi on(f0):400027c0 regi on->400007e

segnent - >400007e
page- >400007e
= 40227510(pt e: 400007e)

L

grlib> vmeem OxF0227518 0x10
40227518 2053756e 20426f 6f

74205072 6f 6d2056

6.3

Debugging userspace applications

H
LINUX-SNAPGEAR 29 GAISLER RESEARCH
grlib> mem 0x40227510
40227510 50524f4d 4c49423a 2053756e 20426f 6f PROWLI B: Sun Boo
40227520 74205072 6f6d2056 65727369 6f 62025 t Prom Version %
40227530 64205265 76697369 6f6e€2025 640a0000 d Revision %. ..
40227540 61766169 6c61626¢c 65000000 00000000 available.......
grlib> inst 20
tinme addr ess instruction resul t
9303794 f02666d4 cnmp %0 00000000
9303806 f02666d8 bne 0xf0266700 00000000
9303807 f02666dc nov 320, %03 00000140
9303808 f02666e0 sethi 9%i (0xf0399000), %0 [f0399000
9303819 f02666e4 |Id [%0 + 0x3c0], %2 00000000
9303820 f02666e8 sethi %i (0xf0227400), %0 [f0227400
9303833 f02666ec orcc %02, %l 00000000
9303845 f02666f0 be O0xf0266724 00000000
9303850 f02666f4 or %0, Oxle0, %00 f02275e0
9303851 0266724 nop 00000000
9303861 0266728 ret 0266728
9303862 f026672c restore 00000000
9303900 0266114 1d [9%0 + 0x34c], %0 f 0000c7c
9303925 0266118 |d [%0 + 0x4], %l 00000000
9303944 f026611c Id [% 1 + 0x354], %2 00000000
9303955 0266120 sethi %i (0xf0227400), %0 [f0227400
9303965 0266124 call 0xf0031el8 0266124
9303973 0266128 or %0, 0x110, %0 0227510
9303983 f0031el8 save Usp, -104, %p f 000f edO
9303990 f003lelc nov %0, %0 trapped]
grlib> watch 0xF0227519
grlib> cont
wat chpoint 1 wvsnprintf + 0x68 (0xf010edb0)
grlib> reg
I NS LOCALS QuUTS GLOBALS
0: F038B000 00000000 0000003A 00000000
1: 00000400 FO38B3F8 0000003A 00000002
2: F0227518 00000000 FFFFFFFF F3401FE5
3: FOOOFF80 FO38AFF8 FO0001D4 FO000D94
4: 00000000 00000000 00000000 F0237000
5: 00000000 00000000 00000000 00000000
6: FOOOFDCO 00000000 FOOOFD48 FOOOEOO0O
7: FO1l0F348 00000000 F01109B8 FO000C7C
psr: F3901FE3 wi m 00000001 tbr: F0004050 y: 00000000
pc: f010edb0 Idub [%2], %1
npc: f010edb4 sl %1, 24, %0

Sun Boot Prom V

Debugging user space applications is a lot different from kernel debugging. One can still use GRMON the same
way as for kernel debugging but is only effective in simpler debugging cases. When debugging userspace
applications a native GDB debugger, executing on the LEON target, may be used to debug applications using
the serial console for input. This is similar to debugging PC applications and not described here. The CPU may
be heavily loaded since GDB share the CPU with the application, also application sources and debug binaries
are required at the target when debugging natively.

For targets having a serial port or a network connection it is possible to debug Linux applications remote. The
debugging interface is presented on a PC unloading the target CPU. The most common solution is to use a GDB
TCP/IP server (gdbserver) exporting control to a remote PC running GDB (sparc-linux-gdb) compiled for target
binaries (SPARC).

e
=

LINUX-SNAPGEAR 30 GAISLER RESEARCH

GRMON must be started with the flag -nswb in order to instruct GRMON not to interfere with the debugging
process or else software breakpoints result in GRMON taking over CPU, beware this only needed when
debugging userspace applications not when debugging the kernel.

6.3.1 Setting up a debugging environment

Together with the sparc-linux toolchain (version 1.0.1 and onwards) comes bin/sparc-linux-gdb and bin/sparc-
linux-insight. sparc-linux-gdb is GDB built for PC Linux able to read/debug SPARC Linux binaries.

The Data Display Debugger (DDD) is normally available in for download for any distribution. DDD is optional
as GDB can be used effectively in text mode.

The GDB TCP/IP server can be built within SnapGear by enabling it from the Application Configuration Utility
under "Miscellaneous Applications/gdbserver".

With GRMON version 1.1.23 the flag -nswb was added, it clears bit 3 (BS) in the DSU control register so that
GRMON won't interfere with the software breakpoints (ta 0x1).

6.3.2 GDB introduction

GDB is a debugger able to debug multiple languages including C and SPARC assembly. In this text GDB is
used to access a GDB server running on the target board debugging. GDB needs

® Binaries of the application and optionally the used libraries

® Sources used to compile the binaries

® The IP number of the target, can be found with "t arget $ / sbin/ifconfig"
® gdbserver running on the target (part of SnapGear)

® The gdbserver also need the binary but with or without debug information. Debug information is not
needed by the GDB server.

depending on what to debug. The libraries and their source code may not be needed. When debugging LibC the
sources and libraries are of course needed.

See the previous section "Debugging symbols" on how to create binaries with debugging information.
6.3.2.1 Adding additional source search paths

Sometimes GDB can not list the C-code, that may be due to missing debug information (not even searching for
C-code) or it can not find the source files mentioned in the debug information. It is not recommended to change
the source files after the debug binary has been created.

If the binary is compiled on the same computer running sparc-linux-gdb one need not to add additional paths
normally. The path information is coded into the binary, however when running GDB on a different computer
than the build host the path information is invalid and it may be needed to add additional search paths. Search
paths can be added with the '-d dir!:dir2:dir3' flag passed to GDB.

6.3.3 Starting GDB server on target

Assuming that the compilation of gdbserver has been successful and that GRMON has been started with the
flag -nswb the GDB server can be started with the following command at the target:

e
=

LINUX-SNAPGEAR 31 GAISLER RESEARCH

target$ gdbserver :1234 app argl arg2

Where 1234 is the TCP/IP port, app is the application to be debugged and arg!/ and arg? are the arguments to
app.
Note: The debugged application does not have to include any debugging information. It can be stripped.

6.3.4 Connecting with GDB to gdbserver

Below is an example of how to start GDB on the PC and connecting to the target, the target board IP address is
assumed to be 192.168.0.52, the TCP port 1234.

pc$ cd sources

pc$ sparc-linux-gdb ./app
1

wi th_debug info
(gdb) target renote 192.168.0.52:1234

6
6.3.5 GDB example usage
Configuring SnapGear with glibc-from-compiler, linux-2.6.21.1, with gdbserver,
pc$ nake xconfig
Building SnapGear,
pc$ neke
The binary application is recompiled manually with debugging symbols,

pc$ file ronfs/bin/testsin
ronfs/bin/testsin: ELF 32-bit MSB executable, SPARC, version 1 (SYSV),
dynam cally linked (uses shared libs), stripped

pc$ cd user/custom

pc$ sparc-linux-gcc -Im-g3 testsin.c -0 testsin-g

pc$ file testsin-g

testsin-g: ELF 32-bit MSB executable, SPARC, version 1 (SYSV)
dynami cally linked (uses shared libs), not stripped

The serial console is connected to a terminal emulator such as minicom or hyper terminal with 38400baud 8N1.
Running the image images/image.dsu from RAM on target LEON board using GRMON,

pc$ grnon -jtag -nb -nswb

grnon> | o i nages/i nages. dsu

grnon> run

On the terminal emulator connected to LEON Linux target,

target$ gdbserver :1223 /bin/testsin
Process /bin/testsin created; pid = 28

Starting GDB on the PC and testing that GDB finds the sources,

e
=

LINUX-SNAPGEAR 32 GAISLER RESEARCH

sparc-|linux-gdb testsin-g

GN\U gdb 6. 4.0.20051202-cvs

Copyri ght 2005 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you
aredme!cone to change it and/or distribute copies of it under certain
condi tions.

Type "show copying"” to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for
detail s.

This GDB was configured as "--host=i 686-pc-I|inux-gnu --target=sparc-
[inux"...

|ist
#i ncl ude <mat h. h>
#i ncl ude <stdlib. h>

—~

«Q
o
O

N

int main(int argc, char **argv) {
double i = 0.00
int j =0;
printf("testsin:\n");
while (i < 100.0) {
double v = sin(i);
10 printf("float:sin(%)=%\n",i,v);

OCO~NOUITRWNE

Connecting GDB to the remote gdbserver,

(gdb) tar rem 192. 168. 0. 80: 1223
Renot e debuggi ng using 192.168. 0. 80: 1223
0x50001¢c20 in ?? ()

Setting breakpoints,

(gdb) break 7
Breakpoint 1 at 0x10440: file testsin.c, line 7.

(gdb) break 10
Breakpoi nt 2 at 0x10494: file testsin.c, line 10.

Running application with cont instead of run since application already has been started and paused on the target
side,

(gdb) cont
Cont i nui ng.

Breakpoint 1, main (argc=1, argv=0xefbdled4) at testsin.c:7
printf("testsin:\n");

Stepping one C-line with next, as the printf call is executed the output appears on the target console,

(gdb) next
8 while (i < 100.0) {

Running the loop four times,

L

=
LINUX-SNAPGEAR 33 GAISLER RESEARCH

(gdb) cont

Cont i nui ng.

Breakpoint 2, main (argc=1, argv=0xefbdled4) at testsin.c:10

10 printf("float:sin(%)=%\n",i,v);

(gdb) cont

Cont | nui ng.

Breakpoint 2, main (argc=1, argv=0xefbdled4) at testsin.c:10

10 printf("“float:sin(%)=%\n",i,v);

(gdb) cont

Cont | nui ng.

Breakpoint 2, main (argc=1, argv=0xefbdled4) at testsin.c:10

10 printf(“float:sin(%)=%\n",i,v);

(gdb) cont

Cont I nui ng.

Breakpoint 2, main (argc=1, argv=0Oxefbdled4) at testsin.c:10

10 printf("float:sin(%)=%\n",i,v);

(gdb) cont

Cont I nui ng.

Breakpoint 2, main (argc=1, argv=0xefbdled4) at testsin.c:10
10 printf("float:sin(%)=%\n",i,v);

(gdb) print i

$1 =5

The output on the LEON target terminal is now,
Sash command shell (version 1.1.1)

/> gdbserver :1223 /bin/testsin
Process /bin/testsin created; pid = 26
Renot e debuggi ng using :1223

testsin:

fl oat: sin(0.000000)=0.000000
fl oat:sin(1l.000000)=0.841471
fl oat:sin(2.000000)=0.909297
fl oat:sin(3.000000)=0.141120
fl oat: sin(4.000000)=-0.756802

One can change the execution flow by manipulating variables within the loop. The integer i set to 90, the
breakpoints are removed and the application are continued to is endpoint,

(gdb) set variable i=90

(gdb) delete

Del ete all breakpoints? (y or n) y
(gdb) cont

Cont i nui ng.

Program exited normal ly.

Finally the LEON target's console output was,

e
=

LINUX-SNAPGEAR 34 GAISLER RESEARCH

Sash command shell (version 1.1.1)
/> gdbserver :1223 /bin/testsin
Process /bin/testsin created; pid = 26
Renot e debuggi ng using : 1223
testsin:

fl oat: sin(0.000000)=0.000000
float:sin(1l.000000)=0.841471
float: sin(2.000000)=0.909297

fl oat: sin(3.000000)=0.141120

fl oat: sin(4.000000)=-0.756802
fl oat: sin(90. 000000) =- 0. 958924
float:sin(91.000000)=0.105988
fl oat: sin(92.000000)=-0.779466
fl oat: sin(93.000000)=-0.948282
fl oat:sin(94.000000)=-0.245252
fl oat: sin(95.000000)=0. 683262
float:sin(96.000000)=0.983588
fl oat:sin(97.000000)=0.379608
float: sin(98.000000)=-0.573382
float: sin(99.000000)=-0.999207
exit testsin

Child exited with retcode = 0

Child exited with status 0O
GDBserver exiting
/>

6.3.6 DDD and GDB

DDD is a graphical frontend run alongside with GDB. DDD launches GDB and provides us with direct access
to the GDB console and the ability to display information about the debugged application. DDD is compiled for
PC Linux and uses a socket protocol to connect to the local GDB (sparc-linux-gdb). GDB is responsible for
SPARC specific operations and therefore DDD needs not to be recompiled for SPARC binaries.

pc$ ddd --debugger sparc-Iinux-gdb app_debug
(ddd-gdb) target renote target: port
(ddd-gdb) b main

(ddd- gdb) cont

Most Linux distributions distribute DDD as a precompiled binary package, in many cases it is installed by
default.

See http://www.gnu.org/software/ddd for more information about DDD.
6.3.7 Insight

Insight comes with version 1.0.1 or later of sparc-linux toolchains. Insight is a graphical debugging interface on
top of GDB. 1t is started by running sparc-linux-insight.

See http://sourceware.org/insight for more information on how to use insight.
6.4 Using NFS to simplify application updates

During development one i often needed to update the application and rerun it. Using the standard procedure is
very inefficient, rebuild the image, reprogram the flash and reboot. With GRMON the flash i not needed to be
updated, the image can be run directly from RAM saving a great deal of time. However, there are occasions
where even rebooting may be troublesome. Sharing the files over NFS may be a good alternative to rebooting
and rebuilding all SnapGear. Only the development files/binaries need to updated, not all SnapGear.

Perhaps the easiest way is to create a script file in the SnapGear image which mounts NFS after boot, yet
another way is to edit the ¢S file in vendors/leon3mmu/rcS to mount automatically on start up.

e
=

LINUX-SNAPGEAR 35 GAISLER RESEARCH

See your distribution manual how to set up an NFS sharer, normally you edit /etc/exports and run 'exportfs -r' .
The same problem is faced in the chapter "Root Filesystem over Ethernet using NFS".

Good practice is to mount the exported directory on to the server PC to verify that the NFS share is set up
correctly (even if this works it may be wrong). After network and NFS server has been set up on the target one
can simply mount the NFS share into an empty local directory with:

target$ nkdir /nfs
target$ nount -t nfs -o rw nol ock workstation:/export/|eonshare

6.5 Console output when debugging

The console is of great help when debugging applications, but often it limits the execution speed or put in
another way the console can not output enough information. There are ways to speed up the console output, two
techniques are discussed here.

6.5.1 Redirecting output to NFS share

The console output can be redirected to a file by the shell. The shell simply connects the application's stdout to a
file. For this to work the shell needs to support redirection, only tiny shells doesn't support redirection. It is also
possible to redirect stderr to file. See 'man stdin' and 'man bash' for more info. Embedded storage is often
limited in size and speed and would fill up the flash device rapidly. Instead a NFS server can be used to place
the execution log over the network.

$ mount -t nfs -rw logserver:/export/logs /nfslogs
$ app > 2>&1 /nfslogs/out_10sep2007.1 og

6.5.2 TELNET over TCP/IP network

Logging onto the target with telnet is an easier solution, all that has to be done is to set up a telnet server on the
target. A felnet server (telnetd) is available in SnapGear from the SnapGear Application configuration utility
under Network Applications.

pc$ tel net target
user name: root
paSS * Kk Kk k*x

Wl cone to SPARC LEON3 Li nux

root @arget# app

e
=

GAISLER RESEARCH

LINUX-SNAPGEAR 36

7 PS/2 KEYBOARD AND VGA CONSOLE

This is an example of how to configure the Linux 2.6.x kernel, set up init and it's settings file inittab, the boot
loader's parameters, and the kernel command line.

The software can be run on a GR-XC3S-1500 Spartan-1500 board available at www.gaisler.com.
7.1 Hardware configuration

The hardware set up is based on the template design of GR-XC3S-1500 and modified as in table 7.1.

Hardware / Controller Function

LEON3 with MMU, HW MUL/DIV and FPU SPARC v8 Processor with memory protection logic and

floating point unit.
GRVGA SVGA controller
GRPS2 PS/2 controller connected to keyboard

Table 7.1: Hardware in addition to GR-XC3S-1500 template design
7.2 Configuring the boot loader and main SnapGear options

Start SnapGear main GUI and configure as in table 7.2:

$ make xconfig

Name Value
Vendor / Product Selection

Vendor Gaisler
Gaisler Product Leon3mmu
Gaisler Leon2/3/mmu options

SPARC v8 Yes

FPU support Yes

Clock frequency 40MHz
Baudrate 38400

In memory root filesystem initramfs

Kernel command line

console=tty0 video=grvga:640x480@60,8,307200

Kernel/Library/Defaults Section

Kernel Version

Linux 2.6.x

Libc Version Glibc-from-compiler
Customize Kernel Settings Yes
Customize Vendor/User Settings Yes

Table 7.2: Boot loader configuration
7.3 Configuring the Linux kernel

Apart from the default configuration support for frame buffer on Gaisler VGA controller and input driver for
Gaisler PS/2 controller is enabled, as in table 7.3.

e
=

LINUX-SNAPGEAR 37 GAISLER RESEARCH

Name Function

Graphics Support

FB Frame buffer sub system

FB_GRVGA Frame buffer driver for GRVGA controller

FRAMEBUFFER_CONSOLE Frame buffer console support

FONTS Compiled in fonts

FONT_8x16 8x16 Font support

LOGO Add boot logo support

LOGO_LINUX CLUT224 Include a coloured Linux logo

Input devices

SERIO_LEON3 Driver for Gaisler PS/2 controller

SERIO_LEON3_KEYB_IRQ The IRQ number of assigned to the PS/2
controller connected to the keyboard

INPUT_KEYBOARD Keyboard sub system

KEYBOARD_ATKBD AT-keyboard driver

Table 7.3: Kernel configuration
7.4 Configuring SnapGear Applications

Below is a description of how the SnapGear ROMFS can be configured:

Name Function

BusyBox

Init First application that gets started after boot
Init: use inittab Make init read /etc/inittab for settings

Table 7.4: SnapGear configuration
7.5 Building the kernel and applications

Building the kernel, libraries and applications can be done as follows:

$ make
7.6 Setting up /etc/inittab

Init reads the /etc/inittab, line after line at start up and launches the /etc/rc.sh system initialization script and
spawns applications on each console as set up. Inittab can be created by typing:

e
=

LINUX-SNAPGEAR 38 GAISLER RESEARCH

$ cat << EOM > ronfs/etc/inittab

Systeminitialization script
;:sysinit:/etc/rc.sh

Make serial term nal have a consol e
ttySO0: : respawn: / bi n/sh

Make consol es appear via frame buffer
ttyl::respawn:/bin/sh
tty2::respawn: -/ bin/sh
tty3::askfirst:-/bin/sh

ECQM

rc.sh can be typed in as follows:
$ cat << EOM > ronfs/etc/rc. sh

#!/ bi n/ sh

nmount -t proc none /proc

mount -t sysfs none /sys

mount -t devpts devpts /dev/pts

host name spar ky
/sbin/ifconfig |lo up 127.0.0.1 netnmask 255.0.0.0
route add 127.0.0.1 dev lo

EOM

For the new script to be able to run one must add execution permission to it:

$ chrmod +x ronfs/etc/rc.sh
7.7 Building again with inittab and rc.sh

Since changes has been made only to the file system one can rebuild the images without having to recompile
kernel, libraries and applications.

$ make image

After building the images the image can be found at images/image.dsu. Note that image.flashbz does not
function correctly since the boot loader's SDRAM and flash settings hasn't been set up properly.

7.8 Running on hardware

The far most simplest method of testing the image is to run it using grmon as follows. Depending on what
debug interface is available the parameters to grmon may differ, see grmon documentation for details:

$ cd i mages
$ grnon -jtag -nb

grnon> | oad i nage. dsu
grnon> run

When everything is working as planned the connected monitor will first display a small penguin, kernel
messages and then launch a shell on ttyl, tty2 and the serial terminal (ttyS0). It is possible to switch between
tty1-3 by pressing ALT+F1/F2/F3 at the connected PS/2 keyboard.

e
=

LINUX-SNAPGEAR 39 GAISLER RESEARCH

8 ROOT FILE SYSTEM OVER ETHERNET USING NFS

Often during development it is favourable to use NFS as root file system as it is a tedious process
reprogramming the flash each time a change is made, and also there is no need in rebuilding the romfs image.
Settings can be preserved after system reboot.

Setting up root over NFS involves two steps, installing the NFS server on the PC and configuring the LEON
Linux image. The NFS server is assumed to be installed and therefore not described other than with an example
entry applied to /etc/exports, it make the NFS server export the root file system to the LEON board.

8.1 Setting up NFS server on PC

As previously mentioned the NFS server is assumed already to be installed, however an entry to /etc/exports
sharing the root file system should be added similar to what described. Adding the following line to the
/etc/exports makes the server share the /export/rootfs directory. The NFS server is forced to reread the settings
file by invoking “exportfs -1”.

/export/rootfs 192.168. 0.0/ 255. 255. 255. 0 (rw, async, no_r oot _squash, i nsecure)

In this example we export /export/rootfs which is a SnapGear ROMFS file system. The directory is exported to
any computer using the IP address 192.168.0.X.

$ su

nmkdir /export

cp -rpd ~dani el / snapgear - pxx/ronfs /[export/rootfs
echo “/export/rootfs 192.168.0.0/255. 255.255.0
(rw, async, no_root _squash, i nsecure)” >>/tnp/exports
exportfs -r

exit

$

It is also possible to base the root file system on other distributions for example on splack or creating one from
scratch. A common source of failure is that the initialization scripts, run during boot, assumes that the file
system is of ext2 or ext3 type, but it's not. This can usually easily be removed.

8.2 Configuring the boot loader and main SnapGear options

The important thing when running the root file system over NFS is to set up the kernel boot parameter to point
to the NFS share to be used as root and the network settings such as IP address, netmask and gateway.

To avoid building the image with the unused ROMFS root file system the “In-memory root filesystem” option
from the “Gaisler Leon2/3/mmu options” is set to “none”. The settings in the SnapGear application GUI does
not effect the build process once “In-memory root filesystem” is set to “none”.

An example configuration is outlined in table 8.1, the PC NFS server has the IP address 192.168.0.20 and the
target LEON board is configured to 192.168.0.203.

e
=

LINUX-SNAPGEAR 40 GAISLER RESEARCH

Name Value
Vendor / Product Selection

Vendor Gaisler
Gaisler Product Leon3mmu

Gaisler Leon2/3/mmu options

SPARC v8 Yes

FPU support Yes

Clock frequency 40MHz

Baudrate 38400

In-memory root filesystem NONE

Kernel command line console=ttyS0,38400 root=/dev/nfs

nfsroot=192.168.0.20:/export/rootfs,nfsvers=3
ip=192.168.0.203:192.168.0.20:192.168.0.1:255.255.255.0:grx
c3s_daniel:ethO:

Kernel/Library/Defaults Section

Kernel Version Linux 2.6.x

Customize Kernel Settings Yes

Table 8.1: SnapGear main configuration
8.3 Configuring the Linux kernel

In addition to the default settings of the Linux 2.6.x kernel add the features described by table 8.2.

Name Function

Networking

NET Networking support

INET TCP/IP protocol

IP_PNP IP settings can be set from kernel command line

UNIX UNIX domain sockets, needed by Debian's logging facilities.

Device Drivers / Network device support
NETDEVICES Enables the network device driver interface
General machine setup / Grlib: AMBA / Gaisler

GRLIB_GAISLER_GRETH Add Gaisler Ethernet 10/100/1000 driver.
Select a unique Ethernet address in the MSB and LSB fields.

Device Drivers / Block Devices

BLK_DEV_INITRD Disable ROMFS RAM root file system
File systems / Network file systems

NFS_FS Network file system support

NFS_V3 Support for version 3 of the NFS protocol
ROOT_NFS Add support for root file system over NFS

Table 8.2: Kernel configuration for NFS root FS
8.4 Building kernel and boot loader

As previously described,

e
=

LINUX-SNAPGEAR 41 GAISLER RESEARCH

$ nmake

The image will be available for download to the target board from images/image.dsu.
8.5 Running on hardware

The far most simplest method of testing the image is to run it using grmon as follows. Depending on what
debug interface is available the parameters to grmon may differ, see grmon documentation for details:

$ cd imges
$ grnon -jtag -nb

grnon> | oad i nage. dsu
grmon> run

The NFS share can be tested by changing or adding files at the PC side and watch as they appear on the LEON
Linux target.

e
=

LINUX-SNAPGEAR 42 GAISLER RESEARCH

9 ROOT FILE SYSTEM OVER ETHERNET USING ATA OVER ETHERNET

A network root filesystem can also be provided using ATA-Over-Ethernet on Linux 2.6. This setup requires two
steps: creating an ATAOE server that exports a block device containing the root filesystem, and configuring the
LEON to boot using the exported ATAOE root block device.

ATAOE block devices may be formatted with an arbitrary filesystem. For example, well-supported Linux
filesystems such as ext3 or xfs may be used. The ATAoE server must be on the same Ethernet Local Area
Network as the LEON.

9.1 Setting up ATAoOE Server

The ATAOE server, vblade, can be run on any supported Unix system, including Linux and FreeBSD. Vblade
can be obtained at http://aoetools.sourceforge.net .Installation documentation is included with vblade, although
typing 'make' followed by 'make install' (as root) should be sufficient for Linux systems.

With vblade installed, the next step is to configure the block device that will be exported by vblade. The block
device may be in one of two formats: a flat file or an actual block device. We will first show how to configure a
block device for vblade, as this is the easier of the two options. This example formats the block device /dev/hdb
using ext3, and then copies a SnapGear root filesystem to /dev/hdb.

nke2fs -j /dev/hdb

mount /dev/hdb /mt/tnp

cp -rpd ~dani el / snapgear-pxx/ronfs /mmt/tnp
unount /mmt/tnp

Now we will show how to configure a flat file to be used as a vblade-exported block device. In this example, we
create a 4GB flat file /rootfs.img formatted with ext3 containing a SnapGear root filesystem.

dd if=/dev/zero of=/rootfs.ing bs=1024 count =4000000
| osetup /dev/loop0 /rootfs.ing

mount /dev/|oopO /mt/tnp

cp -rpd ~dani el / snapgear - pxx/ronfs /mt/tnp

umount /mmt/tnp

| osetup -d /dev/Iloop0

HHHFHHFH

Make sure that the vblade-exported root block device has been unmounted (and in the case of a flat file, that
losetup -d has detached the file from any loopback devices) before running vblade. Now run vblade:

vbl aded ethO O O ethO /path/to/root-device

In this example, vblade is run with shelf 0 slot 0 over Ethernet network interface ethO, exporting the device at
/path/to/root-device. To use the devices set up by our examples, we could replace /path/to/root-device with
/dev/hdb or /rootfs.img, respectively. The shelf and slot numbers are used for naming purposes — they allow the
server to run multiple vblades. As long as each block device is exported with a different shelf or slot number,
the client can select which of the exported block devices it wishes to access. In our examples we will use shelf 0
slot 0 as we are not using multiple vblade servers.

The ATAOE server is now operational and its output will be sent via syslog to /var/log/messages. Note that
because vblade operates over Ethernet and not TCP/IP, it does not bind to a port, nor is it accessible from any
machine outside of the local LAN. For more information on ATA over Ethernet, see linux-
2.6.x/Documentation/aoe/aoe.txt.

9.2 Configuring the boot loader and main SnapGear options

To mount a root filesystem using ATAoE, we must use Linux 2.6.x with an initramfs initial root filesystem.
This filesystem should contain only the klibc utility, kinit. This utility will automatically parse the options we
pass to the Linux kernel, mount the ATAoE block device, and switch the root filesystem over to the filesystem
on the ATAoE mount.

e
=

LINUX-SNAPGEAR 43 GAISLER RESEARCH

An example configuration is outlined in the following table. The ATAOE server has slot and shelf number 0,
and the target LEON board is configured to 192.168.0.203. Note that the ip= option may be omitted, as ATAoE
requires only Ethernet and will function even if the LEON does not have a valid IP address. However, LEON
system using ATAOE typically enable TCP/IP.

Name Value

Vendor / Product Selection

Vendor Gaisler

Gaisler Product Leon3mmu

Gaisler Leon2/3/mmu options

SPARC v8 Yes

FPU support Yes

Clock frequency 40MHz

Baudrate 38400

In-memory root filesystem Initramfs

Init pathname /bin/kinit

Kernel command line console=ttyS0,38400 root=/dev/etherd/e0.0

ip=192.168.0.203:192.168.0.20:192.168.0.1:255.255.255.0:grx
c3s_daniel:eth0:

Kernel/Library/Defaults Section

Kernel Version Linux 2.6.x
Customize Kernel Settings Yes
Customize Vendor/User Settings Yes
Libc version None

9.3 Configuring the Linux kernel

In addition to the default settings of the Linux 2.6.x kernel add the features described by the following table.

LINUX-SNAPGEAR

e
=

44 GAISLER RESEARCH

Name
Networking
NET

INET
IP_PNP

Function

Networking support
TCP/IP protocol

Disable IP PnP — kinit will provide this functionality for us

Device Drivers / Network device support

NETDEVICES

Enables the network device driver interface

General machine setup / Grlib: AMBA / Gaisler

GRLIB_GAISLER_GRETH

Device Drivers / Block Devices

Add Gaisler Ethernet 10/100/1000 driver.
Select a unique Ethernet address in the MSB and LSB fields.

BLK_DEV_INITRD
ATA_OVER_ETH

Disable INITRD support
Add ATA Over Ethernet block device support

File systems / Network file systems

EXT3_FS

Ext3 journalling filesystem support

9.4 Configuring the vendor/user applications

At a bare minimum, klibc/kinit support must be enabled for ATAOE root to work. Furthermore, we recommend
disabling all other applications, as there will be no need for them. This is because kinit immediately switches
the root filesystem to the ATAOE block device at startup, and does not invoke or require any other applications
or libraries. Configuring a root filesystem with only klibc/kinit, while not strictly required, will result in a much
shorter build time and a much smaller initial root filesystem.

Name
Core Applications

Custom tests app

Function

Disable custom tests app

Shell Program Other

Network Applications

arp Disable arp
portmap Disable portmap
tcpd Disable tcpd
Busybox

Busybox Disable Busybox
Miscellaneous Configuration

RAMFS Image None

klibc

build klibc Enable klibc support
kinit Enable kinit

Statically link all binaries

(Optional) Should result in a slightly smaller size for kinit — there's only one
binary so static linking actually doesn't waste space in this case

9.5 Building kernel, boot loader, and kinit

As previously described,

e
=

LINUX-SNAPGEAR 45 GAISLER RESEARCH

$ nmake

The image will be available for download to the target board from images/image.dsu.
9.6 Running on hardware

The simplest method of testing the image is to run it using grmon as follows. Depending on what debug
interface is available the parameters to grmon may differ, see grmon documentation for details:

$ cd imges
$ grnon -jtag -nb

grnon> | oad i nage. dsu
grmon> run

e
=

LINUX-SNAPGEAR 46 GAISLER RESEARCH

10 RUNNING GRLINUX/SPLACK FROM AN ATA HARD DISK

Splack is a distribution based on the SPARC version of slackware, it is prepared especially for demonstrating
the ATA interface. The GRLinux include tested bitfiles for various boards, a precompiled kernel with the
appropriate features to run the root file system from a hard drive, and a temporary image for preparing the hard
drive with splack. The splack distribution was compiled with support for FPU and integer multiplier.

The kernel needs support for Gaisler ATA controller when accessing the root file system from an ATA disk or
compact flash.

10.1 Installing the kernel onto flash

The precompiled kernel is loaded onto the boot PROM of the board, grmon can be used to program the
PROM/Flash.

$ grnon -jtag
grnon> flash erase al
grmon> flash | oad inage.flashbz

The boot loader is the first to be executed, it copies the kernel into main memory and before it starts the
execution of the kernel, the kernel command line string is made available. The kernel needs to know what
partition on the disk to search for the file system, that can be provided through the kernel command line:

root=/dev/hdal

The example boot line above make the kernel search the first partition on the first disk for a valid file system. In
principle the configuration is similar to a NFS root file system as described earlier, instead of telling the kernel
the IP address of the server and the location of the share on that server, the kernel is fed with hard disk and
partition number.

10.2 Preparing the hard drive

The preparation of the hard drive can be made using a PC computer, or as described below by using the target
hardware. Another image besides the flash image has been create for a single purpose, preparing the hard drive
from the target hardware using NFS to access the splack distribution. This image is called image-nomount.dsu.

Booting the Linux kernel can be done as follows:

$ grnon -jtag -nb
grnon> | oad i nage- nonount . dsu
grnon> run

In order to copy the splack distribution onto the disk one must be able to access it. In this example NFS is used
to access the splack distribution:

mount -t nfs 192.168.0.32:/hone/daniel /mt/nfs

In order for the kernel to read from the hard disk one should create a partition table and a partition on the hard
drive with a file system which the kernel can read the root file system from, EXT2 typically (type 0x83). One
can edit the partition table and create new partitions with fdisk, it can be started as follows:

fdi sk /dev/ hda

n add a new partition

p print the partition table

o] create a new enpty DOCS partition table
w wite table to disk and exit

When a partition has been created it is possible to format it using the mkelfs utility, and copy the splack
distribution to the newly created file system:

e
=

LINUX-SNAPGEAR 47 GAISLER RESEARCH

nke2fs /dev/hdal

mount -t /dev/hdal /mt/hd

cd /mt/hd

tar -zxpf /mmt/nfs/splack-1.0.tar.gz
cd ..

umount /mt/ hd

H O OH OH OHF OH OH

umount /mt/nfs
10.3 Running splack

If not already connected, connect the hard drive to the target board. Make sure a terminal emulator is connected
to the serial port at 38400 baud. The first boot after power up will fail on the lattice board because the DDR
RAM needs to be manually reset. Push the reset button and the kernel should boot and mount the CF disk.

The root password is set to "qwerqwer".

One must always terminate the system using the 'shutdown -h' command before switching of the power. This
will sync the file systems, otherwise data can get corrupted or lost. Before it is okay to turn power off (or reset
it) a message will be printed at the console:

Shut down: hda

Power down.

e
=

LINUX-SNAPGEAR 48 GAISLER RESEARCH

11 INSTALLING DEBIAN 3.1 ON LEON LINUX

Debian is a widely used Linux distribution freely available at www.debian.org. Debian is available platforms,
including SPARC. Debian binaries expect FPU and hardware integer multiplier to be available. For further
installation information refer to the installation manual at Debian's homepage.

Normally, when installing Debian, installation diskettes or compact discs are used to boot Debian Installation
program. However, installing Debian on LEON involves a different approach where it is installed from an
UNIX host directly onto a disk or a NFS share. The Installation procedure is split in two stages, first Debian
binaries are downloaded and verified from the internet the second stage involves running the binaries on a
LEON target board doing the “real” installation and configuration.

In this example Debian is installed onto a NFS share that will later become the root file system of the LEON
board. The LEON board is a low-cost GR-XC3S-1500 board from www.gaisler.com.

11.1 Preparing LEON target

Preparing the LEON target to run the installation binaries is done similar to a NFS root file system set up as
described previous, the important applications and kernel configuration is listed in two tables below. The LEON
system consist of a kernel that is using a NFS share with BusyBox as it's root file system.

The BusyBox root file system is exported from a PC as /export/busybox and the Debian root file system is
placed in /export/busybox/debian.

Name Function

Networking

NET Networking support

INET TCP/IP protocol

IP_PNP IP settings can be set from kernel command line

Device Drivers / Network device support
NETDEVICES Enables the network device driver interface

General machine setup / Grlib: AMBA / Gaisler

GRLIB_GAISLER_GRETH Add Gaisler Ethernet 10/100/1000 driver.
Select a unique Ethernet address in the MSB and LSB fields.

Device Drivers / Block Devices

BLK_DEV_INITRD Disable ROMFS RAM root file system
File systems / Network file systems

NFS_FS Network file system support

NFS V3 Support for version 3 of the NFS protocol
ROOT_NFS Add support for root file system over NFS

Table 11.1: Kernel configuration for Debian and install program

http://www.gaisler.com/
http://www.gaisler.com/
http://www.gaisler.com/
http://www.debian.org/
http://www.debian.org/
http://www.debian.org/

e
=

LINUX-SNAPGEAR 49 GAISLER RESEARCH

Name Function

Core Applications

Bash Shell to parse Debian scripts
BusyBox

ar, cat, chmod, chown, chroot, find, grep, gunzip, head, init, In, md5sum, mkdir, mv, printf, rm, sed, sleep, sort,
sync, tar, touch, tr, umount, wc

Table 11.2: Root file system mounted via NFS
11.2 Installing Debian installation utility to PC and LEON target

The utility that is able to download, extract and install Debian is called debootstrap. It can be downloaded from
Debian's homepage. Since debootstrap is run from the PC as well as the LEON target two versions are needed
to be downloaded, the SPARC version for the LEON and the 1386 version for the PC. Unless of course running
on Solaris.

It is assumed that the Debian package manager is not available. Download and install debootstrap on a non-
debian machine as root:

BUSYBOXLI NUX=/ export/ busybox rootfs
DEBOOT=deboot strap_0. 2. 45-0. 2_i 386. deb
TMPDI R=/t np/ debi nst

ARCH=spar c

| NSTDI R=$BUSYBOXLI| NUX/ debi an

DI STNAME=sar ge

M RROR=ftp://ftp.se. debi an. or g/ debi an

nkdir -p $TMPDI R/ wor k
cd $TMPDI R

wget http://ftp.se.debian. org/ debi an/ pool / mai n/ d/ deboot st r ap/ $DEBOOT
cd work
ar -xf $TMPDI R $DEBOOT

cd /
tar -zxvf $TMPDI R/ work/data.tar.gz

PPH BHRH PBL BHEPRAHPH

Download and install debootstrap to LEON BusyBox root file system:
$ DEBOOT=deboot strap_0. 2. 45-0.2_sparc. deb

nkdir -p $TMPDI R/ wor k_spar c
cd $TMPDI R

wget http://ftp.se.debian. org/ debi an/ pool / mai n/ d/ deboot st r ap/ $DEBOCT
cd work_sparc
ar -xf $TMPDI R/ $DEBOOT

cd $BUSYBOXLI NUX
tar -zxvf $TMPDI R/ wor k_sparc/data.tar. gz

PP BBH AP

The two debootstrap applications should now be working both for the LEON target and the PC.
11.3 Downloading Debian binaries using PC

Downloading Debian binaries to PC:

http://ftp.se.debian.org/debian/pool/main/d/debootstrap/$DEBOOT
http://ftp.se.debian.org/debian/pool/main/d/debootstrap/$DEBOOT
http://ftp.se.debian.org/debian/pool/main/d/debootstrap/$DEBOOT
http://ftp.se.debian.org/debian/pool/main/d/debootstrap/$DEBOOT
http://ftp.se.debian.org/debian/pool/main/d/debootstrap/$DEBOOT
http://ftp.se.debian.org/debian/pool/main/d/debootstrap/$DEBOOT
ftp://ftp.se.debian.org/debian
ftp://ftp.se.debian.org/debian
ftp://ftp.se.debian.org/debian

—
H
LINUX-SNAPGEAR 50 GAISLER RESEARCH

$ mkdir -p $INSTDIR

[usr/ sbi n/ deboot strap --downl oad-only --arch $ARCH $DI STNAME $I NSTDI R
$M RROR

114 Installing Debain binaries from LEON target

The LEON target is able to access the binaries downloaded by the PC in the previous step by entering the
/debian directory. Invoking the Debian installation utility debootstrap with the correct parameters makes it
continue the installation process, this step may take some time to complete:

[usr/ sbin/ deboot strap sarge /debian
11.5 Adding a serial console to Debian

Even though the system console may be the serial terminal no shell is given unless explicitly telling init to
launch one. This can be done as previously described by editing the /etc/inittab in the Debian root file system.
Add or uncomment:

TO: 234: respawn: /shin/getty -L ttySO 38400 vt 100

Getty will present us with a login prompt at serial channel 0. One must make sure there is a valid serial terminal
device node for getty to open in /dev/ttyS0. If the device is missing it can be created by mknod:

cd $I NSTDI R/ dev
nmknod ttySO ¢ 4 64

In case of trouble booting Debian it may be of good practice to change the run level to 1 or 2 in inittab before
booting:

The default runlevel.
id:2:initdefault:
11.6 Changing root directory and booting Debian

Before booting the kernel command line needs to be updated to reflect the new root file system. Enter the
“make xconfig” GUI and update the kernel command line to include the debian directory:

nf sroot =192. 168. 0. 20: / export/ busybox_rootf s/ debi an

Make the configuration, rebuild the image and run the image:

$ make xconfig

$ nmake i mage

$ grnon -jtag -nb

$ |l oad i mages/i mage. dsu
$ run

11.7 Adding a telnet server to Debian

During the development process it often comes in handy with a telnet terminal. The telnet terminal isn't limited
by the bandwidth as the serial terminal, making it to an excellent choice when running or debugging new
applications.

The easiest way of installing applications in Debian is using the apt-get utility. The apt-get utility can be setup
to fetch binaries from close mirror servers by editing /etc/apt/sources.list. Setting it up on the LEON target:

e
=

LINUX-SNAPGEAR 51 GAISLER RESEARCH

echo deb ftp://ftp.se.debian.org/debian stable nain contrib non-free >
/etclapt/sources.|list

apt-get update

Installing telnet server can be done as follows:

apt-get install telnetd

It is generally an good idea to have a look in the /etc/inetd.conf and verifying that ftelnetd is correctly
configured. To make the telnet server appear on the network inetd may need to be restarted to reread it's
configuration file, sometimes it is enough sending inetd it the SIGHUP signal.

11.8 Installing X.org X11 Server

The graphical X server is normally operated using keyboard and mouse. See the chapter "PS/2 and VGA" on
how to setup the monitor and PS/2 keyboard. The peripherals and monitor/GRVGA is setup in
/etc/X11/xorg.conf installed with apt-get.

Installing the graphical X server, fbset (a frame buffer utility), X fonts and xterm terminal emulator is similar to
installing the telnet server in the previous section:

apt-get install xserver-xorg
apt-get install xfonts-base
apt-get install fbset
apt-get install xterm

Configure the X server by editing /etc/X11/xorg.conf.

After setting up the X server properly it is possible to start the server with extra debug output by adding the
option -verbose [level]:

$ X -verbose 3

e
=

LINUX-SNAPGEAR 52 GAISLER RESEARCH

12 SUPPORT

For support, contact the Gaisler Research support team at support@gaisler.com.

mailto:support@gaisler.com
mailto:support@gaisler.com
mailto:support@gaisler.com

	1 INTRODUCTION
	1.1 LEON Linux
	1.2 SnapGear Linux
	1.3 Boot loader for LEON Linux
	1.4 LEON simulator to speed up the development process
	1.5 Obtaining the software
	1.6 Supported hardware
	1.7 Support

	2 Installing GNU toolchain and LEON linux
	2.1 Selecting Toolchain
	2.2 Installing the toolchain
	2.3 Installing SnapGear for LEON Linux 2.0
	2.4 Installing SnapGear for LEON Linux 2.6

	3 Configuring LINUX
	3.1 Processor type and MMU
	3.2 C library
	3.2.1 Static vs Dynamic linking
	3.2.2 Toolchains for Linux 2.6
	3.2.3 Toolchains for Linux 2.0

	3.3 Kernel version
	3.4 Configuring the boot loader
	3.4.1 Symmetric multi-processing

	3.5 Configuring the 2.6.x kernel
	3.5.1 LEON processor type
	3.5.2 Symmetric multi-processing support
	3.5.3 Gaisler AMBA Plug&Play procfs support
	3.5.4 GRLib APBUART (LEON3)
	3.5.5 LEON Serial (LEON2)
	3.5.6 GRLib GRETH 10/100/1000
	3.5.7 GRLib OpenCores Ethernet MAC
	3.5.8 SMC 91x Ethernet MAC
	3.5.9 GRLib GRETH 10/100/1000 over PCI
	3.5.10 GRLib OpenCores I2C-master
	3.5.11 GRLib PCI support
	3.5.12 GRLib GRPS2
	3.5.13 GRLib SPICTRL
	3.5.14 GRLib GRUSBHC
	3.5.15 GRLib GRVGA
	3.5.16 GRLib ATA Controller
	3.5.16.1 DMA Extension

	3.6 Configuring the 2.0.x kernel
	3.6.1 LEON processor type
	3.6.2 GRLib APBUART (LEON3)
	3.6.3 LEON Serial (LEON2)
	3.6.4 GRLib GRETH 10/100 Ethernet MAC
	3.6.5 GRLib OpenCores 10/100 Ethernet MAC
	3.6.6 SMC 91C111 10/100 Ethernet MAC
	3.6.7 GRLib VGA text frame buffer support
	3.6.8 GRLib GRPS2 PS/2 interface/keyboard

	3.7 Applications included in ROMFS
	3.8 Template configurations

	4 BUILDING SNAPgear
	5 Adding custom applicationS
	5.1 Creating an application
	5.2 Setting up compilation directives
	5.3 Including application to file system

	6 Debugging Linux-2.6 AND Applications
	6.1 Debugging symbols
	6.2 Debugging the kernel
	6.2.1 Configuring GRLIB for kernel debugging
	6.2.2 Using GRMON
	6.2.3 GRMON Example: debugging the Linux kernel

	6.3 Debugging userspace applications
	6.3.1 Setting up a debugging environment
	6.3.2 GDB introduction
	6.3.2.1 Adding additional source search paths

	6.3.3 Starting GDB server on target
	6.3.4 Connecting with GDB to gdbserver
	6.3.5 GDB example usage
	6.3.6 DDD and GDB
	6.3.7 Insight

	6.4 Using NFS to simplify application updates
	6.5 Console output when debugging
	6.5.1 Redirecting output to NFS share
	6.5.2 TELNET over TCP/IP network

	7 PS/2 keyboard and vga console
	7.1 Hardware configuration
	7.2 Configuring the boot loader and main SnapGear options
	7.3 Configuring the Linux kernel
	7.4 Configuring SnapGear Applications
	7.5 Building the kernel and applications
	7.6 Setting up /etc/inittab
	7.7 Building again with inittab and rc.sh
	7.8 Running on hardware

	8 root file system over Ethernet using Nfs
	8.1 Setting up NFS server on PC
	8.2 Configuring the boot loader and main SnapGear options
	8.3 Configuring the Linux kernel
	8.4 Building kernel and boot loader
	8.5 Running on hardware

	9 root file system over Ethernet using ATA OVER ETHERNET
	9.1 Setting up ATAoE Server
	9.2 Configuring the boot loader and main SnapGear options
	9.3 Configuring the Linux kernel
	9.4 Configuring the vendor/user applications
	9.5 Building kernel, boot loader, and kinit
	9.6 Running on hardware

	10 Running GRLinux/SPLACK from an ata hard disk
	10.1 Installing the kernel onto flash
	10.2 Preparing the hard drive
	10.3 Running splack

	11 Installing debian 3.1 on LEON Linux
	11.1 Preparing LEON target
	11.2 Installing Debian installation utility to PC and LEON target
	11.3 Downloading Debian binaries using PC
	11.4 Installing Debain binaries from LEON target
	11.5 Adding a serial console to Debian
	11.6 Changing root directory and booting Debian
	11.7 Adding a telnet server to Debian
	11.8 Installing X.org X11 Server

	12 Support

